

Abstract— Many modern software models and notations are

graph based. UML 2 activities are important notations for modeling
different types of behavior and system properties. In the UML 2
specification it is suggested that some forms of activity types are
based on Petri net formalisms. Ideally the mapping of UML activities
into Petri nets should be bi-directional. The bi-directional mapping
needs to be simplified and operational. Model-to-Model mapping in
theory offers the advantage of fully operational bi-directional
mapping between different models or formalisms that share some
common properties. However in reality this is not easily achievable
because not all the transformations are similar. Previous work was
presented where it was shown how Triple Graph Grammars are
useful to achieve this mapping. UML 2 activities have some common
properties with Petri nets. There are exceptions which require some
special attention. In this paper a simple condensed rule based solution
for complete bi-directional mapping or transforming UML 2
activities into Petri nets is presented. The solution should be
operational, and can be represented using different notations. A
practical example is used to illustrate the bi-directional
transformation possibility and conclusions are explained.

Keywords— UML 2, Activity diagrams, Petri nets, Bi-directional

transformation, Triple graph grammars

I. INTRODUCTION
ML 2 activities are fundamentally important visual
notations that express the diverse behavior of computer

systems and information systems [6]. Their use has been
extended to different types of systems and areas not
necessarily related directly to computing. Some uses of
activities vary from web composition to business workflows
[16]-[17] and at lower levels there is modeling of software
artifacts like operating systems, file handling, programming
etc. UML 2 activities appear to be similar to flowcharts; but
the semantics behind them are entirely different. Again UML
2 activities have some similarities to UML state machines or
state machine diagrams (SMDs) but again they are not similar.
UML state machines are related to modeling system states and
have been derived from state transition diagrams (STDs). On
the other hand, these activities closely represent a wide
spectrum of properties and are targeted towards different
levels of stakeholders needs. Activities are useful even on
their own, without other UML diagrams to express explicit
system behavior for different purposes, and at all levels, hence
they need to be expressive and detailed. UML activity

Manuscript received Feb 23, 2011. Anthony (Tony) Spiteri Staines, is with the
Department of Information Systems, Faculty of ICT, University of Malta,
(corresponding phone: 00356-21373402,e-mail: toni_staines@yahoo.com)

diagrams have gained widespread use for different scenarios.
They can be used as the initial diagram to study new or
existing systems, the latter using reverse engineering concepts.
Activities can be modeled directly off use cases.

The UML superstructure specification [6] is the document
that explains in detail the different categories and
classification of activity types which are i) basic, ii)
structured, iii) intermediate, iv) extra structured, v) complete
and vi) complete structured. Activity diagrams can be
formally verified and supported. The graphical representation
of Petri nets can be supported using formal languages,
grammars or even textual notations.

UML 2 activities introduce many advanced constructs for
error handling, streams, collections, etc. The superstructure
document explains the different types of activities introducing
rules for node execution based on something similar to token
flows. The specification also presents us with activities having
a Petri net like semantics.

There are numerous advantages of representing activities as
Petri nets. It is possible to formally check the main properties
of the Petri net models in detail. This is not always possible
with activities. This work focuses on achieving a fully
functional bi-directional solution.

II. RELATED WORKS
Supporting evidence exists presenting the advantages of

mapping activities into Petri nets. From a certain point of view
this seems to be the best choice [1]-[3], [7]-[14], [19]. As
explained elsewhere, activities are non formal notations or
models that require verification and testing. Transforming
activities into Petri nets seems a natural choice and higher
order nets are more expressible than activities. The possible
mapping process has been explained and different approaches
have been tried and used. In this work we try to find an
optimal simplified solution for bi-directional transformation.
This should work from either side. A simplified rule set is
given. This should work under any condition. The rules
presented are explained and defined in terms of Triple Graph
Grammars (TGGs) [4],[5]. However their implementation
does not necessarily have to be restricted to TGGs. They
could be implemented in a data repository. It has already been
examined how UML activities and Petri nets can be combined
using TGGs [8]. TGGs are suitable for mapping two graphical
models with the main properties being common to both. TGGs
allow for the declaration of bi directional transformation
relationships. Activities share some common properties with
Petri nets. The latter have over three decades of coverage.

 Rule Based Bi-Directional Transformation of
UML2 Activities into Petri Nets

A. Spiteri Staines

U

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 5, 2011

281

Both activity diagrams and Petri nets are based on directed
graphs. Different solutions ranging from structured to semi-
structured have been previously presented, explaining how
activities can be transformed into Petri nets [1]-[3]. However a
practical solution has not been outlined. Some of the given
solutions present transformation in one direction mainly from
the activity diagram to the Petri net and not bi-directionally.
Another issue is that some solutions can become quite
complex and are useful for very specific one off problems. For
many given solutions the transformation process is abstracted.
In this work the focus is on a generic solution that should
work for most cases. It is explained how the bi-directional
transformation can be realized and implemented as required.

There are already possible solutions using (query, view,
transform) QVT, (atlas transformation language) ATL or
TGGs. These are model to model mapping or transformation
based approaches.

In previous work [7],[8] the forward transformation rules
were given, explaining how this would work. It was also
stated that many new rules might be needed for reverse
transformation. There were problems with reverse transform
which could require many new rules or the use of higher order
nets and colored Petri nets (CPNs) [7],[8]. We shall attempt to
present a solution to this, whilst retaining the use of normal
place transition nets. Petri nets are well suited for reduction
and simplification. Both Petri nets and activity diagrams can
be treated as di-graphs. They are well formed and express
some strikingly similar properties.

III. PROBLEM FORMULATION
Model transformation [15], [17],[18] is a key area for MDE

(Model Driven Engineering) and MDA addressed by the
OMG and UML. The concepts behind QVT, QVTrelations
and QVTcore are based on relational mapping between
models or notations. The ideas behind QVT show the
importance of models and their transformations.

 Consider the simple case of transforming an activity model
into a Petri net and vice-versa. There are different ways how
the rules can be described.

To get full benefit of mapping, reverse transformation
needs to be achieved. This means that true bi-directionality
between two different models is kept continuously. We shall
attempt to give a solution to this, whilst retaining the use of
normal place transition Petri nets. For forward transformation
six rules were sufficient, however for reverse transformation
more new rules must be created. A simplified solution is to
include information labeling on both models. This information
would serve to identify the appropriate rule both for forward
and reverse transform.

E.g. In the activity diagram there are several types of
control nodes. E.g. initial node, final node, decision node, etc.
A separate rule is required for each of these types. The
representation could definitely be included in some grammar
or language or even text format.

Here we explain the details how such a solution can

possibly work. A good solution needs to be something that is
simple, operational and can be applied repetitively to obtain
result, i.e. they solution has to be operational and fully
functional.

IV. PROBLEM SOLUTION
 The proposed solution is to create transformation or

mapping rules, and later decompose them or fine tune them to
the required level. This will have to include specific
information labeling on the elements of both models. This
would indicate which rule is needed. Alternatively each model
could have its elements labeled as to which rule to use. The
information will serve to identify the appropriate rule for the
reverse or forward transform. In this manner the number of
rules required for the transformation is kept concise!

The sub rules will replace the generic rules if required. The
idea can be formulated into a given algorithm.

The rules created for this work can be represented using
Triple graph grammars (TGGs). TGG rules can check the
activity diagram to the Petri net for a valid correspondence.
Normally the source model for starting the transformation
would be the activity diagram. The rules are used where the
context nodes of the rule can be matched to the existing
context source domain side elements which are used to create
elements on the target side via a correspondence check. Bi-
directional transformation is achievable using only insertion

or creation rules specified in TGGs using “++” sign. If the
activity diagram or the Petri net is generated from scratch,
whenever there are changes in the corresponding model TGG
creation or insertion rules should suffice. On the other hand if
the models are not generated from scratch then other rules
might be required.

Using TGGs gives different possibilities: i) two models can
be given. I.e. the activity diagram and a Petri net. The
correspondence of both models can be checked for validity. ii)
a single model. This can be used to generate a new model
from scratch. If two graph grammars are mapped structurally,
the mapping of the two distinct graph types can be explicitly
defined. If TGGs work for a solution, then even multi graph
grammars and other forms of grammars can be considered.

Fig. 1 high level mapping concept of UML activities into Petri nets

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 5, 2011

282

A. A Generalized Solution
The actual solution is described below. In essence the

activity diagram is composed of nodes and edges. There are
several exception types for both nodes and edges. E.g. if
control nodes are taken an activity diagram can have several
types of control nodes like i) initial node, ii) fork/join node,
iii) final node, iv) merge and v) decision. Two solutions are
possible either i) create a separate rule for each type of node
or ii) use a generic rule. For the former solution information

can be added to the models using some grammar or language
text for identification.

B. A Solution using Triple Graph Grammars
From the point of TGGs the solution is to add sub rules to

the six main rules. This pattern can be repeated in the future
even if part of the UML super specification document
changes. The sub rules are used to keep track of the A/D node
or edge type that is converted. E.g. R 2.2 Add fork/join node
=> Petri net fork/join place, R1.3 Add merge node => Petri
net merge place, R1.1 Add initial node => Petri net initial
place.

The solution idea is to decompose the main rules into sub
rules as required. The idea can be extended to use any class of
Petri nets. The rules are independent of the actual solution and

which classes of Petri nets are implemented.
The bi-directional mapping rules, in summarized form, are

shown in tables 1 and 2 respectively. These rules can be
implemented using TGGs as has been done in previous work.
The classification of UML 2 activity types and their
corresponding Petri net counterpart is also explained in detail
in [7]. It is enough to state that activity edges and nodes have
their Petri net counterparts, but there are several exceptions.

The actual transformation of the actual Petri net element
type has not been shown ,as this is described elsewhere [7].
To explain briefly Rule 1 maps the activity control node into a
Petri net place. Rule 2 maps the action/executable fork or join
into a transition. Rule 3 maps a normal activity edge into a

DETAILED
ACTION

Add/Insert a new
control node

1.1 Add initial node

(exclude fork/join) 1.2 Add final node 1.2.1 Add flow final node
1.2.2 Add Activity final node

1.3 Add merge node
1.4 Add decision node
2.1 Add executable node
2.2 Add action node
2.3 Add fork/join node

RULE 2 Add executable
action or fork/join
nodes

RULE GENERIC
ACTION

RULE 1

Table. 1 rules 1,2 and sub rules for bi-directional transformation

RULE GENERIC ACTION

RULE 3 Add normal activity edge (between
executable action fork or join nodes)

RULE 5 Insert exception activity edge (executable to
control node action)

RULE 6 Insert exception activity edge (control to
executable node, action or fork/join)

RULE 4 Insert exception activity edge (between two
control nodes)

Table. 2 rules 3-6 for bi-directional transformation

Fig. 2 high level correspondence between activities and Petri nets

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 5, 2011

283

Petri net input arc connected to a place followed by an output
arc. Rule 4 insert exception activity edge maps into a Petri net
input arc to a transition followed by an output arc from the
transition. Rule 5 connects an executable to a control node,
this maps to a Petri net arc between a transition and a place.
Similarly Rule 6 maps to a Petri net arc between a place and a

transition.
 The diagram in fig. 1 illustrates the rule based high level

correspondence between activities and Petri nets. Note that
not all the rules described have been used for this diagram.
This diagram shows how it is possible to achieve bi-
directional transformation using the appropriate rule.

From the TGG rules given, it is evident that part of the
solution lies in properly labeling the Petri net and the activity.
E.g. refer to fig. 3 If an initial node should be labeled as an
initial place in the Petri net, this can be used for reverse
transformation. The initial place will transform back into an
activity diagram initial node. Figures 3-8 show how some of
the rules in tables 1 and 2 can be generally applied using
TGGs. Fig. 8 shows how an exception activity edge can be
inserted between two control nodes. On the Petri net side this
translates into an input arc that connects to a non operational
transition (NOP) and the output arc from this transition.

V. CASE STUDY

A case study of an online ordering system is used as an
example to illustrate the idea presented. There are several
steps involved in this order processing system. These are
illustrated in fig. 9. All the main different activity node and
edge types are used in the diagram. This is done to illustrate
the use of the bi-directional transformation.

Fig. 3 TGG rule 1.1 for inserting an Initial Node

Fig. 4 TGG rule 1.2.2 for inserting an Activity Final Node

Fig. 7 TGG rule 2.2 for inserting an Action Node

Fig. 8 TGG rule 4 for inserting an exception activity edge
between two control nodes

Fig. 5 TGG rule 1.3 for inserting a Merge Node

Fig. 6 TGG rule 1.3 for inserting a Fork/Join Node

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 5, 2011

284

 MathType add-on (http://www.mathtype.com) for
equations in your paper (Insert | Object | Create New |

Fig. 10 online system Petri net

Fig. 9 online system activity diagram

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 5, 2011

285

Fig. 11 online system changed Petri net

Fig. 12 online system changed activity diagram

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 5, 2011

286

The main steps in the activity model start off from
generating an order, inputting customer details, selecting a
product, entering order amount, start processing, complete
order, delete order, generate details, calculate total, generate
invoice, terminate etc. Some of these activities are carried out
in parallel. E.g. calculate total is carried out in parallel with
print invoice. Decision nodes have been used to provide for
choosing to go ahead or to delete the order. To illustrate the
use of all six transformation rules described, the activity
diagram includes many different types of nodes and edges.

The activity diagram in figure 9 shows the case study
described above. After applying the rules described in tables 1
and 2 the result is the Petri net shown in figure 10. To clarify,
the applied rules are shown on the activity in figure 9 using a
short notation. E.g. R2.2 stands for Rule 2.2 which is Add
action node. R 3 stands for Rule 3 and stands for add normal
activity edge between action executable fork or join nodes.

 In applying all the rules in tables 1 and 2 the activity
diagram is converted into a Petri net. The Petri net is labeled
using Pn for place numbers, Tn for transition numbers and En
for edge labeling.

The Petri net labels are used to identify what type of place,
transition or edge is inserted. Alternatively a full description
can be kept. This is indicated in table 3 which is a fragment of
the place description. The description or details would be
lined with the Petri net construct used.

To illustrate the bi-directional mapping, if changes are done
to the Petri these need to update the activity diagram. Figure
11 illustrates such changes. In this example the possibility of
launching a new application or ending are added. There is also
a new action called start application and another cancel
option.

These require adding T17 E35 E36 P16 E39 E37 E 38, etc.
etc. The changes are highlighted and shown in figure 11.
Using the corresponding rules e.g. for E37, E38, etc. we use
Rule 4. The rules are expressed in tables 1 and 2. On the
activity side this transforms to an exception activity edge as it
connects two places. This can be identified from the Petri net
labeling, etc. as has been previously explained.

As a result of this mapping, there is the changed or updated
activity diagram shown in fig. 12.

VI. CONCLUSION

It has been shown how a simple practical solution for bi-
directional mapping of UML 2 activities into Petri nets can be

achieved using simple rules that are decomposed to the
required level.

The rules can be represented using different notations such
as graph grammars, triple graph grammars, multi graph
grammars or even in some other relational form.

 This idea will work for all activity diagrams that use the
most common constructs. Even if the activity diagram has
many nodes and edges this conversion is still possible. The
resulting Petri net can be modified and using the rules it is
possible to generate a new activity diagram or modify the
existing one to reflect these changes. Petri nets are more
expressible than activity models. The Petri net can be
analyzed using Petri net analysis methods like reachability,
liveness, etc. The Petri net can be easily converted to a time
Petri net (TPN). Different Petri net CASE tools can be used to
model the TPN. Also the Petri net can be reduced using Petri
net reduction methods and converted back to an activity
model, so many new options are available.

The ideas presented can be used for restructuring or
reorganizing the Petri net and then the activity model. Petri net
structures can be reduced using Petri net rules for reduction. If
the activity diagram is complex then even the Petri net
structure will reflect this. Finding a reduced Petri net can be
used to generate a more simple activity model.

This work shows that the activity diagrams are constructed
using certain patterns that are always repeated.

Here the general theoretical idea how to achieve the
mapping or the conversion has been given. This still requires
to be implemented. The implementation is independent of the
actual solution. This mapping could be done manually. It
could be possible to use this approach to derive code from the
actual diagram but obviously modifications are required. This
idea could be extended to other notations including other
UML diagrams or other formalisms.

REFERENCES
[1] H. Störrle, “Structured Nodes in UML 2.0 Activities”, Nordic Journal of

Computing, vol. 11, no. 3, 2004, pp. 279-302.
[2] H. Störrle, “Semantics of Control Flow in UML 2.0 Activities”, Proc. of

2004 IEEE Symposium on Visual Languages and Human Centric
Computing, USA, 2004, pp. 235-242.

[3] H. Störrle, J.H. Hausmann, “Reasoning about UML Activity Diagrams”,
Publ. Assoc. Nordic Journal of Computing, vol. 14 no. 1, 2005, pp.43-
64.

[4] C. Lohmann, J. Greenyer, J. Jiang and T. Systä, “Applying Triple Graph
Grammars For Pattern-Based Workflow Model Transformations”,
Journal of Object Technology, Special Issue: Tools, 2007, pp. 253-273,
Available: http://www.jot.fm/issues/issue_2007_10/paper13/

[5] E. Kindler, R. Wagner, “Triple Graph Grammers: Concepts, Extensions,
Implementations and Application Scenarios”, Technical Report TR-RI-
284, University of Paderborn, Paderborn, Germany, 2007, Available:
http://www2.cs.uni-paderborn.de/cs/ag-
schaefer/Veroeffentlichungen/Quellen/Papers/2007/tr-ri-07-284.pdf

[6] OMG UML 2 Superstructure Specification. V2.2,OMG, Available:
http://www.omg.org/technology/documents/spec_catalog.
htm

[7] T. Spiteri Staines, “Intuitive Mapping of UML 2 Activity Diagrams into
Fundamental Modeling Concept Petri Net Diagrams and Colored Petri
Nets”, Proc. of the 15th ECBS conference, IEEE, 2008, pp. 191-200.

PETRI NET ACTIVITY DIAGRAM CORRESPONDENCY RULE
P1 INITIAL NODE R1.1
T1 ACTION NODE R2.2
E1 CONTROL TO ACTION/EXECUTABLE NODE R6
E2 NORMAL ACTIVITY EDGE R3
… …. ….

Table 3 Petri net to activity diagram rule correspondence

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 5, 2011

287

[8] A. Spiteri Staines, “A TGG Approach for Mapping UML 2 Activities
into Petri Nets”, Proc. 9th WSEAS, SEPADS, Univ. of Cambridge, UK,
2010, pp. 90-95.

[9] LaQuSo (2007). LaQuSo Work Group / Project, LaQuSo Repository,
Eindhoven, Available: www.Laquso.com

[10] J.P. Lopez-Grao, J. Campos, “From UML Activity Diagrams to
Stochastic Petri Nets: Application to Software Performance
Engineering”, WOSP’04, Redwood CA., 2004, pp. 25-26.

[11] N. Yang, H. Yu, H. Sun, Z. Qian, “Mapping UML Activity Diagrams to
Analyzable Petri Net Models”, Proc. of the 2010 10th Int. Conf. on
Quality Software, IEEE, Zhangjiajie, 2010, pp. 369-372.

[12] N. Feng, W. Ming-Zhe, Y. Cui-Rong, T. Zhi-Gong, “Executable
Architecture Modeling and Validation”, 2nd Int. Conf. ICCAE, IEEE,
Singapore, 2010, pp. 10-14.

[13] J. L. Garrido, M. Gea, “A Colored Petri Net Formalization for a UML-
based Notation Applied to Cooperative System Modeling”, Interactive
Systems: Design, Specification and Verification, LNCS 2545, Springer,
2002, pp.16-28.

[14] L. Baresi, M. Pezze, “Improving UML with Petri Nets”, Electronic notes
in Theoretical Computer Science, Elsevier, vol 44., no. 2, 2007, pp.
107-119.

[15] I. Madari, L. Angyal, L. Lengyel, “Incremental model synchronization
based on a trace model”, Proceedings of the 9th WSEAS international
conference on Simulation, modelling and optimization, Budapest,
Hungary, pp. 470-475, 2009.

[16] K. Hee Han, S. Kyu Yoo, B. Kim , “Qualitative and quantitative
analysis of workflows based on the UML activity diagram and Petri net”
, WSEAS Transactions on Information Science and Applications, vol. 6
, no. 7, pp. 1249-1258, Jul 2009.

[17] W. Rungworawut, T. Senivongse, “A Guideline to Mapping Business
Processes to UML Class Diagrams” , WSEAS Trans. on Computers, vol.
4, no. 11,pp. 1526–1533, 2005.

[18] T. Levendovszky, L. Lengyel, H. Charaf, “Extending the DPO approach
for topological validation of metamodel-level graph rewriting rules”,
Proceedings of the 4th WSEAS International Conference on Software
Engineering, Parallel & Distributed Systems, 2005.

[19] K. H. Han, S. K. Yoo, B. Kim, “Qualitative and Quantitative Analysis of
Workflows Based on the UML Activity Diagram and Petri Net”, WSEAS
Transactions on Information Science and Applications, Issue 7, Volume
6, 2009, pp.1249-1258.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 5, 2011

288

