

Abstract— In order to decrease the time and effort of the software

development process and increase the quality of the software product

significantly, software engineering required new technologies.
Nowadays, most software engineering design is based on reuse of

existing system or components. Also, it is become a main
development approach for business and commercial systems. The

concept of reusability is widely used in order to reduce cost, effort,

and time of software development. Reusability also increases the
productivity, maintainability, portability, and reliability of the

software products. That is the reusable software components are

evaluated several times in other systems before. The problems faced
by software engineers is not lack of reuse, but lack of widespread,

systematic reuse. They know how to do it, but they do it informally.

Therefore, strong attention must be given to this concept.

This study aims to propose a systematic framework considers the

reusability through software life cycle from two sides, build-for-reuse
and build-by-reuse. Furthermore, the repository of reusable software

components is considered, and the evaluation criteria from both sides

are proposed. Finally, an empirical validation is conducted by apply
the developed framework on a case study.

Keywords— Software Reusability, Build for Reuse, Build by
Reuse, Reusability Criteria, Software Quality, Quality Evaluation.

I. INTRODUCTION

n order to decrease the time and effort of the software

development process and increase the quality of the software

product significantly, software engineering required new

technologies [2]. New horizons are opened, since the idea of

software reuse appeared in 1968 [3]. Software reuse is an

important and relatively new approach to software engineering

[4]. It is become a main development approach for business

and commercial systems [5]. Moreover, it is considered as one

of the most important aspect used to improve the productivity

of the software development [6].

Reusability is the degree to which a thing can be reused [7].

Software reusability represents the ability to use part or the

whole system in other systems [8-11] which are related to the

Anas Bassam AL-Badareen is with the University Putra Malaysia, 43400

UPM, Serdang, Selangor, Malaysia. Phone: 601-72301530; e-mail:

anas_badareen@hotmail.com.

Mohd Hasan Selamat is a professor of software engineering with

University Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.

Phone: 603-89471720; e-mail: hasan@fsktm.upm.edu.my.

Marzanah A. Jabar PhD is with University Putra Malaysia, 43400 UPM

Serdang Selangor, Malaysia; e-mail: marzanah@fsktm.upm.edu.my.

Jamilah Din PhD is with University Putra Malaysia, 43400 UPM Serdang

Selangor, Malaysia; e-mail: jamilah@fsktm.upm.edu.my.

Sherzod Turaev is a Postdoctoral Researcher with University Putra

Malaysia, 43400 UPM, Serdang Selangor, Malaysia; e-mail:

sherzod@fsktm.upm.edu.my.

packaging and scope of the functions that programs perform

[12]. Bitar [13] showed that, the reusability has to be

considered as it is the most significant factor to improve the

productivity and quality of the software development.

The concept of the software reuse is used to reduce the

effort, cost, and time to develop a new system. Mohaghehi

[14] and Philippow [15] state that the reusability is used to

increase the productivity and reduce the developing time,

which leads to complete the development faster and cheaper.

According to Poulin [16], the US department of defense alone

could save 300$ million annually by increasing its level of

reuse as little as 1%. Moreover, software reusability aimed to

improve productivity, maintainability, portability and therefore

the overall quality of the end product [17].

Most software engineering design is based on reuse of

existing system or components [5]. However, in order to

achieve the benefits of the software reuse significantly it must

be systematic [18]. Large organization need to introduce a

systematic reuse in phases [19].

According to Ouyang [20], software reusability can be

considered from two view points: design-by-reuse and design-

for-reuse. Software-by-reuse is the use of existing application

or its components to build new applications. Software-for-

reuse is the ability of building applications that can be used all

or part of it in other applications.

According to Prieto-Diaz [21], the concept of the software

reuse is not only applied to source code fragment, but can also

mean all of the information that are related to the product

generating processes, including software requirements,

analysis, design, and any information required by the

developers to build a software. Moreover, Ramamoorthy [22]

mentions that the reusability is not limited to the source code,

but it has to include the requirements, design, documents, and

test cases besides the source code.

Hence, the problem faced in software engineering is not

lack of reuse, but lack of widespread, systematic reuse.

Further, software engineers know how to adapt and reverse-

engineer systems, but they do all of these processes informally.

Sommerville [5]state that one of the main problems faced in

software reuse is a lack of tools and reusable component

library.

This study aims to propose a systematic framework

considers the reusability through software life cycle from two

sides, build-for-reuse and build-by-reuse. Furthermore, a

repository of reusable software components is considered.

Also, the evaluation criteria from both sides are proposed.

Finally, an empirical validation is conducted by apply the

Reusable Software Component Life Cycle

Anas Bassam AL-Badareen, Mohd Hasan Selamat, Marzanah A. Jabar, Jamilah Din, Sherzod Turaev

I

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 5, 2011

191

developed framework on a case study.

II. REUSABLE COMPONENTS EXTRACTION

Poor quality components may be unsuited for a reuse library

[23]. Therefore, software product has to be designed and

developed in certain method even it is requires an extra effort

in order to be able to reuse it later [22]. The process of

extraction of reusable component starts from project planning

and match with all of the software development stages (see

Figure 1). Thus it increases the quality of the reusable

components and reduces the efforts required to build-by-reuse

software.

In planning phase, the objective of the reusability is defined.

The planning of component extraction identifies which

component is needed to be extracted, how the process of

extraction will be conducted, and when and where the

extracted components can be used. Furthermore, the

dependency and generality of the system goals are considered.

Requirement phase is the most important phase in build for

reuse process, which makes the decision of build for reuse.

According to the user requirements, software developers

decide which subsystem can be built for reuse. Moreover, the

reusable components library is checked to see whether these

components exist. The decision is made when the required

component does not exist in the library.

In the system analysis and design, after the decision to build

reusable components for specific requirements is made, the

generality, portability, and coherence and coupling are the

main issues of this phase. These characteristics are considered

in designing reusable components and integrating these

components to work together in order to perform the intended

requirement.

Implementation phase, the independent sub-systems are

developed, and the relationships among these sub systems are

considered. Moreover, in the test phase, the evaluation of each

sub system is independently conducted, and the ability of the

sub-systems to work together and produce the expected result

is also considered. Furthermore, in system documentation,

more attention is given to the ability of the sub-system to work

and its requirements to perform its goals.

As a result of the project, two software products are

delivered instead of one. The first one is the required system,

which is deployed in the market. The second product is the

reusable components that are considered in the system. These

components are sent to pre-store process in order to be

processed and stored in the reusable software component

library.

Pre-store process is a process of evaluate and enhance

reusable components according to certain standard.

Ramamoorthy [22] proposed a method of reusability-driven

development. The concept of this method is adopted in the

proposed framework (Figure 1), while the characteristics

evaluated in this method are modified.

The reusability test consists of formal conditions that are

required in the library. The process of reusable components is

conducted till it passes the reusability test. Finally, when the

component passes the reusability test, it is saved in the library

to be used in other systems.

III. REUSABLE COMPONENTS ADOPTION

The reusability is a concept of managing on how to use a

system or some of it is components in the new system. As

shows in figure 2, based on business objectives, software

developers identify components that are able to be adopted in

new system.

In requirement phase, system analyst checks the library

whether it contains any reusable component suitable for each

requirement. Moreover, the evaluation of the selected

components is to check whether any modification is required

before they are adapted to the system.

Reusability test in build-by-reuse is different than the test in

build-for-reuse. Test for reuse considers the conditions

required by reusable components library, whereas reusability

test in build-by-reuse process considers the conditions required

by a new system. Moreover, the conditions required by a

library consider only the general characteristics of

nonfunctional requirements, while in the test for reuse,

functional and nonfunctional requirements are considered.

These characteristics are evaluated specifically according to

new system requirements.

Library
Identify the requirements

that are considered for reuse
Requirements

Pre-store process

Build for Reuse

Consider the component
adaptability and
independability

Analysis
&

Design

Evaluate the sub-system

Evaluate the integration

between sub-systems

Testing

Develop independent sub-

systems

Integrate the sub-systems

Implementation

Identify the reusability

objectives Planning

Check

Library

T Send to the

Library
Reusability Test

Process

Retest F Delivered Software
Product

Deployed

Reusable
Components

Figure 1: Build-for-reuse Framework

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 5, 2011

192

First step in system analysis and design phase is to consider

their need in the new components. In the implementation

phase, the sub systems are defined as a base of the system, in

order to consider their requirements in the other sub-systems.

Finally, the evaluation of the sub-system and the system

integration test are conducted.

IV. TRANSFER FROM FOR REUSE TO BY REUSE

The link between develop for reuse and develop by reuse is

very important in the success of the new project development.

As shows in figure 3, the link between a build-for-reuse and

build-by-reuse is a process consists of three phases, pre-store

process, pre-use process, and reusable software component

storage.

In order to decide whether the intended components able to

achieve their functions properly within other system, project

manager evaluates the ability of the components to work and

communicate with other components within other systems in

different platforms.

The reusability process, as mentioned above, considers the

ability of the reusable components to achieve certain

conditions that are required by reusable component library or

new project.

Reusable component library is a repository of software

components able to be used in different systems. Components

exist in this storage have to follow certain standards and

conditions. Hence, reusability test evaluates whether new

component that needed to be stored in the library achieves

these conditions. If the component passes this test, it will be

send directly to the library. Otherwise, the process is required

to modify this component in order to achieve a required

standards and conditions in the library.

 Component adoption, the required components returned

from reusable component library have to be sent to reusability

test. This test is different from reusability test in the extraction

process. The components are returned from a library have been

verified according to the library conditions. But in this test, it

evaluates whether the component is suitable for a new system.

V. REUSABILITY EVALUATION

In order to transfer a reusable software component, it has to

go through two main processes, pre-store process and pre-use

process. Pre-store process is a process of modify and evaluate

the extracted reusable components in order to satisfy the

reusable component library. Pre-use process is a process of

modify and evaluate the stored reusable components in order

to be suitable and useable in a new system.

In these processes, the maintenance framework has been

proposed in [24] is adopted. This framework, considered the

characteristics of the modifiable software components,

whereas the test phase intend to evaluate the reusability

characteristics that discussed below. Figure 3, shows the

reusable software components life cycle including pre-store

and pre-use processes, which include a reusability test.

Library Check

Library

T

Build by Reuse

Develop independent

sub-systems

Integrate the old sub-

systems with the new

Adopt the design of
the considered

components within the
system design

Identify the

requirements that are

considered to be reuse

Identify the goals that
can be achieved by

reuse

Evaluate the sub-

systems

Evaluate the

integration between
sub-systems

Analysis
&

Design

Planning

Testing

Implementation

Requirements

Return a component

from a library

Reusable components

Pre-use process

Retest F

Reusability Test

Process

T

Figure 2: Build-by-reuse Framework

Delivered software

product

Check

Component
Library

Send the component

to the library

Reusable

component

T

Pre-store process

Retest

Reusability Test

Process

F

Pre-use process

Retest F

Reusability Test

Process

T

Return a component

from a library

Develop by

reuse

Deployed

Develop

for reuse
Check

Component

Deployed

Delivered

software product

Figure 3: Reusable software component life cycle

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 5, 2011

193

A. Pre-store process

Reusability is concerned about how to use a system or its

part in other systems. Several characteristics have to be

considered. In this section the characteristics required to make

the system qualify to be used in different system are

considered. The first test which is required before store the

extracted component in the library. It is intend to evaluate the

general characteristics that required for any system as shown in

figure 4.

Software coexistence considers the ability of the system or

the sub-system to work in different platforms. This

characteristic includes software system independence and

machine independence. Software system independence

represents the degree to which the program is independent of

programming language features, operating system

characteristics and other environmental constraints. Machine

independence is the degree to which the software is de-coupled

from its operating hardware.

The adaptability (interoperability) of the software is the

degree of ability to communicate with other systems. It

includes modularity, communication communality, and data

communality. System modularity is a functional independence

of program components that represents the degree to which a

system or computer program is composed of discrete

components such that a change to one component has minimal

impact on other components.

Communication commonality represents the degree to which

standard interfaces, protocols and bandwidth are used. Data

commonality is the explicit use of standard data structures and

types throughout the program.

Software generality presents a level of abstraction to

retrieve a result based on desired generality [25]. It is used to

achieve a high level of abstraction that helps to solve a large

class of problems even over different dimensions [26].

Therefore, it is defined as a degree to which a software

product can achieve a wide range of functions [27].

The compliance verifies whether the software follows any

standard or international certificates in order to build reusable

software.

B. Pre-use process

The second process is required to retrieve and modify stored

components from a reusable software component library in

order to build new system. These components have to be

satisfied with the new system requirements. Therefore, the

functionality characteristic is the main factor has to be

considered to present whether the retrieved component is

suitable and able to achieve the requirements in the new

system.

Software functionality consists of three main characteristics:

suitability, accuracy, and compliance. Suitability presents the

ability of the component to achieve the requirement of the new

system and produce desired results. Accuracy presents the

precision of the results required from the component.

Compliance presents whether the component has been

developed according to certain standard in order to achieve it

is requirements.

In addition to the functionality of the software component,

the ability of this component to work with the new system

properly is considered. These characteristics have been

measured previously in pre-store test. The evaluation has been

conducted previously in pre-store process was intend to

measure a general characteristics. While in pre-use process,

the evaluation considers only the characteristics of the new

system. Therefore, the measurement criteria consider only the

characteristics of the new system. Table 1, shows the checklist

of the evaluation that required for the new system.

These characteristics have been measured and modified

previously in pre-store process. Therefore, this evaluation is

started based on previous evaluation, which is required to

make sure that the selected component is suitable for the new

system. While, the other characteristics such as functionality

are required to be measured after retrieve the stored

component.

VI. REUSABILITY AND MAINTAINABILITY

Nowadays, several approaches are used in software

component reuse, such as reusing components developed in-

house, reuse of commercial-off-the-shelf (COTS) or open

source software (OSS) components [14]. Sommerville [5],

presents several ways to support software reuse. This study

focused on in-house development approach. That the proposed

framework considers the reusable component including it is

design and implementation. Moreover, the reusable

components are not considered as a main goal of the

development project, but it is a secondary goal intended to be

extracted during developing other system.

 Therefore, the maintainability of the extracted components

is considered as a one of the main issues needed to be

discussed. This allow to modify the extracted components to

meet a library conditions, and then to satisfy other systems.

Reusability

Co-existence

Compliance

Interoperability

/ adaptability

Generality

SW/System

Independence

Machine

Independence

Modularity

Communication

Communality

Data

communality

Figure 4: Pre-Store Characteristics

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 5, 2011

194

The framework proposed in [28] discussed the

maintainability and the affects of the software quality on the

maintenance process. As shows in figure 5, the maintenance

process is classified into four main tasks, understanding,

analyzing, modifying, and testing.

The ability of the reusable component to be modified in

order to satisfy a reusable component library and requirements

of new systems is an essential point in this framework.

Therefore, the pre-store and pre-use processes are performed

based on the maintenance framework.

Component understanding represents the ability of the

component to be understandable by software developers. In

order to modify a software efficiently, it must be

understandable [29].

The analyzability of the software component simplifies the

task of identify a modification required in order to satisfy the

new requirements and conditions[30].

The modification is a process of change a behavior and

characteristics of component in order to satisfy new

requirements.

Software test is an evaluation task required to evaluate

whether the modification achieved it is goals. In software

reuse, the test is conducted based on the requirements and

condition required in both reusable component library and new

software requirements.

The first modification process is required to satisfy general

characteristics required in reusable software component

library. The modification process intended to generalize a

software component in order to be used in other software

products.

The second modification is required to modify the stored

software components and to change their characteristics from

general to specific conditions required in the new system.

VII. RESULTS AND DISCUSSIONS

C-Registration System is documented in the Rational

Unified Process (RUP Version 2003.06.00.65) document as an

example of Web site project. This system enables students to

register for courses on-line, professors to select their teaching

courses and to maintain student grades, and registrar to

maintain professors and students information.

The proposed framework is applied on Maintain Professor

Information function within this system. Table 2 shows the

general information required in Reusable Software

Components Library. In addition to this information, more

detailed description is required such as use case specification

(Fig. 6), sequence diagram (Fig. 7), and source code.

The main form consists of general information about

software components. The names of the components are

modified to be more general. The sub-system maintaining

professor information is changed to maintain user information,

which is more general and suitable for many types of

functions. In addition to create forms, the form of the

component modification is also considered.

Component characteristics represent the ability of software

component to achieve certain level of quality criteria. The

values of these criteria are presented in details instead of

specific value that are considered in order to calculate the

reusability of the component. This description is clearer,

usable, and specific in order to understand the real situation of

the component, which is more meaningful for developing by

Table 1: Pre-use evaluation checklist

Characteristic Criteria Question

Functionality

Suitability

Does the component

able to achieve the

user requirements

Accuracy

Does the preciseness

of the component

result satisfy the user

needs

Compliance

Does the components

followed any standard

in order to perform the

intended functions

Co-existence

SW/System

Independence

Does the component

able to work with the

new system

Machine

Independence

Does the component

able to work with the

new machine

Compliance

Does the component

follow any standard

required in the new

system

Adaptability

Modularity

Does the component

an independent sub-

system

Communication

communality

Does the component

able to communicate

with the new system

Data

communality

Does the component

able to send and

receive a data from the

new system

Generality

Does the component

able to be modified to

be suitable for the new

requirements

Understanding

Analyzing

Modifying

Testing

Figure 5: Software Maintenance Process

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 5, 2011

195

reuse processes.

The process flow represents the ports of the components

that used to communicate with other components or external

systems. Moreover, the description of these ports shows the

type of actions and data that are allowed to go through it.

The data store shows the storage required by the component

in order to perform its tasks. The characteristics of the required

storage and the information shared with other components or

systems are included. They are used to check the information

status, especially for security purposes.

The attributes of the storage show the information formats

that the component can deal with and the special roles in the

component. Moreover, this information shows the coupling

between the component and the other components or systems,

such as the primary keys and foreign keys.

The component interoperability is clearly detailed out in the

process flow and data store. The process flow shows the

functions required from other components. The attributes in

data store shows the data that required from other components

or external systems.

Table 2: Reusable Software Component Library Form

Component Name: Maintain User Information ID: 1 Created Date: 23-9-10 Responsible: Anas

User Objective: Allow the administrator to maintain the users’ information (Add, Delete, and Update)

Actor: Administrator Trigger: The admin selects “ Maintain User Information” activity from Admin menu

Component Characteristics

Co-existence
SW/System Independence

The component passed the test of work with MS Windows XP,
2007, and Unix OS.

Machine Independence The components passed the test of 32 and 64 Bit PC

Compliance
The development process was conducted based on IEEE Standard

for Developing Software Life Cycle Processes, 1998 [1]

Interoperability

Modularity
This component is developed as a one independent part, based on

its use case

Communication Communality The ports of communication are defined in Process flow Part

Data Communality
The ports of communication and data type are defined in Process

flow and attributes Parts

Generality
The component is able to work with data described in Attribute

Part

Process Flow

Inputs Output

Description Source Description Destination

User Info. Request Admin User info Admin

New user info. Admin UserID User Info. DB

Modified User Info. Admin New User Info. User Info. DB

Deleted User Info. Admin Updated User Info. User Info. DB

User Details User Info. DB Deleted User Info. User Info. DB

Data Store

Description: This entity is used to store a general user information

Accessibility

Source Type Description

Admin Create, Modify, Deleted, View

User View

Attributes Primary Key: UserID

Attribute Description Acceptable Value Format Constraint

UserID Identifier attribute Number only 9 digits, no space Unique, Not null

Affiliation Text 30 characters Not null

Department Text 30 characters Not null

Occupation Text 30 characters Not null

Address Text 50 characters Not null

Phone Number 20 characters Not null

Mobile Number 20 characters Not null

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 5, 2011

196

1. Use Case: Maintain User Information

1.1 Brief Description

• Definition: This use case allows the administrator to maintain user information in the system. This includes adding, modifying, and deleting user

from the system.

• Actors: The actor of this use case is the administrator.

1.2 Pre-Conditions

• The administrator registrar has been logon to the system

1.3 Characteristic of Activation

• The use case begins when the administrator selects the "Maintain user information" activity from the Main Form.

1.4 Flow of Events

a. Basic Flow

• Add a User

� The administrator selects "add a user".

� The system displays a blank user form.

� The administrator enters the following information for the user: name, affiliation, department, occupation, address, phone, and

mobile.

� The system validates the data to insure the proper data format <<Invalid Data Format>> and searches for an existing user with the

specified name <<User Already Exists>>.

� If the data is valid the system creates a new user and assigns a unique system-generated id number.

� This number is displayed, so it can be used for subsequent uses of the system.

� Steps 2-4 are repeated for each user added to the system.

� When the administrator is finished adding users to the system the use case ends.

b. Alternative Flow

• <<Cancel>>

� The user can cancel the operation at which point the use case.

• <<Modify a User>>

� The administrator selects "Modify a user."

� The system displays a blank user form.

� The administrator types in the user id number he/she wishes to modify

� The system retrieves the user information and displays it on the screen, if no data found the <<User Not Found>> sub-flow is

executed.

� The administrator modifies one or more of the user information fields.

� When changes are completed, the administrator selects "save" button.

� The system validates the data to insure the proper data format <<Invalid Data Format>> and then updates the user information.

� Steps 2-7 are repeated for each user the administrator wants to modify.

� When edits are complete, the use case ends.

• <<Delete a User>>

� The administrator selects "Delete a User".

� The system displays a blank user form.

� The administrator types in the user’s id number for the user that’s being deleted.

� The system retrieves the user and displays the information in the form, if no data found the <<User Not Found>> sub-flow is

executed.

� The administrator selects "delete".

� The system displays a delete verification dialog confirming the deletion.

� The registrar selects "yes".

� The user is deleted from the system.

� Steps 2-8 are repeated for each user the administrator wants to delete.

� When the administrator finished deleting user from the system, the use case ends.

c. Exceptional Flow

• <<User Already Exists>>

� In the <<Add a User>> sub-flow, if the user already exists with the specified name, an error message, "User Already Exists", is

displayed.

� The administrator can either change the name or choose to create another user with the same name.

• <<User Not Found>>

� In the <<Modify a User>> or <<Delete a Professor>> sub-flows, if the user with the specified id number does not exist, the system

displays an error message, "User Not found".

� Then the administrator can type in a different id number.

• <<Invalid Data Format>>

� In the <<Modify a User>> or <<Add a User >> sub-flows, if a typed data are not correct, the system displays an error message.

� Then the administrator can type in a different data.

1.5 Post Condition

• <<Add a User >> the User is able to logon to the system and use its functions.

• <<Modify a User>> the user can use the new data updated.

• <<Delete a User>> the user is not able to use a system any more.

1.6 Roles

1.7 Constraints

Fig. 6: Use case description, Maintain User Information

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 5, 2011

197

VIII. CONCLUSION

In order to reduce the cost, effort, time, and to increase the

quality and productivity of the software development process,

the concept software reuse is used. Software reuse is used as a

base of most of software design.

The reusability problem in software engineering is not a

lack of use, but lack of systematic reuse. Software engineers

know how to do it, but they do it informally. Moreover, Poor

software components quality may be unsuited for a software

reuse library or any other software system. Therefore, lack of

software reuse tools and library is one of the main problems

faced in software reuse.

This study proposed a reusable software component

framework. The framework, considers the reusable software

components through its life cycle, from both sides build-for-

reuse and build-by-reuse development. The framework

consists of reusable component extraction, adoption, storage,

and pre-store and pre-use processes. The extraction process is

considered during develop-for-reuse process, which focused

on how to extract suitable information for a reusable

component. The adoption process is a process of how to add a

reusable component to new system during development stages.

The pre-store process is conducted to evaluate and modify

the extracted components in order to satisfy reusable

component library. The pre-use process is process of evaluate

and modify the reusable components that retrieved from the

library in order to satisfy new system requirements.

Whereas, the reusable framework required maintaining and

modifying the reusable components, the maintenance process

is adopted. The process of maintenance helps to modify the

reusable components in both pre-store and pre-use processes

efficiently.

Applying the framework on C-Registration system shows

that the proposed framework simplifies the job of software

developers, which required a little effort in order to build for

reuse or build by reuse. The future work, we propose to apply

the framework in different types of software systems.

REFERENCES

[1] "IEEE Standard for Developing Software Life Cycle

Processes," IEEE Std 1074-1997, p. i, 1998.

[2] D. C. Rine and N. Nada, "An empirical study of a

software reuse reference model," Information and

Software Technology, vol. 42, pp. 47-65, 2000.

[3] P. Gomes and C. Bento, "A case similarity metric for

software reuse and design," Artif. Intell. Eng. Des.

Anal. Manuf., vol. 15, pp. 21-35, 2001.

[4] M. Burgin, et al., "Software technological roles,

usability, and reusability," in Information Reuse and

Integration, 2004. IRI 2004. Proceedings of the 2004

IEEE International Conference on, 2004, pp. 210-

214.

[5] I. Sommerville, Software Engineering, 8th ed.

London: Addison-Wesley, 2007.

[6] I. PHILIPPOW, et al., "Methodical Aspects for the

Development of Product Lines," in Information

Science and Applications '02 (2nd ISA), Cancun,

Mexico, 2002, pp. 1391-1396.

[7] W. Frakes and C. Terry, "Software reuse: metrics and

models," ACM Comput. Surv., vol. 28, pp. 415-435,

1996.

[8] J. A. McCall, et al., "Factors in Software Quality,"

Griffiths Air Force Base, N.Y. Rome Air

Development Center Air Force Systems Command,

1977.

[9] N. S. Gill, "Reusability issues in component-based

development," SIGSOFT Softw. Eng. Notes, vol. 28,

pp. 4-4, 2003.

Figure 7: The Characteristics of the Software Reusability

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 5, 2011

198

[10] C. Luer, "Assessing Module Reusability," in

Assessment of Contemporary Modularization

Techniques, 2007. ICSE Workshops ACoM '07. First

International Workshop on, 2007, pp. 7-7.

[11] F. Haiguang, "Modeling and Analysis for Educational

Software Quality Hierarchy Triangle," in Web-based

Learning, 2008. ICWL 2008. Seventh International

Conference on, 2008, pp. 14-18.

[12] J. J. E. Gaffney, "Metrics in software quality

assurance," presented at the Proceedings of the ACM

'81 conference, 1981.

[13] I. Bitar, et al., "Lessons learned in building the TRW

software productivity system," 1985.

[14] P. Mohagheghi and R. Conradi, "An empirical

investigation of software reuse benefits in a large

telecom product," ACM Trans. Softw. Eng.

Methodol., vol. 17, pp. 1-31, 2008.

[15] I. PHILIPPOW, "Utilization of Object-Oriented

Models," in WSES International Conference on

Multimedia, Internet, Video Technologies 2001,

Malta, 2001.

[16] J. S. Poulin, "Measuring software reusability," in

Software Reuse: Advances in Software Reusability,

1994. Proceedings., Third International Conference

on, 1994, pp. 126-138.

[17] A. Sharma, et al., "Reusability assessment for

software components," SIGSOFT Softw. Eng. Notes,

vol. 34, pp. 1-6, 2009.

[18] W. B. Frakes and S. Isoda, "Success factors of

systematic reuse," Software, IEEE, vol. 11, pp. 14-19,

1994.

[19] R. Prieto-Diaz and G. Arango, Domain analysis and

software systems modeling: IEEE Computer Society

Press Los Alamitos, CA, USA, 1991.

[20] Y. Ouyang and D. L. Carver, "Enhancing design

reusability by clustering specifications," presented at

the Proceedings of the 1996 ACM symposium on

Applied Computing, Philadelphia, Pennsylvania,

United States, 1996.

[21] R. Prieto-Diaz, "Status report: software reusability,"

Software, IEEE, vol. 10, pp. 61-66, 1993.

[22] C. V. Ramamoorthy, et al., "Support for reusability in

Genesis," Software Engineering, IEEE Transactions

on, vol. 14, pp. 1145-1154, 1988.

[23] G. W. Hislop, "Analyzing existing software for

software reuse," Journal of Systems and Software,

vol. 41, pp. 33-40, 1998.

[24] A. B. AL-Badareen, et al., "Software Quality

Evaluation through Maintenance Processes," in

European Conference of Computer Science (ECCS

'10), Puerto De La Cruz, Tenerife, 2010, pp. 131-134.

[25] S. Hyun Woong, et al., "Measuring Generality of

Documents," in Data Engineering Workshops, 2006.

Proceedings. 22nd International Conference on,

2006, pp. 62-62.

[26] S. Vey and A. Voigt, "AMDiS- Adaptive

multidimensional simulations: object oriented

software concepts for scientific computing," WSEAS

Transactions on Systems, vol. 3, pp. 1564-1569,

2004.

[27] N. Ram and P. Rodrigues, "Intelligent risk prophecy

using more quality attributes injected ATAM and

design patterns," 2008, pp. 169-173.

[28] A. B. AL-Badareen, et al., "The Impact of Software

Quality on Maintenance Process," 2010.

[29] M. Feathers, "Before clarity [software design],"

Software, IEEE, vol. 21, pp. 86-88, 2004.

[30] A. Kumar, et al., "A quantitative evaluation of

aspect-oriented software quality model

(AOSQUAMO)," SIGSOFT Softw. Eng. Notes, vol.

34, pp. 1-9, 2009.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 5, 2011

199

