

Abstract— The Discrete Wavelet Transform (DWT) is applied to

various signal and image processing applications. However the

computation is computational expense. Therefore plenty of

approaches have been proposed to accelerate the computation.

Graphics processing units (GPUs) can be used as stream processor to

speed up the calculation of the DWT. In this paper, we present a

implementation of the translation-invariant wavelet transform using

consumer level graphics hardware. As our approach was motivated

by infrared image processing our implementation focuses on gray-

level images, but can be also used in color image processing

applications. Our experiments show, that the computation

performance of the DWT could be significantly improved. However,

initialisation and data transfer times are still a problem of GPU

implementations. They could dramatically reduce the achievable

performance, if they cannot be hided by the application. This effect

was also observed integrating our implementation in wavelet-based

edge detection and wavelet denoising.

Keywords—Parallel discrete wavelet transform, Algorithme à

trous, Image processing, GPU, Shader.

I. INTRODUCTION

HE Discrete Wavelet Transform (DWT) has a broad

application field in signal and image processing. In spite

of fast filterbank implementations the calculation is still

compute intensive especially for large problem sizes and real-

time processing. Therefore various approaches have been

developed to speed up the calculation of the Discrete Wavelet

Transform, which range from special-purpose, fixed-function

hardware implementations (ASICs) to universal software

implementations on general purpose processors (GPP). These

approaches have made tradeoffs between performance and

flexibility.

In the last years the development of digital entertainment,

not scientific and military applications, drives the development

of computing. Besides mobile devices the mass market is

increased characterized by customer personal computers. The

high performance requirements of these applications lead on

the one hand to multimedia extensions of general-purpose

processors like MMX or SSE, and on the other hand to the

Manuscript received December 31, 2010.

Dietmar Wippig was with the Helmut-Schmidt-University, Hamburg, D-

22043 Germany (e-mail: wippig@hsu-hamburg.de). He is now with Ministry

of Defence, Rheinbach, D-53359 Germany.

Bernd Klauer is with the Helmut-Schmidt-University, Hamburg, D-22043

Germany (e-mail: bernd.klauer@hsu-hamburg.de).

evolution of graphics processing units (GPUs) to powerful and

programmable processors, which supports general

calculations.

The GPU becomes an attractive platform for a broad field of

applications, because it still remains a significant higher

arithmetic processing capability than the GPPs with

multimedia extensions and is often less utilized. Therefore it

can be used as a powerful accelerator without extra cost [1].

The key for performance increase of applications on the GPUs

is a large amount of parallelism and locality, which can be

exploited by the GPU. The wavelet transform in general fulfil

this requirement and was early an area of research for a GPU

implementation [2, 3].

In this paper we present a GPU implementation of the

translation-invariant wavelet transform computed by the

“algorithme à trous”. Our approach focus on a two-

dimensional (2D) solution for processing of infrared images,

which significant increase the computation performance

compared with an implementation on GPPs and can be easily

used in different image processing applications. We

successfully integrate our implementation in wavelet-based

edge detection and wavelet denoising. The computation

performance could be improved significantly.

II. RELATED WORK

Hopf and Ertl [2, 3] realize the first implementation of the

2D DWT for the fixed-function pipeline. The approach

perform the convolution, down- and upsampling of the wavelet

transform by special OpenGL extensions, which are not

commonly implemented in graphics hardware.

In [4] a new implementation of the 2D DWT for

programmable GPUs is proposed, which is based on user

defined fragment shader. A texture twice the size of original

image size is used for the results as well as for temporary

results. The convolution of the image borders with separate

kernels prevents border effects. Besides Mallat’s pyramid

algorithm a GPU implementation of Swelden’s lifting

algorithms is presented, which has only advantages for long

filters.

Beside, Wang et al. [5] have developed another GPU

implementation of the 2D DWT using Mallat’s pyramid

algorithm. The implementation is based on horizontal and

vertical convolutions with position-dependent filters, which

GPU-Based Translation-Invariant 2D Discrete

Wavelet Transform for Image Processing

Dietmar Wippig, and Bernd Klauer

T

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 5, 2011

226

are mapped to user defined fragment shaders. Border effects

are prevented by indirect access on image positions stored in a

dynamically generated texture. The integration in Jasper [6, 7],

which is a reference implementation of JPEG2000 [8], show

the usability and the performance of Wang’s implementation.

Because of initialization and data transfer times the GPU

implementation surpass the classical implementation on image

sizes greater than 600x600 pixel [9].

Most applications of the DWT especially in data

compression use non redundant algorithms like Mallat’s

pyramid or Swelden’s lifting algorithm. In image analysis and

processing a translation-invariant representation can often

deliver better results (e.g. [10, 11, 12, 13]). Holschneider et al.

[14] are developed the “algorithme à trous” for the calculation

of the translation-invariant DWT. Similar as Mallat’s pyramid

algorithm the “algorithme à trous” can be implemented by a

fast filter bank. Because the resulting subbands are not

downsampled, input and output image sizes are equal at each

dyadic scale. Especially for large images this results in high

memory consumption storing the wavelet transform

decomposition and high computation expense for the

calculation of the wavelet transform. On this matter hardware

requirements have limit the broader use of the “algorithme à

trous”. Compared with Mallat’s pyramid algorithm the

“algorithme à trous” has a higher arithmetic intensity.

Consequently on the one side a GPU implementation seems to

be especially advantageous. On the other side the large

memory consumption is a challenging requirement especially

for the graphics hardware. Since two years consumer level

graphics hardware with large video memory is available,

which made a GPU implementation of the “algorithme à trous”

attractive.

III. DWT

Popularly the DWT is seen to be equal with Mallat’s

pyramid algorithm, which is based on the multiresolution

analysis (MRA) of signals. The decomposition of signals using

the DWT can be expressed by a pyramidal filter structure of

quadrature mirror filter (QMF) pairs. Therefore the DWT of

the discrete signal
0[] []f n a n= can be computed successive.

At each scale 2 , 0j j > it decomposes the higher resolute

approximation signal []ja n into a coarser resolute

approximation signal
1[]ja n+ and a detail signal

1[]jd n+ [15]:

1

1

[2],

[2],

j j

j j

a a h n

d a g n

+

+

= ∗

= ∗
 (1)

whereas 1jd + are the wavelet coefficients at resolution 2 j− . It

can be further decomposed based each on
1ja + up to the

desired dyadic scale.

The other way around the original signal
0[]a n can be

reconstructed successively from the wavelet decomposition,

called Inverse Discrete Wavelet Transform (IDWT):

1 1[] [] [],j j ja n a h n d g n+ += ∗ + ∗

⌣⌣
 (2)

with

[] , 2

[]
0 , 2 1

x n k n
x k

k n

=
= 

= +

⌣
.

Mallat’s pyramid algorithm is decimated: During the

convolutions of the decomposition only every second filter

coefficients is considered. This can be obtained by

downsampling with the factor two after the convolution.

Before the convolutions of the reconstruction zeros are

inserted between every pair of values of the approximation and

detail signals. This results in the upsampling with the factor

two.

The “algorithme à trous” is translation-invariant and

therefore not decimated. The translation-invariant DWT is

computed with scale-dependent filters
jh and

jg obtained by

inserting 2 1j − zeros (french trous) between every pair of

filter coefficients:

1

1

[],

[].

j j j

j j j

a a h n

d a g n

+

+

= ∗

= ∗
 (3)

The appropriate scale-dependent reconstruction filters jh
ɶ

and
jgɶ are biorthogonal. The IDWT is given by

 ()1 1

1
[] [] [] .

2
j j j j ja n a h n d g n+ += ∗ + ∗ɶ ɶ (4)

The DWT can be easily extended in two dimensions if the

wavelet can be written as separable products of functions in

spatial directions. Mallat [16] proposed a two-dimensional

quadratic spline wavelet for the “algorithme à trous”, which is

often used in image processing. It decomposes the images,

respectively, in two subbands with horizontal and vertical

orientation and an approximation. Because the wavelet is

separable the DWT can be computed by separable convolution

in horizontal and vertical direction:

1

1

1

2

1

[,] [,],

[,] [,],

[,] [,],

j x y j j j x y

j x y j j x y

j x y j j x y

a n n a h h n n

d n n a g n n

d n n a g n n

δ

δ

+

+

+

= ∗

= ∗

= ∗

 (5)

with [,]x yn nδ discrete Dirac function.

The IDWT uses the biorthogonal reconstruction filters
jh ,

jk and
jl :

1

1 1

2

1

[,] [,] [,]

[,].

j x y j j j x y j j j x y

j j j x y

a n n a h h n n d k l n n

d l k n n

+ +

+

= ∗ + ∗

+ ∗
 (6)

Although the filters of the spline wavelet are short, the

complexity for decomposition and reconstruction remains
2

2(log)O N N . Hence, the “algorithme à trous” is still very

computing intensive. Moreover the representation has
2(2 1)j N+ values, which must be stored in memory. Especially

in real-time applications, general-purpose processors could not

deliver the necessary performance for the computation of the

“algorithme à trous”. The need for a fast implementation is

therefore obvious.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 5, 2011

227

IV. POSSIBILITIES FOR IMPLEMENTATIONS

From a historical perspective, the first implementations were

focussing on VLSI (Very Large Scale Integration)

architectures, which directly implement the DWT in hardware

as part of ASICs. Because ASICs are developed exclusively

for one specific application, they can be optimized for that

application. Thereby on the one hand they are very powerful

and highly efficient, but on the other hand they are also highly

specific and therefore very inflexible. A step towards more

flexibility was based on the integration of often used functions

in Application Specific Standard Parts (ASSPs). Due to the

same implementation technology ASSPs show the same

advantages in relation to performance as ASICs. While only

the specific function and not the whole application is

optimized, ASSPs do not achieve exactly the same level of

performance from ASICs [17]. The next step in the evolution

towards more flexibility was the use of Digital Signal

Processors (DSPs). They are suitable for computing the DWT

while they can be programmed in software. However they do

not obtain the level of performance from ASICs at all [18].

The highest degree of flexibility is offered by general purpose

processors. Because they are not optimized to any application,

they have the least performance and efficiency [19]. Beyond

that, the performance can be increased using multiple

processors in parallel. Through this the efficiency is further

reduced. Between the extremum of ASIC and GPP

reconfigurable systems like FPGAs follow a hybrid approach.

They add some flexibility by hardware-oriented programming

(e.g. VHDL), but lower silicon densities lead to less

performance than ASICs.

Fig. 1 summarizes the properties of the previously described

implementation prospects. It can be seen, that the prospects for

implementation are in a conflict between performance and

flexibility: With increasing flexibility the solutions become

more and more software orientated, which can be better used

on common computing systems. Beyond that, if performance is

insufficient, multiple processors can be used in parallel further

reducing the efficiency.

For specific applications stream processors, like those from

SPI (Stream Processor Inc.) [20], are a potential solution.

They are powerful and efficient, while they are programmable

with a high level programming language [21]. Precondition for

efficient stream processing is, that the calculation to perform

can be expressed by the stream programming model.

V. STREAM PROCESSING

Stream processing expresses the computation by streams

and kernels. A stream program contains a sequence of kernels

that is applied to data streams. The data streams contain a set

of elements of the same type (e.g. image pixel). Each element

of each stream is processed equally by the kernels. A kernel

can only access on its input and output streams. Because the

output stream is only allowed to depend on the input stream,

the computations of the elements are independent from each

other.

Therefore the inheriting parallelism of applications and

locality of their data can be expressed by a stream program

and efficiently exploited by a stream processor. Because the

kernels apply the same calculation to each element of the input

streams, several elements can be processed simultaneously and

a large amount of data parallelism can be exploited. Within a

kernel, independent operations can be executed in parallel to

exploit instruction level parallelism (ILP). Finally, thread level

parallelism can be exploited, because of the pipelined

execution of the kernels [21]. On the one hand data parallelism

reduces the necessary instruction bandwidth. On the other side

the organisation of communication use the locality of stream

processing to deliver the required memory bandwidth. Data,

which is accessed only inside a kernel, is stored in local

register. The communication via streams requires high

bandwidth. To deliver high bandwidth the memory modules

Fig. 1. Performance vs. Flexibility of conventional solutions after [20].

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 5, 2011

228

are placed close to the processing elements. Stream processing

requires less global communication. Global communication is

especially necessary for the communication with external I/O-

devices, whose bandwidth is limited to the bandwidth of the

interface. Because most of the data in global communication

are also streams, the data access pattern is predictable and can

be used to speed up the communication through block access.

Nevertheless global communication is often the bottleneck for

stream processing [22].

Generally speaking, architectures for efficient stream

processing contain a large amount of processing elements

(PEs) grouped in several cluster. The clusters support the task

parallel execution of different kernels. Data parallelism and

instruction level parallelism can be exploited by independent

processing of different stream elements and instructions by the

processing elements. Inside the clusters shared memory

modules are available for temporary results. The streams are

stored in memory modules close to the clusters which deliver a

high bandwidth.

VI. THE GPU AS STREAM PROCESSOR

Although they were programmable with high level

programming languages, pure stream processors could not

prevail at the market. The main reason is that modern graphic

processors can also be used for stream processing. Driven by

multimedia and games with 3D display they had a rapid

development in the last years. Beside improvements of the

programmability, especially the performance of the GPUs,

expressed by their floating point performance, is raised

extremely. It can be seen in Fig. 2, that this development is

decoupled from the CPUs. The very high raw computational

Fig. 2. Peak single precision floating point performance GPU vs. CPU.

Fig. 3. NVIDIA GeForce-8-Series after [23, 24]. TPC: Texture/Processor Cluster; SM: Streaming Multiprocessor; MT IU:

Multithreaded Instruction Unit; SP: Streaming Processor; SFU: Special Function Unit; Tex: Texture; ROP: Raster Operation

Processor.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 5, 2011

229

performance should not be misinterpreted, because using full

computational power in real applications is permanently not

feasible.

Therefore, in modern GPUs you can find many elements of

stream processors. The GPU can be seen as a powerful stream

processor. The previously described properties of stream

architectures can be also found in modern GPUs. Fig. 3 shows

a block diagram of the GeForce-8-GPU with 112 Streaming

Processor Cores (SP Cores), which are organised in 14

Streaming Multiprocessors (SMs). Two Multiprocessors build

one independent Texture/Processor Cluster. Because the GPU

is originally designed for computing of the graphics pipeline,

GPU architectures additionally contain special fixed-function

units for the efficient computation of some stages of the

pipeline [23, 24]. Newer GPUs enhance their computational

performance especially by increasing the number of cores and

the memory bandwidth.

The development of most programming languages and APIs

target at writing graphics applications. The increasing

flexibility of GPUs leads to higher level languages, which hide

the underlying graphics programming languages and APIs.

One advantage of using higher level languages is that they

simplify the use of the GPU especially for the development of

general purpose applications. Currently the most widespread

language in this domain is CUDA, which only supports

NVIDIA hardware. On the other hand low level graphics

programming using the APIs (OpenGL, Direct3D) may

achieve better performance at the cost of explicit expression of

non graphics applications in graphics idioms. Furthermore

most of graphics hardware is supported by the APIs [25]. Our

approach is based on OpenGL to support as much graphics

hardware as possible.

Independent from the used programming language some

restrictions of graphics architectures have to be considered by

the programmer of streaming applications. These architectures

efficiently process data-independent control-flow, while data-

dependent jumps and branches decrease the performance.

Because the images are processed in blocks, the access to

pixels, which are far away, is slow. Additionally, the data

transfer between GPU and CPU is still a major bottleneck.

VII. IMPLEMENTATION

The target of our implementation of the “algorithme à trous”

on the GPU was the reusability in future applications. On the

one side current stream programming languages must be

integrated in the common software development process in a

special way. On the other side like CUDA only one hardware

vendor is supported. So we still directly use the graphics API

with high level shading languages, which could be well

integrated in all common programming languages like Basic,

Fortran, C/C++/C# or Java and is supported by most of the

graphics hardware. Because the algorithms were already

available in Java, our implementation is based on Java. As

graphics API we use OpenGL, which is bound by the JOGL

class library.

Our GPU implementation of the two-dimensional

“algorithme à trous” is a direct implementation of the filter

bank according to (5) and (6) by a set of fragment shaders. Fig.

4 shows the sequence of operations of the decomposition. First

of all an input image has to be transferred from main memory

via PCI express bus to the video memory of the GPU. The

input image is then successive decomposed by the wavelet

filters. These two-dimensional filters are separable product

filters, which are achieved by one-dimensional filtering first in

horizontal and then in vertical direction. The filters are

computed by fragment shaders that are executed for each input

pixel. In order to get a one-to-one-mapping of texels and

pixels, textured rectangles are drawn with an orthographic

parallel projection. The resulting subbands are stored in a new

texture, which become the input image for the calculation of

the next scale. After the decomposition of the input image in

the desired number of levels all subbands and the

approximation of the coarsest level are hold in a set of

textures. From this decomposition the input image can be

reconstructed successively in the same way as the

decomposition. Only a second temporary texture is needed

combining the reconstructed approximation image with the

detail images of the previous scale.

Textures and shaders supply the processing up to four color

channels. For gray-level images, three color channels are used

for storing and processing of the subbands and the

approximation images. Therefore at the decomposition two

filters and three filters at the reconstruction can be folded in

Fig. 4. Decomposition of a gray-level image on the GPU.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 5, 2011

230

parallel to increase the efficiency of using the GPU resources.

Our shaders of the wavelet filters are implemented in GLSL

based on [26]. The texture coordinates are exclusively

computed in these fragment shaders. Therefore no special

vertex shaders are needed. Instead of stretching the filters with

zeros for the “algorithme à trous”, the coefficients of the

unstretched filters are multiplied with input values at the

corresponding distances. These distances have to be set before

applying the shaders. Because the dynamic range of the high-

pass filter is [-2.0,2.0], the convolution sum is adapted to the

texture range [0.0, 1.0] before storing the decomposition.

While reconstruction this adaption is considered. To avoid

errors at the boundaries until reconstruction a symmetrical

periodic extended version of the image is used for

decomposition. Beside the reconstructed image all subbands

and approximation images can be transferred to CPU main

memory for further processing.

VIII. RESULTS

A. Test setup

All tests were conducted on a PC running the Windows XP

operation system. Because non real-time operation systems

allocate the computing resources stochastically by priorities,

computing times have a coincident variance. Therefore one

measurement has not an adequate measure for our comparison.

The measurements have to be repeated in a sufficient number

to have approximate normally distributed computing times.

The mean is further taken as base for our evaluation.

Our implementation is object-oriented based on Java and

OpenGL. GLSL is used for the shader development. OpenGL

is bound to Java by the JOGL class library, which only

supports up to OpenGL 2.1. Our implementation uses

rectangle textures with single precision floating point values

and frame buffer objects for direct rendering to textures. The

CPU implementations are also object-oriented in Java.

Because the interface of the CPU and GPU classes is equal,

the implementation can easily be interchanged.

All the tests were performed on a PC with an Intel Core i7

920 CPU (4 Cores, 2.67 GHz, 4 GBytes DDR3 RAM), and an

ATI Radeon HD 4870 or Nvidia GTX 280 GPU. The GPUs

have 1 GBytes of video memory. The CPU implementations

only use one single core. Five test images based on the often

used well known Lena image [27] ranging from 128x128 to

2048x2048 are used. Furthermore, 200 images of a resolution

build a test image sequence. For a more detailed analysis the

execution times are subdivided in times for the initialisation,

the data transfer, the decomposition and reconstruction.

B. Test results

In the evaluation, the test images are decomposed in three

levels and reconstructed from this decomposition. First the

processing of gray-level images is considered. Fig. 5a shows

the execution times of the CPU and GPU implementations.

Due to GPU’s significant longer initialisation and transfer

times the CPU implementation is faster for small image sizes.

Otherwise the GPU implementation clearly outperforms the

CPU implementation for larger image sizes. The arithmetic

performance of the GPUs has a positive effect on the total

execution time, if the initialisation and transfer times less

dominates the total execution times on the GPU (Fig. 5b). This

effect is greater on the processing of color images
1
. While

initialisation and transfer times only increase modest, the

arithmetic intensity is three times as high as for the processing

of gray-level images. As shown in Fig. 5c, this effect can be

also observed analysing the speedup of the GPU

implementations relative to the CPU implementation.

Furthermore it can be seen, that for large images also assuming

a perfect partition of the computation on the CPU cores the

GPU implementations are still faster.

Real-time multimedia applications are often more interested

in the number of processed frame per second (fps), also called

as frame rate. Table 1 shows the frame rates of the CPU and

GPU implementations. Because the initialisation is done only

once at begin of the stream processing, the initialisation times

can be neglected. Therefore higher frame rates for all image

sizes relative to the CPU implementation can be achieved by

the GPU implementations. This has the corresponding effect

on the speedup of the GPU implementations relative to the

CPU implementation. The maximum speedup of the GPU

implementations for gray-level streams is 68.1 and for color

streams 133.4. Hence, it is obvious, that a multicore CPU

could not provide a comparable computing performance for

the wavelet transform.

In practice frame rates are more interested than speedup.

Mostly hundreds of frames per second have not to be

processed. But it can be approximated, how much resources

can be used on the GPU for further applications.

C. Wavelet-based edge detection

For all scales the “algorithme à trous” compute horizontal

and vertical subbands from different smoothed original images

(approximation images). The used high-pass filters enhance

high frequency image components like edges. Like the canny

edge detector, the local maxima of the modulus of both

subbands corresponds with sharp intensity variations in the

original image [28]. Due to the smoothness often the scales
22 - 42 are used for edge detection.

Thus the wavelet decomposition at the corresponding scale

is needed for computing the edges at scale 2 j . First, our GPU

implementation of the wavelet transform is used for the

decomposition up to the scale 2 j . Then, additionally shaders

for computing the magnitude and its maxima are applied to the

stored wavelet decomposition.

The experimental results are comparable with the results of

the wavelet transform above. Because only the decomposition

is performed, the arithmetic intensity is lower, so that the

achieved speedups are smaller. The maximum speedup was

1 Due to memory allocation problems the processing of 2048x2048 color

images fails.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 5, 2011

231

(a) (b)

(c)

Fig. 5. DWT of gray-level images for different image sizes. (a) execution times CPU vs. GPU, (b) speedup of execution times of

GPUs relative to CPU, (c) distribution of execution times: 1st column – Core i7 920, 2nd column – Radeon HD 4870, 3rd column –

GeForce GTX 280.

image size/

pixel

Core i7

920

Radeon

HD 4870

GeForce

GTX 280

128x128 34,54 308,36 59,73

256x256 8,49 185,75 59,34

512x512 2,05 79,21 59,59

1024x1024 0,46 22,00 25,24

2048x2048 0,11 6,40 7,49

Tab. 1. CPU and GPU frame rates of the DWT of

gray-level streams in fps.

 Fig. 6. DWT of gray-level streams for different image sizes:

speedup of execution times of GPUs relative to CPU.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 5, 2011

232

only 2.7 for gray-level images respectively 2.9 for color

images. Nevertheless the speedups for stream processing are

still considerable. For gray-level streams a maximum speedup

of 35.1 and for color streams of 81.9 is achieved.

D. Wavelet denoising

The wavelet transform can also be used for noise reduction.

Because the image information is concentrated in a few, big

wavelet coefficients, the important wavelet coefficients can be

extracted by a threshold algorithm. The reconstruction from

the subbands with the thresholded wavelet coefficients and the

approximation of the coarsest scale leads to a denoised version

of the original image [29]. For the calculation of the threshold

an estimation of the noise level of the wavelet coefficients is

needed.

The challenge for the implementation of wavelet denoising

on the GPU is the calculation of the thresholds. Due to the

sequential character of the estimators, the calculation has to be

done by the CPU. The subbands have to be transferred to the

CPU for threshold estimation, which is the bottleneck for the

GPU implementation of the wavelet denoising. For that reason

the achieved speedups are much smaller than before. Gray-

level and color image denoising achieve a maximum speedup

of 4.5. However, we got a maximum speedup of 10.0 for gray-

level streams and 13.3 for color streams.

IX. CONCLUSIONS

In this paper we have presented a GPU implementation,

which significantly speedup the computation of the 2D-DWT

with the “algorithme à trous”. We have shown that the GPU

can be used as a powerful stream processor to speed up

streaming applications like the DWT. Our implementation was

based on OpenGL to support as much graphics hardware. The

object-oriented approach can be easily integrated in new

applications. This is shown in two applications, which perform

the wavelet-based edge detection and wavelet denoising of

images. Experimental results show, that initialisation and data

transfer times could dramatically reduce the GPU

performance, if it can’t be hided by the application. Our future

work will be in further improvements of the implementation

and an OpenCL implementation.

REFERENCES

[1] Owens, J.D., Sengupta, S., and Horn, D., “Assessment of Graphic

Processing Units (GPUs) for Department of Defense (DoD) Digital

Signal Processing (DSP) Applications”, Technical Report, ECE-CE-

2005-3, Computer Engineering Research Laboratory, University of

California, Davis, October 2005.

[2] Hopf, M., and Ertl, T., “Accelerating 3D Convolution using Graphics

Hardware”, IEEE Visualization '99, pp. 471-474, IEEE Computer

Society, October 1999.

[3] Hopf, M., and Ertl, T., “Hardware Based Wavelet Transformations”,

Vision, Modeling and Visualisation '99, pp. 317-328, IEEE and GI Infix

Press, November 1999.

[4] Tenllado, C., Lario, R., Prieto, M., and Tirado, F., “The 2D Discrete

Wavelet Transform on Programmable Graphics Hardware”, Proceedings

of the 4th IASTED International Conference on Visualization, Imaging

and Image Processing (VIIP '04), pp. 808-813, ACTA Press, September

2004.

[5] Wang, J., Wong, T.-T., Heng, P.-A., and Leung, C.-S., “Discrete

Wavelet Transform on GPU”, Proceedings of ACM Workshop on

General-Purpose Computing on Graphics Processors (GP2 2004), C-41,

July 2004.

[6] Adams, M.D., and Kossentini, F., “JasPer: A software-based JPEG-2000

codec implementation”, Proceedings of IEEE International Conference

on Image Processing (ICIP '00), vol. 2, pp. 53-56, October 2000.

[7] Adams, M.D., and Ward, R.K., “JasPer: A portable flexible open-source

software tool kit for image coding/processing”, Proceedings of the 2004

IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP '04), vol. 5, pp. 241-244, October 2004.

[8] Christopoulos, C., Skodras, A., and Ebrahimi, T., “The JPEG2000 still

image coding system: An overview”, IEEE Transactions on Consumer

Electronics, vol. 46, no. 4, pp. 1103-1127, November 2000.

[9] Wong, T.T., Leung, C.S., Heng, P.A., and Wang, J., “Discrete Wavelet

Transform on Consumer-Level Graphics Hardware”, IEEE Transactions

on Multimedia, vol. 9, no. 3, pp. 668-673, April 2007.

[10] Cherifi, D., Smara, Y., and Ranchin, T., “A comparative study on the

performance of filters for speckle reduction in radar SAR images”,

Proceedings of WSEAS International Conferences on SSIP, MIV, SIM,

and RODLICS, pp. 2161-2166, September 2001.

[11] Wang, Z., Ji, S., Zhang, L., Huan, Y., and Yang, G., “Detecting

assembling quality of Razor Based on the machine vision system”,

Proceedings of the 5th WSEAS International Conference on

Instrumentation, Measurement, Circuits and Systems, pp. 49-52, April

2006.

[12] Zhang, L., Ji, S., Xie, Y., and Yuan, Q., “Research on the robot vision

system for Detecting defects of the cover of crystal oscillators”,

Proceedings of the 7th WSEAS International Conference on Robotics,

Control & Manufacturing Technology, pp. 245-250, April 2007.

[13] Rizzi, M., D'Aloia, M., and Castagnolo, B., “ECG - QRS detection

method adopting wavelet parallel filter banks”, Proceedings of the 7th

WSEAS International Conference on Wavelet Analysis & Multirate

Systems, pp. 158-163, October 2007.

[14] Holschneider, M., Kronland-Martinet, R., Morlet, J., and Tchamitchian,

P., “A real-time algorithm for signal analysis with the help of the

wavelet transform”, in: “Wavelets, Time-Frequency Methods and Phase

Space”, pp. 289-297, Springer, Berlin, 1989.

[15] Mallat, S., “A Theory for Multiresolution Signal Decomposition: The

Wavelet Representation”, IEEE Transactions on Pattern Analysis and

Machine Intelligence (PAMI), vol. 11, no. 7, pp. 674-693, July 1989.

[16] Mallat, S., and Zhong, S., “Complete Signal Representation With

Multiscale Edges”, Technical Report, no. 483, Courant Institute of

Mathematical Science, New York University, New York, December

1989.

[17] Frantz, G., and Simar, S., “DSP: Of Processors and Processing”, ACM

Queue, vol. 2, no. 1, pp. 22-30, March 2004.

[18] Lee, R.B., and Smith, M.D., “Media Processing: A new Design Target”,

IEEE Micro, vol. 16, no. 4, pp. 6-9, August 1996.

[19] Adams, L., “Choosing the Right Architecture for Real-Time Signal

Processing Designs”, White Paper, SPRA879, Texas Instruments,

Dallas, November 2002.

[20] Christensson, B., “Stream Processing: Enabling a new class of easy to

use, high-performance parallel DSPs”, White Paper, Document:

SPI_MWP, Version 1.81, Stream Processor, Inc., Sunnyvale, 2007.

[21] Khailany, B., Dally, W.J., Rixner, S., Kapasi, U.J., Owens, J.D., and

Towles, B., “Exploring the VLSI Scalability of Stream Processors”,

Proceedings of 9th International Symposium on High Performance

Computer Architecture (HPCA'03), pp. 153-164, IEEE, February 2003.

[22] Dally, W.J., Kapasi, U.J., Khailany, B., Ahn, J.H., and Das, A., “Stream

Processors: Programmability with Efficiency”, ACM Queue, vol. 2, no.

1, pp. 52-62, March 2004.

[23] Lindholm, E., Nickalls, J., Oberman, S., and Montrym, J., “NVIDIA

Tesla: A unified Graphics and Computing Architecture”, IEEE Micro,

vol. 28, no. 2, pp. 39-55, March/April 2008.

[24] Nickolls, J., Buck, I., Garland, M., and Skadron, K., “Scalable Parallel

Programming with CUDA”, ACM Queue, vol. 6, no. 2, pp. 40-53,

March/April 2008.

[25] Blythe, D., “Rise of the Graphics Processor”, Proceedings of the IEEE,

vol. 96, no. 5, pp. 761-778, May 2008.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 5, 2011

233

[26] Rost, R.J., “OpenGL® Shading Language”, Addison-Wesley, 2nd

edition, Upper Saddle River [et al.], January 2006.

[27] Hutchison, J., “Culture, Communication, and an Information Age

Madonna”, IEEE Personal Communication Society Newsletter, vol. 45,

no. 3, pp. 1 and 5-7, May/June 2001.

[28] Mallat, S., and Zhong, S., “Characterization of Signals from Multiscale

Edges”, IEEE Transactions on Pattern Analysis and Machine

Intelligence (PAMI), vol. 14, no. 7, pp. 710-732, July 1992.

[29] Donoho, D.L., and Johnstone, I.M., “Ideal Spatial Adaption via Wavelet

shrinkage”, Biometrica, vol. 81, pp. 425-455, 1994.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 5, 2011

234

