
 

 

Abstract— The Discrete Wavelet Transform (DWT) is applied to 

various signal and image processing applications. However the 

computation is computational expense. Therefore plenty of 

approaches have been proposed to accelerate the computation. 

Graphics processing units (GPUs) can be used as stream processor to 

speed up the calculation of the DWT. In this paper, we present a 

implementation of the translation-invariant wavelet transform using 

consumer level graphics hardware. As our approach was motivated 

by infrared image processing our implementation focuses on gray-

level images, but can be also used in color image processing 

applications. Our experiments show, that the computation 

performance of the DWT could be significantly improved. However, 

initialisation and data transfer times are still a problem of GPU 

implementations. They could dramatically reduce the achievable 

performance, if they cannot be hided by the application. This effect 

was also observed integrating our implementation in wavelet-based 

edge detection and wavelet denoising. 

 

Keywords—Parallel discrete wavelet transform, Algorithme à 

trous, Image processing, GPU, Shader.  

I. INTRODUCTION 

HE Discrete Wavelet Transform (DWT) has a broad 

application field in signal and image processing. In spite 

of fast filterbank implementations the calculation is still 

compute intensive especially for large problem sizes and real-

time processing. Therefore various approaches have been 

developed to speed up the calculation of the Discrete Wavelet 

Transform, which range from special-purpose, fixed-function 

hardware implementations (ASICs) to universal software 

implementations on general purpose processors (GPP). These 

approaches have made tradeoffs between performance and 

flexibility.  

In the last years the development of digital entertainment, 

not scientific and military applications, drives the development 

of computing. Besides mobile devices the mass market is 

increased characterized by customer personal computers. The 

high performance requirements of these applications lead on 

the one hand to multimedia extensions of general-purpose 

processors like MMX or SSE, and on the other hand to the 
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evolution of graphics processing units (GPUs) to powerful and 

programmable processors, which supports general 

calculations.  

The GPU becomes an attractive platform for a broad field of 

applications, because it still remains a significant higher 

arithmetic processing capability than the GPPs with 

multimedia extensions and is often less utilized. Therefore it 

can be used as a powerful accelerator without extra cost [1]. 

The key for performance increase of applications on the GPUs 

is a large amount of parallelism and locality, which can be 

exploited by the GPU. The wavelet transform in general fulfil 

this requirement and was early an area of research for a GPU 

implementation [2, 3]. 

In this paper we present a GPU implementation of the 

translation-invariant wavelet transform computed by the 

“algorithme à trous”. Our approach focus on a two-

dimensional (2D) solution for processing of infrared images, 

which significant increase the computation performance 

compared with an implementation on GPPs and can be easily 

used in different image processing applications. We 

successfully integrate our implementation in wavelet-based 

edge detection and wavelet denoising. The computation 

performance could be improved significantly. 

II. RELATED WORK 

Hopf and Ertl [2, 3] realize the first implementation of the 

2D DWT for the fixed-function pipeline. The approach 

perform the convolution, down- and upsampling of the wavelet 

transform by special OpenGL extensions, which are not 

commonly implemented in graphics hardware. 

In [4] a new implementation of the 2D DWT for 

programmable GPUs is proposed, which is based on user 

defined fragment shader. A texture twice the size of original 

image size is used for the results as well as for temporary 

results. The convolution of the image borders with separate 

kernels prevents border effects. Besides Mallat’s pyramid 

algorithm a GPU implementation of Swelden’s lifting 

algorithms is presented, which has only advantages for long 

filters. 

Beside, Wang et al. [5] have developed another GPU 

implementation of the 2D DWT using Mallat’s pyramid 

algorithm. The implementation is based on horizontal and 

vertical convolutions with position-dependent filters, which 
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are mapped to user defined fragment shaders. Border effects 

are prevented by indirect access on image positions stored in a 

dynamically generated texture. The integration in Jasper [6, 7], 

which is a reference implementation of JPEG2000 [8], show 

the usability and the performance of Wang’s implementation. 

Because of initialization and data transfer times the GPU 

implementation surpass the classical implementation on image 

sizes greater than 600x600 pixel [9]. 

Most applications of the DWT especially in data 

compression use non redundant algorithms like Mallat’s 

pyramid or Swelden’s lifting algorithm. In image analysis and 

processing a translation-invariant representation can often 

deliver better results (e.g. [10, 11, 12, 13]). Holschneider et al. 

[14] are developed the “algorithme à trous” for the calculation 

of the translation-invariant DWT. Similar as Mallat’s pyramid 

algorithm the “algorithme à trous” can be implemented by a 

fast filter bank. Because the resulting subbands are not 

downsampled, input and output image sizes are equal at each 

dyadic scale. Especially for large images this results in high 

memory consumption storing the wavelet transform 

decomposition and high computation expense for the 

calculation of the wavelet transform. On this matter hardware 

requirements have limit the broader use of the “algorithme à 

trous”. Compared with Mallat’s pyramid algorithm the 

“algorithme à trous” has a higher arithmetic intensity. 

Consequently on the one side a GPU implementation seems to 

be especially advantageous. On the other side the large 

memory consumption is a challenging requirement especially 

for the graphics hardware. Since two years consumer level 

graphics hardware with large video memory is available, 

which made a GPU implementation of the “algorithme à trous” 

attractive. 

III. DWT 

Popularly the DWT is seen to be equal with Mallat’s 

pyramid algorithm, which is based on the multiresolution 

analysis (MRA) of signals. The decomposition of signals using 

the DWT can be expressed by a pyramidal filter structure of 

quadrature mirror filter (QMF) pairs. Therefore the DWT of 

the discrete signal 
0[ ] [ ]f n a n=  can be computed successive. 

At each scale 2 , 0j j >  it decomposes the higher resolute 

approximation signal [ ]ja n  into a coarser resolute 

approximation signal 
1[ ]ja n+  and a detail signal 

1[ ]jd n+  [15]: 
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whereas 1jd +  are the wavelet coefficients at resolution 2 j− . It 

can be further decomposed based each on 
1ja +  up to the 

desired dyadic scale. 

The other way around the original signal 
0[ ]a n  can be 

reconstructed successively from the wavelet decomposition, 

called Inverse Discrete Wavelet Transform (IDWT): 
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Mallat’s pyramid algorithm is decimated: During the 

convolutions of the decomposition only every second filter 

coefficients is considered. This can be obtained by 

downsampling with the factor two after the convolution. 

Before the convolutions of the reconstruction zeros are 

inserted between every pair of values of the approximation and 

detail signals. This results in the upsampling with the factor 

two. 

The “algorithme à trous” is translation-invariant and 

therefore not decimated. The translation-invariant DWT is 

computed with scale-dependent filters 
jh and 

jg  obtained by 

inserting 2 1j −  zeros (french trous) between every pair of 

filter coefficients: 
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The appropriate scale-dependent reconstruction filters jh
ɶ  

and 
jgɶ  are biorthogonal. The IDWT is given by 

 ( )1 1

1
[ ] [ ] [ ] .

2
j j j j ja n a h n d g n+ += ∗ + ∗ɶ ɶ  (4) 

The DWT can be easily extended in two dimensions if the 

wavelet can be written as separable products of functions in 

spatial directions. Mallat [16] proposed a two-dimensional 

quadratic spline wavelet for the “algorithme à trous”, which is 

often used in image processing. It decomposes the images, 

respectively, in two subbands with horizontal and vertical 

orientation and an approximation. Because the wavelet is 

separable the DWT can be computed by separable convolution 

in horizontal and vertical direction: 

 

1

1

1

2

1

[ , ] [ , ],

[ , ] [ , ],

[ , ] [ , ],

j x y j j j x y

j x y j j x y

j x y j j x y

a n n a h h n n

d n n a g n n

d n n a g n n

δ

δ

+

+

+

= ∗

= ∗

= ∗

 (5) 

with [ , ]x yn nδ  discrete Dirac function. 

 

The IDWT uses the biorthogonal reconstruction filters
jh , 

jk  and 
jl : 
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Although the filters of the spline wavelet are short, the 

complexity for decomposition and reconstruction remains 
2

2( log )O N N . Hence, the “algorithme à trous” is still very 

computing intensive. Moreover the representation has 
2(2 1)j N+ values, which must be stored in memory. Especially 

in real-time applications, general-purpose processors could not 

deliver the necessary performance for the computation of the 

“algorithme à trous”. The need for a fast implementation is 

therefore obvious.  
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IV. POSSIBILITIES FOR IMPLEMENTATIONS 

From a historical perspective, the first implementations were 

focussing on VLSI (Very Large Scale Integration) 

architectures, which directly implement the DWT in hardware 

as part of ASICs. Because ASICs are developed exclusively 

for one specific application, they can be optimized for that 

application. Thereby on the one hand they are very powerful 

and highly efficient, but on the other hand they are also highly 

specific and therefore very inflexible. A step towards more 

flexibility was based on the integration of often used functions 

in Application Specific Standard Parts (ASSPs). Due to the 

same implementation technology ASSPs show the same 

advantages in relation to performance as ASICs. While only 

the specific function and not the whole application is 

optimized, ASSPs do not achieve exactly the same level of 

performance from ASICs [17]. The next step in the evolution 

towards more flexibility was the use of Digital Signal 

Processors (DSPs). They are suitable for computing the DWT 

while they can be programmed in software. However they do 

not obtain the level of performance from ASICs at all [18]. 

The highest degree of flexibility is offered by general purpose 

processors. Because they are not optimized to any application, 

they have the least performance and efficiency [19]. Beyond 

that, the performance can be increased using multiple 

processors in parallel. Through this the efficiency is further 

reduced. Between the extremum of ASIC and GPP 

reconfigurable systems like FPGAs follow a hybrid approach. 

They add some flexibility by hardware-oriented programming 

(e.g. VHDL), but lower silicon densities lead to less 

performance than ASICs. 

Fig. 1 summarizes the properties of the previously described 

implementation prospects. It can be seen, that the prospects for 

implementation are in a conflict between performance and 

flexibility: With increasing flexibility the solutions become 

more and more software orientated, which can be better used 

on common computing systems. Beyond that, if performance is 

insufficient, multiple processors can be used in parallel further 

reducing the efficiency. 

For specific applications stream processors, like those from 

SPI (Stream Processor Inc.) [20], are a potential solution. 

They are powerful and efficient, while they are programmable 

with a high level programming language [21]. Precondition for 

efficient stream processing is, that the calculation to perform 

can be expressed by the stream programming model. 

V. STREAM PROCESSING 

Stream processing expresses the computation by streams 

and kernels. A stream program contains a sequence of kernels 

that is applied to data streams. The data streams contain a set 

of elements of the same type (e.g. image pixel). Each element 

of each stream is processed equally by the kernels. A kernel 

can only access on its input and output streams. Because the 

output stream is only allowed to depend on the input stream, 

the computations of the elements are independent from each 

other. 

Therefore the inheriting parallelism of applications and 

locality of their data can be expressed by a stream program 

and efficiently exploited by a stream processor. Because the 

kernels apply the same calculation to each element of the input 

streams, several elements can be processed simultaneously and 

a large amount of data parallelism can be exploited.  Within a 

kernel, independent operations can be executed in parallel to 

exploit instruction level parallelism (ILP). Finally, thread level 

parallelism can be exploited, because of the pipelined 

execution of the kernels [21]. On the one hand data parallelism 

reduces the necessary instruction bandwidth. On the other side 

the organisation of communication use the locality of stream 

processing to deliver the required memory bandwidth. Data, 

which is accessed only inside a kernel, is stored in local 

register. The communication via streams requires high 

bandwidth. To deliver high bandwidth the memory modules 

 
 

Fig. 1. Performance vs. Flexibility of conventional solutions after [20]. 
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are placed close to the processing elements. Stream processing 

requires less global communication. Global communication is 

especially necessary for the communication with external I/O-

devices, whose bandwidth is limited to the bandwidth of the 

interface. Because most of the data in global communication 

are also streams, the data access pattern is predictable and can 

be used to speed up the communication through block access. 

Nevertheless global communication is often the bottleneck for 

stream processing [22]. 

Generally speaking, architectures for efficient stream 

processing contain a large amount of processing elements 

(PEs) grouped in several cluster. The clusters support the task 

parallel execution of different kernels. Data parallelism and 

instruction level parallelism can be exploited by independent 

processing of different stream elements and instructions by the 

processing elements. Inside the clusters shared memory 

modules are available for temporary results. The streams are 

stored in memory modules close to the clusters which deliver a 

high bandwidth. 

VI. THE GPU AS STREAM PROCESSOR 

Although they were programmable with high level 

programming languages, pure stream processors could not 

prevail at the market. The main reason is that modern graphic 

processors can also be used for stream processing. Driven by 

multimedia and games with 3D display they had a rapid 

development in the last years. Beside improvements of the 

programmability, especially the performance of the GPUs, 

expressed by their floating point performance, is raised 

extremely. It can be seen in Fig. 2, that this development is 

decoupled from the CPUs. The very high raw computational 

 
  

Fig. 2. Peak single precision floating point performance GPU vs. CPU. 

 

 

 
 

Fig. 3. NVIDIA GeForce-8-Series after [23, 24]. TPC: Texture/Processor Cluster; SM: Streaming Multiprocessor; MT IU: 

Multithreaded Instruction Unit; SP: Streaming Processor; SFU: Special Function Unit; Tex: Texture; ROP: Raster Operation 

Processor. 
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performance should not be misinterpreted, because using full 

computational power in real applications is permanently not 

feasible. 

Therefore, in modern GPUs you can find many elements of 

stream processors. The GPU can be seen as a powerful stream 

processor. The previously described properties of stream 

architectures can be also found in modern GPUs. Fig. 3 shows 

a block diagram of the GeForce-8-GPU with 112 Streaming 

Processor Cores (SP Cores), which are organised in 14 

Streaming Multiprocessors (SMs). Two Multiprocessors build 

one independent Texture/Processor Cluster. Because the GPU 

is originally designed for computing of the graphics pipeline, 

GPU architectures additionally contain special fixed-function 

units for the efficient computation of some stages of the 

pipeline [23, 24]. Newer GPUs enhance their computational 

performance especially by increasing the number of cores and 

the memory bandwidth.  

The development of most programming languages and APIs 

target at writing graphics applications. The increasing 

flexibility of GPUs leads to higher level languages, which hide 

the underlying graphics programming languages and APIs. 

One advantage of using higher level languages is that they 

simplify the use of the GPU especially for the development of 

general purpose applications. Currently the most widespread 

language in this domain is CUDA, which only supports 

NVIDIA hardware. On the other hand low level graphics 

programming using the APIs (OpenGL, Direct3D) may 

achieve better performance at the cost of explicit expression of 

non graphics applications in graphics idioms. Furthermore 

most of graphics hardware is supported by the APIs [25]. Our 

approach is based on OpenGL to support as much graphics 

hardware as possible. 

Independent from the used programming language some 

restrictions of graphics architectures have to be considered by 

the programmer of streaming applications. These architectures 

efficiently process data-independent control-flow, while data-

dependent jumps and branches decrease the performance. 

Because the images are processed in blocks, the access to 

pixels, which are far away, is slow. Additionally, the data 

transfer between GPU and CPU is still a major bottleneck. 

VII. IMPLEMENTATION 

The target of our implementation of the “algorithme à trous” 

on the GPU was the reusability in future applications. On the 

one side current stream programming languages must be 

integrated in the common software development process in a 

special way. On the other side like CUDA only one hardware 

vendor is supported. So we still directly use the graphics API 

with high level shading languages, which could be well 

integrated in all common programming languages like Basic, 

Fortran, C/C++/C# or Java and is supported by most of the 

graphics hardware. Because the algorithms were already 

available in Java, our implementation is based on Java. As 

graphics API we use OpenGL, which is bound by the JOGL 

class library. 

Our GPU implementation of the two-dimensional 

“algorithme à trous” is a direct implementation of the filter 

bank according to (5) and (6) by a set of fragment shaders. Fig. 

4 shows the sequence of operations of the decomposition. First 

of all an input image has to be transferred from main memory 

via PCI express bus to the video memory of the GPU. The 

input image is then successive decomposed by the wavelet 

filters. These two-dimensional filters are separable product 

filters, which are achieved by one-dimensional filtering first in 

horizontal and then in vertical direction. The filters are 

computed by fragment shaders that are executed for each input 

pixel. In order to get a one-to-one-mapping of texels and 

pixels, textured rectangles are drawn with an orthographic 

parallel projection. The resulting subbands are stored in a new 

texture, which become the input image for the calculation of 

the next scale. After the decomposition of the input image in 

the desired number of levels all subbands and the 

approximation of the coarsest level are hold in a set of 

textures. From this decomposition the input image can be 

reconstructed successively in the same way as the 

decomposition. Only a second temporary texture is needed 

combining the reconstructed approximation image with the 

detail images of the previous scale. 

Textures and shaders supply the processing up to four color 

channels. For gray-level images, three color channels are used 

for storing and processing of the subbands and the 

approximation images. Therefore at the decomposition two 

filters and three filters at the reconstruction can be folded in 

 
 

Fig. 4. Decomposition of a gray-level image on the GPU. 
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parallel to increase the efficiency of using the GPU resources. 

Our shaders of the wavelet filters are implemented in GLSL 

based on [26]. The texture coordinates are exclusively 

computed in these fragment shaders. Therefore no special 

vertex shaders are needed. Instead of stretching the filters with 

zeros for the “algorithme à trous”, the coefficients of the 

unstretched filters are multiplied with input values at the 

corresponding distances. These distances have to be set before 

applying the shaders. Because the dynamic range of the high-

pass filter is [-2.0,2.0], the convolution sum is adapted to the 

texture range [0.0, 1.0] before storing the decomposition. 

While reconstruction this adaption is considered. To avoid 

errors at the boundaries until reconstruction a symmetrical 

periodic extended version of the image is used for 

decomposition. Beside the reconstructed image all subbands 

and approximation images can be transferred to CPU main 

memory for further processing. 

VIII. RESULTS 

A. Test setup 

All tests were conducted on a PC running the Windows XP 

operation system. Because non real-time operation systems 

allocate the computing resources stochastically by priorities, 

computing times have a coincident variance. Therefore one 

measurement has not an adequate measure for our comparison. 

The measurements have to be repeated in a sufficient number 

to have approximate normally distributed computing times. 

The mean is further taken as base for our evaluation.  

Our implementation is object-oriented based on Java and 

OpenGL. GLSL is used for the shader development.  OpenGL 

is bound to Java by the JOGL class library, which only 

supports up to OpenGL 2.1. Our implementation uses 

rectangle textures with single precision floating point values 

and frame buffer objects for direct rendering to textures. The 

CPU implementations are also object-oriented in Java. 

Because the interface of the CPU and GPU classes is equal, 

the implementation can easily be interchanged. 

All the tests were performed on a PC with an Intel Core i7 

920 CPU (4 Cores, 2.67 GHz, 4 GBytes DDR3 RAM), and an 

ATI Radeon HD 4870 or Nvidia GTX 280 GPU. The GPUs 

have 1 GBytes of video memory. The CPU implementations 

only use one single core. Five test images based on the often 

used well known Lena image [27] ranging from 128x128 to 

2048x2048 are used. Furthermore, 200 images of a resolution 

build a test image sequence. For a more detailed analysis the 

execution times are subdivided in times for the initialisation, 

the data transfer, the decomposition and reconstruction. 

B. Test results 

In the evaluation, the test images are decomposed in three 

levels and reconstructed from this decomposition. First the 

processing of gray-level images is considered. Fig. 5a shows 

the execution times of the CPU and GPU implementations. 

Due to GPU’s significant longer initialisation and transfer 

times the CPU implementation is faster for small image sizes. 

Otherwise the GPU implementation clearly outperforms the 

CPU implementation for larger image sizes. The arithmetic 

performance of the GPUs has a positive effect on the total 

execution time, if the initialisation and transfer times less 

dominates the total execution times on the GPU (Fig. 5b). This 

effect is greater on the processing of color images
1
. While 

initialisation and transfer times only increase modest, the 

arithmetic intensity is three times as high as for the processing 

of gray-level images. As shown in Fig. 5c, this effect can be 

also observed analysing the speedup of the GPU 

implementations relative to the CPU implementation. 

Furthermore it can be seen, that for large images also assuming 

a perfect partition of the computation on the CPU cores the 

GPU implementations are still faster.  

Real-time multimedia applications are often more interested 

in the number of processed frame per second (fps), also called 

as frame rate. Table 1 shows the frame rates of the CPU and 

GPU implementations. Because the initialisation is done only 

once at begin of the stream processing, the initialisation times 

can be neglected. Therefore higher frame rates for all image 

sizes relative to the CPU implementation can be achieved by 

the GPU implementations. This has the corresponding effect 

on the speedup of the GPU implementations relative to the 

CPU implementation. The maximum speedup of the GPU 

implementations for gray-level streams is 68.1 and for color 

streams 133.4. Hence, it is obvious, that a multicore CPU 

could not provide a comparable computing performance for 

the wavelet transform. 

In practice frame rates are more interested than speedup. 

Mostly hundreds of frames per second have not to be 

processed. But it can be approximated, how much resources 

can be used on the GPU for further applications. 

C. Wavelet-based edge detection 

For all scales the “algorithme à trous” compute horizontal 

and vertical subbands from different smoothed original images 

(approximation images). The used high-pass filters enhance 

high frequency image components like edges. Like the canny 

edge detector, the local maxima of the modulus of both 

subbands corresponds with sharp intensity variations in the 

original image [28]. Due to the smoothness often the scales 
22 - 42 are used for edge detection. 

Thus the wavelet decomposition at the corresponding scale 

is needed for computing the edges at scale 2 j . First, our GPU 

implementation of the wavelet transform is used for the 

decomposition up to the scale 2 j . Then, additionally shaders 

for computing the magnitude and its maxima are applied to the 

stored wavelet decomposition. 

The experimental results are comparable with the results of 

the wavelet transform above. Because only the decomposition 

is performed, the arithmetic intensity is lower, so that the 

achieved speedups are smaller. The maximum speedup was 

  

 
1 Due to memory allocation problems the processing of 2048x2048 color 

images fails. 
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Fig. 5. DWT of gray-level images for different image sizes. (a) execution times CPU vs. GPU, (b) speedup of execution times of 

GPUs relative to CPU, (c) distribution of execution times: 1st column – Core i7 920, 2nd column – Radeon HD 4870, 3rd column – 

GeForce GTX 280.  

 
 

 

 

 

 

 

 

 

image size/ 

pixel 

Core i7 

920 

Radeon 

HD 4870 

GeForce 

GTX 280 

 

128x128 34,54 308,36 59,73 

256x256 8,49 185,75 59,34 

512x512 2,05 79,21 59,59 

1024x1024 0,46 22,00 25,24 

2048x2048 0,11 6,40 7,49 

 

Tab. 1. CPU and GPU frame rates of the DWT of  

gray-level streams in fps. 
  

 Fig. 6. DWT of gray-level streams for different image sizes: 

speedup of execution times of GPUs relative to CPU. 
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only 2.7 for gray-level images respectively 2.9 for color 

images. Nevertheless the speedups for stream processing are 

still considerable. For gray-level streams a maximum speedup 

of 35.1 and for color streams of 81.9 is achieved. 

 

D. Wavelet denoising 

The wavelet transform can also be used for noise reduction. 

Because the image information is concentrated in a few, big 

wavelet coefficients, the important wavelet coefficients can be 

extracted by a threshold algorithm. The reconstruction from 

the subbands with the thresholded wavelet coefficients and the 

approximation of the coarsest scale leads to a denoised version 

of the original image [29]. For the calculation of the threshold 

an estimation of the noise level of the wavelet coefficients is 

needed. 

The challenge for the implementation of wavelet denoising 

on the GPU is the calculation of the thresholds. Due to the 

sequential character of the estimators, the calculation has to be 

done by the CPU. The subbands have to be transferred to the 

CPU for threshold estimation, which is the bottleneck for the 

GPU implementation of the wavelet denoising. For that reason 

the achieved speedups are much smaller than before. Gray-

level and color image denoising achieve a maximum speedup 

of 4.5. However, we got a maximum speedup of 10.0 for gray-

level streams and 13.3 for color streams. 

IX. CONCLUSIONS 

In this paper we have presented a GPU implementation, 

which significantly speedup the computation of the 2D-DWT 

with the “algorithme à trous”. We have shown that the GPU 

can be used as a powerful stream processor to speed up 

streaming applications like the DWT. Our implementation was 

based on OpenGL to support as much graphics hardware. The 

object-oriented approach can be easily integrated in new 

applications. This is shown in two applications, which perform 

the wavelet-based edge detection and wavelet denoising of 

images. Experimental results show, that initialisation and data 

transfer times could dramatically reduce the GPU 

performance, if it can’t be hided by the application. Our future 

work will be in further improvements of the implementation 

and an OpenCL implementation. 
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