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An Automatic Method to Generate the
Emotional Vectors of Emoticons
Using Blog Articles
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Abstract— In recent years, reputation analysis and opinion mining
services using the articles written in personal blogs, message boards,
and community web sites such as Facebook, MySpace, and Twitter
have been developed. To improve the accuracy of the reputation
analysis and the opinion mining, we have to extract emotions or
reactions of writers of documents accurately. And now, graphical
emoticons (emojis in Japanese) are often used in blogs and SNSs in
Japan, and in many cases these emoticons have the role of modalities
of writers of blog articles or SNS messages. That is, to estimate
emotions represented by emoticons is important for reputation analysis
and opinion mining. In this study, we propose a methodology for
automatically generating the emotional vectors of graphical emoticons
automatically using the collocation relationship between emotional
words and emoticons which is derived from many blog articles. The
experimental results show the effectiveness of the proposed method.

Keywords— Collective intelligence, Consumer-generated media,
Blog, Emoticon, Emotional vector, Emotional word, Emoji, Opinion
mining, Reputation analysis, User-generated content.

I. INTRODUCTION

N recent years, there has been a rapid spread of media such

as blogs, wikis, message boards, customer review sites, and
social networking sites (SNSs), which make it possible for
individuals to more easily generate information. These are
collectively referred to as ‘“consumer-generated media” or
“user-generated content,” and the numbers of such media users
are growing at an explosive rate. For example, Facebook [1], a
leading SNS, has more than 600 million users worldwide and
was the top visited website in the United States in 2010.
Concurrent with the growth of SNSs, has been efforts to develop
technology that could analyze such user-generated content for
useful applications. One such tool is reputation analysis [2] and
opinion mining [3]. Both of them can be considered as kinds of
Web mining technologies used to analyze sentences posted to
media (such as blogs, customer review sites, and SNSs) to
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determine if the sentence writer has positive or negative
impressions of, for example, a particular product. To
accomplish this, reputation analysis and opinion mining utilizes
the technology of natural language processing [4], and typically
analyzes the emotional words that appear in the text of such
media [5], [6].

In this study, we focus on the graphical emoticons (“emojis”
in Japanese [7]) that appear in sentences posted to blogs. In
Japan, emojis have long been used with mobile phone email
services [7]-[10]. Especially among younger users, emojis
provide a way to express emotions that cannot be adequately
communicated in words. For example, the sweat-drop emoticon
shown at the left in Fig. 1 can be used to express a wide range of
emotions including embarrassment, indignation, quandary, and
shock. Meanwhile, emoticons that express happiness include
the heart symbol and face symbols that show happy expressions.
Now, emojis have spread widely into other media formats. For
example, in gmail, we can use graphical emoticons easily (Fig.
2). Because emojis effectively communicate the emotions
(modality) of the writer, many users have become accustomed
to their use when posting daily writings on blogs and SNSs not
only from mobile phone but also from their personal computers
(Fig. 3 shows an example of blog article with emojis). By
determining the writer’s emotions, as expressed by the
emoticons that exist in sentences posted to blogs and SNSs, it is
possible to improve the accuracy of Web mining technologies
such as reputation analysis and opinion mining. For example,
the following two texts are same but the emoticons at the end of
these texts are not equal.

“The dish I ordered wasn’t good. iig)”

“The dish I ordered wasn’t good. "

If we only use the text for estimating the emotion, it is natural
that two emotions derived from these texts are equal. However,
it is expected that the emotion of the writer of the second
sentence is madder than the first writer’s one. It is evident from
the example that to use the emoticon for analyzing writers’
emotions is very important. Because of this situation, there have
been many studies on estimating the emotion by using
emoticons. However, almost all of them were research for not
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Fig. 1 Examples of graphical emoticons (Emoyjis)
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_’:{L/ -’3“2 U & ; — I\ (My first date in a while)
F-7:8% (Topic: Regular life)

B ATAITEIT

(Hello, everyone.)

W SBIFALIUOF -t TLE 1
(Today, 1 enjoyed my first date in a while.)
FSAHA T2 T2ELE &

(We went for a drive.)
BEERETEIAETH. SF50TT QO

(Long distance love is hard, but we are lovey-dovey.)

Fig. 3 Example of blog article with emoyjis

graphical emoticons (emojis) but ASCII glyphs emoticons such
as “:-)”. Accordingly, in this paper we propose a methodology
that automatically generates the emotional vector of graphical
emoticons (emojis). To accomplish this, we collected a large
volume of blog articles containing graphical emoticons and
analyzed the co-occurrences of emoticons and emotional words
to determine how the respective emoticons are used to facilitate
emotional expression. In this study, we set 14 emotional vector
dimensions, using Plutchik’s emotion model [11] as a reference.

II. PREVIOUS STUDY

A. Study on Emoticons

There have been lots of studies on ASCII glyphs emoticons
[12]-[20]. For example, Tanaka et al. [12] proposed methods
for extracting emoticons n text and classifying them into some
emotional categories. Kato et al. [13] examined the
relationships between four emotional states — anger, joy,
sadness, and guilt — and four different emoticons in mobile
phone email communication. Ptaszynski et al. [14] proposed a
system for affect analysis of emoticons based on theory of
kinesics. Yuasa et al. [15] showed that emoticons convey
emotions without the cognition of faces by using fMRI.

On the other hand, studies on graphical emoticons (emojis)
are in an early phase. Yamamoto et al. [21] proposed a method
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B e @8 2a Dai 8D
w9 @ ¥ &
&o@ 5@ § 650 6 6 8 8
e e 0 8 O &8 & ¢ c
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ig. 2 Graphical emoticons (Emojis) utilizable in gmail

for emoji disambiguation. Hagiwara and Mizuno [22] proposed
an information retrieval method for mobile phones that enables
the use of emoji in search queries, and their method is embedded
into a practical mobile information retrieval system [23].
Yamashita et al. [24] discussed applications for using the
emotional vector of emoji to deduce the mind state of email
users, and for use in music retrieval systems.

B. Analysis of Emotions and Impression from Text

There has also been a great deal of study on extracting
emotions and impressions from text for purposes such as
reputation analysis and opinion mining [5], [25]-[42]. For
example, Shimizu and Hagiwara [25] proposed a method for
estimating impressions based on the frequency of joint word
co-occurrences in texts published on the World Wide Web.
Kumamoto and Tanaka [26] proposed a method for extracting
the impressions people receive from reading articles in
newspapers. Emura et al. [27] proposed a method for extracting
writer emotions based on the assumption that the emoticons
added at the end of sentences express emotions. The kizasi.jp
site [28] evaluates weblog users’ emotions toward keywords
that are topical among weblogs, and appends emotional word
tags to those keywords.

III. PURPOSE OF STUDY

Determining the emotions expressed via emoticons is
important for reputation analysis and opinion mining by
utilizing reviews from blogs, message boards, consumer review
sites, and SNSs. In this study, we attempt to evaluate the
emotions that are expressed via emoticons using not one
sentiment but 14 emotional vector dimensions, because it is
expected that some graphical emoticons mean a lot of emotions.
Yamashita et al. [24] discussed the use of emotional vectors of
graphical emoticon (emojis) when estimating writer mind states,
but because the emotional vectors were made by
questionnairing conducted by small people, questions were
raised regarding the accuracy of the emotional vectors. In this
study, we propose a method that can automatically generate
emotional vectors of graphical emoticons (emojis) using a large
volume of blog articles. We set 14 dimensions of emotional
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Fig. 4 Plutchik’s model of emotions

vectors using Plutchik’s emotion model (Fig. 4) [11] as a
reference, and selected 288 emotional words from two Japanese
dictionaries [43], [44], which we then divided into 14 basic
emotions.

IV. METHODOLOGY

In this study, we used 14 dimensions of emotional vectors,
using Plutchik’s emotion model [11] as a reference, to express
the emotions expressed in emoticons. The 14 dimensions
comprise eight basic emotions (joy, trust, fear, surprise, sadness,
disgust, anger, and anticipation) and six of the eight mixed
emotions (love, awe, disapproval, remorse, contempt, and
optimism). In this study, we assumed that emoticons used by
writers in weblogs and the emotional words that appeared in the
same sentence, were equivalent emotional expressions. We then
prepared the emoticon emotional vectors by examining the
frequency of co-occurrences between the emoticons and
emotional words. We selected a total of 288 emotional words
from two Japanese dictionaries [43], [44] and subjectively
categorized the words into 14 basic emotions (Table 1).

The concrete methodology used to prepare the emotional
vectors is as follows. First, we collected a large volume of blog
articles and extracted only those sentences with graphical
emoticons (emojis). We then determined which sentences with
emoticons also contained emotional words, and extracted those
sentences. Then, we counted the co-occurrence of emoticons
and emotional words in the extracted sentences. For example, in
the sentence “B4}<BEA LD @ (I'm angry at myself),” the
emotional word “[EA%3ZD (angry)” corresponds to the emotion
“anger,” so we increase the frequency of the emotion “anger”
for the emoticon *“ (& . Using the same process, we tabulated
the frequency for all of the extracted sentences. Finally, by
normalizing the component values of the vectors so that they
added up to a value of one, we prepared 14 dimensional
emotional vectors.
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Table 1: Examples of corresponding emotionally expressive words for
14 emotions

Emotion Emotionally expressive words

Sh L L (happy), Z L L (fun),

4 L AU (interesting), 48 (blessed),

BULA TR LY (unexpected), E A5 (delight),

iR (amusing), 3& L & (happiness),

% L & (cherish), Bt (thankful), 2 (satisfied)
P #FAL (inevitable),

£A ALY (unavoidable),

L &£ 5 A% LY (inescapable)

B3 LU (terrifying), #iLy (scary), i (fear),
&%z L) (dangerous), FXEK (eerie), ML) (scary)
&\ (amazing), 3 & F LU (stupendous),

B L L (fierce), REES L LY (splendid),

& TD3 70 (incredible), < (amazed),

U< Y (surprised), X (astonished),

&% (shocked)

#E L LY (sad), EL (cold), 3R (pessimistic),
27420y (disconsolate), X (sorrow),
#5498 (heartrending), &5 (sentimental),

EE (sorrow), HMHULVE S (pitiful),

3L < (crying), iR (tears), LA (compassion)

LELVE L L (annoying), SEXBEELY (creepy),
5 % &L (obnoxious), &L (dislike)

L D 2L (persistent), & & (loathing),

1&E (hatred), 1&L> (hateful), lR# (resentment),
i (dissatisfied), 14} (offensive),
5% (disappointment), ,;&1& (regret)

HOMELL (audacious), B’Y (rage),

L5 2712 LUy (irritating), < 4° L LY (chagrin),
1EF73 0L (pitiable), BE3Lf= L LY (maddening),
BEAYII D (angry), FHiR (unpleasant),

#E (infuriated), 18 %% (enraged), &1 (outraged)
&> T3 %L (unexpected), T % L LY (futile)

LyE LUy (lovely), aTZ L (cute), ZX L LY (longing),
#IEZE LY (benevolent), 18 (affection),

& L LY (gentle), 172 (like), R'1F (friendship),
£9 % (loved), ZZE (romance),

24 % (enamored)

&Ly (impressive), Mz U172 0y (indebted),
Mo 2L (cool), B LY (precious)

3 (difficult), Y Eh iy (unbearable),
720y (heartrending), k¥ (disappointed),
#E (despair), f& I+ 4 LY (pitiable)

5 L A&7y (shame), ©F L LY (guilty),

8 L LY (frustration), i LR (frustrated tears),
%M (regret), Wb (jealousy)

H Y /{7 (unimaginable), < 125 70 (silly),
[EAM D L L (ridiculous), 8B (contemptible),
B2 (despise), BE> (scorn),

B T9 (condescension), EEEIZF 5 (ridicule)
REMEE LY (profound), fF53E L LY (look forward),
£\ (rich)

joy

trust

fear

surprise

sadness

disgust

anger

anticipation

love

awe

disapproval

remorse

contempt

optimism
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0.7
V.EXPERIMENT 06 A
In order to validate the effectiveness of the proposed method, 05 -
we conducted an experiment to designate emotional vectors 04 |
using actual weblog articles. In this experiment, we collected 03 |
blog articles written in Japanese from Ameba Blog [45], which 02
has the largest number of active users in Japan. We collected
articles from 3,700 blog sites and then extracted sentences that 011
contain both emotional words and emoticons. This provided us 0 - [
with 45,256 sentences. Table 2 shows examples of the extracted $FE FEE S E S & & &S
sentences. While we can see from the table that some sentences :§‘Q & ¥ T L _@QQ( & &f\@ Q‘)&
were unsuitable for categorization, most sentences could be o &
suitably catego.r.ized by the emotions expressed. We then Fig. 5 Emotional vector of * "
generated emoji emotional vectors based on the extracted -
sentences. Figures 5-16 show examples of the prepared
emotional vectors. We can see from the figures that there are O;
certain emoticons with large component values for specific 08
emotions, and other emoticons for which the component values 07
are widely distributed among various emotions. In particular, 0.8
for example, the emoticon % has certain components that are gi
in opposition to Plutchik’s emotion model, which is to say that it 03
is used to express components of widely contrasting emotions. 0.2
Therefore, it is clear that it is not appropriate to uniquely attach -
specific emotions to that emoticon. The knowledge derived 0 oo
from the experimental results indicates that the number of kinds $ & Q(\"e boe"e_‘,@‘;” & & " 2 @@\ & ?50‘5&' 6-\\%‘(\
of emotions represented by graphical emoticons may be larger &g 0 ({-&‘Q . {,QQ & & &
than that of ASCII glyphs emoticons, and we think that this ° ®
consequence is an important outcome of this study. Fig. 6 Emotional vector of /"
0.3

VI. SUMMARY AND FUTURE WORKS

0.25
In this study, we proposed a methodology that can be used to
automatically generate the emotional vector of various 027
graphical emoticons (emojis) using the emotional words that 0.15 1
co-occur with such emoticons. Furthermore, we conducted an 01 -
experiment collecting and examining a large volume of blog 0.05
articles, and showed the effectiveness of the proposed method. .

In our study, we set 14 dimensions for emotional vectors and

. . .« . . . . Y X L ) X oS N X
subjectively divided 288 emotional words into 14 emotions. In & & &«\"z & & € PO ,\04"’@5\" &8 é"’é\
. . . . N R Q X N
the future, we will attempt to validate the number of dimension, S &0 (\'&‘Q &49 & &KL
. . . . . . K
and consider its application in areas such as for developing
systems that perform accurate reputation analysis and opinion Fig. 7 Emotional vector of “ 27
mining. This might be accomplished by combining our new
method with existing methods for estimating emotions and 0.2
impressions. 0.18
0.16 -
014 -
012 -
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002 -
O 4
P - S - T V. G N ) > X
TFEF I E 0 O @“‘Q.é“"é\
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2 &

Fig. 8 Emotional vector of “ i# ”
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Table 2: Examples of sentences with co-occurrence of emoticons and emotionally expressive words

Emotion

Sample extracted sentences

joy

RTLKFEE2ARICREN-LETO
(I am thankful to those who came.)
ARDKIEEE, ELAZ&L

(I’'m cherishing the aquarium visit, as I haven’t been for awhile.)

HAUEEN T =S L £ S53D 0Kl

(T guess it’s inescapable, since everyone was tired.)
EolzoTL&IALELMSE

(It doesn’t help to be impatient.)

fear

EEHA-LVTHLMA, ChS

(It’s scary, like a severed head.)
PRYBELDERSGETAEGY FHAC
(I guess you have to get rid of the fear.)

surprise

ALSYIZ, BEMICEIRE2126E

(It was shockingly super-tasty, something I haven’t experienced in awhile.)
FTTWELTRWET

(I think it’s amazing.)

sadness

REHREBLTL =S

(T held back my tears.)
EREGEEIECA TS

(I can hear this heartrending voice.)

disgust

COHTI—R F3IZAS < 5 UMELE

(It’s one of the top three things I most dislike in the world.)
FTERLI WY YES

(He’s a sly fellow.)

anger

B ICEAIZID &

(I’'m mad at myself.)

HOHB. DD FMRG I
(I find that guy quite unpleasant.)

anticipation

RS> THHRVWKRF Y o RFEZZ W
(It’s an unexpected opportunity.)
EFh. BELTELLINBVIFES
(Well, I can’t expect too much.)

love

FEICHES>TETHATT S
(I’'m starting to like him.)
Wo~BhE L

(Well, I'm enamored.)

awe

HERENYAF v LTho I
(The end result is stylish and cool.)
HElEZAbho Ihihva

(He’s cool because he’s serious.)

disapproval

HAIEEAIZIFRELFELES

(I was disappointed with you all.)

BN TUHZL, ABEKRENHZRNETT ¥

(It’s warm and heartrending, and full of humanity.)

remorse

HLLE

(I’'m frustrated.)

CECELTTR, ANCEDHENET

(You can’t move forward if you worry about it all the time.)

contempt

hoJoJiEEsRNa~T
(My blog is sure silly.)
RETEEICSh- &

(I was ridiculed in a loud voice.)

optimism

N)I—2av@hfiihd

(It’s rich in variation.)

REIOA ) VEY I hfFbE LTS
(I’m looking forward to the next Olympics.)
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