
 

 

  

Abstract—The complexity of embedded software running in 

modern distributed large-scale systems is going so high that it 

becomes hardly manageable by humans. Formal methods and the 

supporting tools are offering effective means for mastering 

complexity, and therefore they are remaining to be an important 

subject of intensive research and development in both industry and 

academia. This paper makes a contribution to the overall R&D efforts 

in the area by proposing a method, and supporting tools, for formal 

verification of a class of embedded software, which may be modeled 

as a collection of distributed finite state machines. The method is 

based on the model checking of certain properties of embedded 

software models by Cadence SMV tool. These properties are 

systematically derived from the compliance test suites normally 

defined by relevant standards for compliance software testing, and 

therefore we refer to them as the compliance software properties. 

Another specificity of our approach is that we enable explicit usage 

of time within the software properties being verified, which gives 

more expressiveness to these properties and bring them more close to 

system properties that are analyzed in other engineering disciplines. 

The supporting tools enable generation of these models from the 

high-level design models and/or from the target source code, for 

example in C/C++ language. We demonstrate the usability of the 

proposed method on a case study. The subject of the case study is 

formal verification of distributed embedded software actually used in 

real telephone switches and call centers. 

 

Keywords—Embedded software, Formal verification, Model 

checking, SDL language, SMV language.  

I. INTRODUCTION 

OWADAYS embedded software is used everywhere. It is 

present in the whole spectrum of systems, starting from 

relatively simple hand held devices, across home appliances, 

vehicles, and ending with the large-scale systems, such as air 

planes, telephone network, Internet, electricity power 

distribution networks, etc. Modern distributed large-scale 

systems comprise very large number of embedded processors, 

which are running embedded software. The complexity of 
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these systems of systems is so high that it becomes 

unmanageable by humans. 

Under such circumstances, formal methods and the 

corresponding tools are being subject of intensive research and 

development in both industry and academia. Although formal 

methods are being successfully applied in hardware design of 

conventional CUPs, new multicore processors, multiprocessor 

computers, and parallel architectures are opening new 

challenges for their formal verification. On the other hand, 

even though there are some promising results of formal 

verification of embedded software in the area of mission-

critical infrastructure, it is far from being considered as a 

routine practice in the mainstream commercial industry. The 

objective of this paper is to make a contribution to the overall 

efforts in this area by proposing a method, and accompanying 

tools, for the formal verification of a class of embedded 

software that may be modeled as a collection of distributed 

finite state machines.  

The method is based on the symbolic model verification of 

certain properties of embedded software models expressed in 

the SMV language [1]. The proposed method specifies a 

systematic procedure that can be used to create the software 

model and its properties from the given embedded software 

specification, e.g. in ITU-T SDL language, and the given test 

suite defined for verifying software compliance to the 

specification. The resulting set of model properties may be 

extended manually with the additional ad-hoc model properties 

based on the intuition and experience of engineers doing the 

verification.  

The accompanying tools enable creation of these models 

from the high-level design models and/or from the target 

program code, e.g. in C/C++ language. The prototypes of these 

tools are based on the previously developed tools [2], [3] and 

[4], and they are under development as of the time of these 

writings. The viability of the proposed method is demonstrated 

on a case study.  

The subject of the case study is the verification of 

distributed embedded software that executes in the telephone 

switches and call centers. More details about the latter may be 

found in [5] and [6]. The results of the case study show that 

the proposed method is applicable for the real-world systems. 

We hope that this paper may inspire other researchers to 

develop similar methods and tools. We also hope that 

Formal verification of embedded software based 

on software compliance properties and explicit 

use of time 

Miroslav Popovic and Ilija Basicevic 

N

INTERNATIONAL JOURNAL OF COMPUTERS 
Issue 3, Volume 5, 2011

423



 

 

practitioners will find useful the approach presented in this 

paper and that it will help them to manage their own projects. 

The text of the paper is organized as follows. The related 

work is presented in the next subsection. Modeling of the 

target class of embedded software and the proposed method 

are covered in Section 2 and 3, respectively. The case study is 

presented in Section 4. The final conclusions are given in 

Section 5. 

A. Related work 

This subsection provides a brief coverage of the state of the 

art methods and tools for the embedded software verification 

[7-10]. 

Generally, model checkers are formal verification tools that 

evaluate a model to determine if it satisfies a given set of 

properties, see [7]. Modern symbolic model checkers use 

logical representations of sets of states, such as BDDs (Binary 

Decision Diagrams), to represent regions of the state space, 

which satisfy the properties being evaluated. For example, a 

BDD-based model checker that we used in this paper [1] can 

effectively analyze models with over 10
100

 reachable states. 

Furthermore, model checkers like SAL and Prover Plug-In use 

SMT (Satisfiability Modulo Theories) to analyze infinite state 

models. Although most embedded software nowadays is still 

modeled as FSMs (Finite State Machines), emerging SMT 

based model checkers enable model checking of future ISM 

(Infinite State Machine) models. Finally, practitioners may use 

translators to combine popular modeling languages and 

various model checkers and theorem provers, e.g. see [8]. 

The results provided by these modeling languages and tools 

are promising, but there are still open issues. For example, 

lessons learned from the three case studies [9], related to the 

verification of embedded software in the aircraft industry, 

indicate that determining what properties to verify may be a 

difficult problem. It can also be difficult to determine how 

many properties must be checked. Their experience is that 

checking even a few properties will find errors, but that 

checking more properties will find more errors. In this paper 

we are addressing this issue, and we are making a contribution 

by proposing a method that systematically generates the 

properties that should be verified for a class of embedded 

software that may be modeled as a collection of distributed 

FSMs. These properties are generated by translating the given 

test suite originally used for compliance testing into the SMV 

properties. 

David Parnas in his recent and provoking paper on 

rethinking formal methods [10] discusses a list of open issues 

in a form of open questions to the community. His general 

message is that those issues should be revisited and perhaps 

approached in a different way than they are treated today. One 

of those issues is a question: should time be treated as a special 

variable or just another variable? Historically, special logics 

were developed for dealing with time issues. This is quite 

different from control theory and circuit theory, where time is 

represented by an additional variable that is not treated in any 

special way. Parnas concludes that rethinking would require 

serious consideration of this alternative. We agree, and in this 

paper we show how to replace a set of timers that are managed 

by an individual FSM with an enumerated variable, which 

represents the time. 

Aoki and Matsuura recently proposed a method, based on 

model checking, for detecting hard-to-discover defects in 

enterprise systems [14]. Their approach is very similar to work 

of Achenbach and Ostermann [15]. In their approach, Aoki 

and Matsuura manually rewrite ABAP programs into Java 

programs, and then automatically translate Java programs into 

appropriate UPPAAL abstracts models, which they use to 

observe the program behavior. Their method of specializing 

models and defining model properties in the course of 

detecting defects heavily depends on the inspectors familiarity 

with the basic design of the target program and on their 

intuition, whereas our approach relies on the existing 

international standards, as will be shown shortly in the 

following text. Also, although they use UPPAAL language, 

they do not use the explicit notion of time in their model 

properties in the presented case study, whereas we do. 

Kum et al. proposed a design methodology for safety model 

in automotive software architecture [16], which is based on 

AUTOSAR [17]. In their paper [16], Kum et al. presented 

their Context Action Reaction (CAR) logic, which they use to 

reason about the vehicle environment, driver actions, and 

vehicle reactions. Similarly to our approach, they also use the 

three cooperating FSMs to model the environment, the driver 

actions, and the vehicle reactions. As means of illustration of 

their approach, they prove two ad hoc defined safety properties 

using sequent calculus. However, they do not provide a 

systematic method of defining system properties to be check 

like we do. They also do not use the explicit notion of time in 

their model properties; rather they use it implicitly as an 

argument of predicates in their logic, e.g. they use the 

expression travel(t-4, t) to model the four hours of travel. 

Yamada, Nakaga, and Nakahodo proposed the check-points 

extraction method by which temporal formulas can be obtained 

inductively from a given system specification, based on the 

notion of strong and weak temporal relations [18]. They use 

this method to reduce a system signal transition graph and 

therefore reduce the size of the model that is the subject of 

model checking. Advantage of their approach is seen in 

smaller OBDD size when compared to traditional approach on 

some arbitration modules, which they model checked by 

NuSMV tool. Although this a useful method to reduce the 

OBDD size, it does not foresee explicit usage of time in model 

properties that are to be checked. 

Pura, Patriciu, and Bica presented how AVISPA formal 

verification tool can be used to validate the security properties 

of implicit on-demand ad hoc secure routing protocols. In 

order to prove the technique, they demonstrated it in a case 

study: formal verification of the ARAN protocol. However, 

they pointed out that since AVISPA does not support time, 

they were only able to prove the weak authentication security 

goal, and they were not able to check the standard 
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authentication prescribed by the ARAN protocol. 

Millan et al. introduced an OCL extension for checking and 

transforming UML models [20]. The extended OCL language, 

which they call pOCL (procedural OCL), has two parts – one 

for the simultaneous access and manipulation of several 

models and the other for the introduction of transformation 

primitives. Although this approach is not directly related to 

model checking, it would be interesting to see, would it be 

possible to make a use of a language, such as pOCL, to check 

model properties typically checked by a model checker. 

Another interesting application of their approach would be to 

convert UML models, or SDL models, into SMV models. 

These are the applications we plan to study in more detail in 

our future work, and we believe these are interesting to 

broader research community. 

II. MODELING 

In this section we present an approach to model a collection 

of distributed FSMs, such as communication protocols, in 

SMV language. The communication protocols are typically 

specified in the ITU-T SDL language, UML state-charts, UML 

activity diagrams, or classical state transition graphs as the 

ones used in hardware design. This section describes how to 

encode any collection of such FSMs in SMV language, and it 

does not depend on the language that is used in the original 

specification of a collection of FSMs. The first subsection 

describes modeling of individual FSMs, whereas the second 

subsection covers modeling a collection of cooperating FSMs, 

which may be deployed on geographically distributed 

machines. 

A. Modeling  Individual FSMs 

A FSM is modeled as a module with the given name and a 

list of input and output parameters: 

 
module name (param_i1, param_i2 ... 
             param_o1, param_o2 ...) { 
  ... 
} 

 

All the possible values of all the parameters are enumerated 

inside the module definition: 

 
  input param_i1 : { 
    none, param_i1_value_1, 
    param_i1_value_2, ... 
  } 
  ... 
  output param_o1 : { 
    none, param_o1_value_1, 
    param_o1_value_2, ... 
  } 
  ... 

 

 Here, individual parameter values correspond to particular 

messages exchanged by FSMs. The value none is a special 

value that represents the absence of any meaningful message. 

This value corresponds to the three-state signal in the area of 

hardware design. 

 Then, all the possible FSM states are enumerated as the 

possible values of the state variable, which is assigned the 

initial value that corresponds to the initial state: 

 
  state : { 
    STATE_1, STATE_2, ... 
  } 
  init(state) := STATE_1; 

 

Also, if the FSM maintains any timers, the corresponding 

timer expiry moments are enumerated as the possible values of 

the variable time: 

 
  time : { 
    t0, T1, T2, ... 
  } 

 

The value t0 represents the FSM operation starting time. 

The value T1 corresponds to the moment when the first timer 

expires, the value T2 corresponds to the moment when the 

second timer expires, and so on. 

If the FSM has any additional state variables and/or 

operational variables, e.g. dependant on the values of message 

parameters, they are also declared and initialized accordingly. 

After all the declarations and initializations are made, the 

behavior of the FSM is defined as a series of else-if clauses, 

which of course starts with the initial if clause: 

 
  if(precondition_1) 
      {action_1} 
 
  else if(precondition_2) 
      {action_2} 
 
... 

 

This particular definition of the FSM behavior was selected 

because it can be easily generated from the output of the tool 

described in [3]. The preconditions in the FSM behavior 

definition are the conjunctions of the equalities on the state 

variables and the input parameters, or the state variables and 

the variable time. The actions are the lists of the assignments 

that are assigning the next values to the state variables, the 

output parameters, and/or the variable time. 

Each if or else-if clause defines a FSM reaction to a given 

event (e.g. reception of a message or expiry of a given timer). 

A FSM reaction is typically fired be the reception of a given 

message on its input, and as the result of the reaction, FSM 

moves to the new state and generates a corresponding message 

on its output. For example, the following if clause defines that 

if the FSM is in the state FE2_IDLE and it receives the 

message r1_SetupReqInd, it will make a transition into the 

state FE2_WAIT_FOR_DIGITS and it will send the message 

r1_ProceedingReqInd: 

 
  if(state=FE2_IDLE&fin1=r1_SetupReqInd) 
    {next(state) := FE2_WAIT_FOR_DIGITS; 
     next(fout1) := r1_ProceedingReqInd;} 
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B. Modeling Collections of FSMs 

A collection of FSMs is modeled in a separate module. In 

the case when the system has just one collection of FSMs it 

may be modeled in the module main. Multiple collections of 

FSMs may be used to model different subsystems located on 

the same node or on the different nodes of the network. At the 

beginning of the module all the variables that are used to 

interconnect communicating FSM are declared. Then all the 

FSMs in the collection are instantiated. The FSMs are 

interconnected by an appropriate arrangement of the 

input/output parameters of individual FSMs, and when needed 

by additional assignments of the output parameters to the input 

parameters.  

For example, in the simple case when two FSMs 

communicate to each other over dedicated input and output 

parameters, it is sufficient to declare two variables. The first 

variable is used as the output parameter of the first FSM and 

the input parameter of the second FSM, whereas the second 

variable is used as the output parameter of the second FSM 

and the input parameter of the first FSM: 

 
  v1 : {...}; 
  v2 : {...}; 
  fsm1_instance : fsm1(v1,v2); 
  fsm2_instance : fsm2(v2,v1); 

 

For the case when outputs of more than one FSM have to be 

connected together to the same input of some FSM, the 

associated input parameter is assigned the result of the union 

of the associated output parameters. For example, consider the 

case when the outputs of the FSM1 and the FSM2 are 

connected to the input of the FSM3: 

 
  v1 : {...}; 
  v2 : {...}; 
  v3 : {...}; 
  fsm1_instance : fsm1(...,v1); 
  fsm2_instance : fsm2(...,v2); 
  fsm3_instance : fsm2(v3,...); 
  v3 := v1 union v2; 

 

III. METHOD 

The method, which is used in this paper for the formal 

verification of a class of embedded software, is based on the 

modeling approach presented in the previous section. The 

proposed method specifies a systematic procedure that can be 

used to create the SMV model and the model properties from 

the given embedded software specification and the given test 

suite, respectively. The given test suite is normally used for 

verifying software conformance to the specification. 

The resulting set of model properties may be extended 

manually with the additional ad-hoc model properties. The 

SMV model checker effectively verifies the software by 

checking the resulting model properties of the resulting SMV 

model. The method comprises the following steps: 

Step1: The high-level embedded software specification 

(a.k.a. software model) in form of ITU-T SDL (Specification 

and Description Language) diagrams is entered into the SDL 

editor. The SDL editor is typically a part of IDE (Integrated 

Development Environment), such as the one described in the 

paper [2]. This step is optional, but most usually it is 

performed. The step may be skipped if the high-level software 

specification or the tools are not available. If this step is 

skipped, then SDL diagrams have to be manually transformed 

into the target program code in the next step. 

Step2: The SDL diagrams are automatically translated by 

the SDL compiler into the target program code. For example, 

the target code may be the C++ code, which runs on top of the 

FSM library. The FSM library [4] is the specific run-time 

library that supports applications based on the distributed 

groups of FSMs. Alternatively the SDL diagrams may be 

coded manually. For example, they may be coded in C++ 

using the restricted programming paradigm enforced by the 

FSM library. 

Step3: The axiomatic specification of individual FSMs is 

automatically extracted from the target program code. For 

example, the axiomatic specification may be extracted from 

the target code by the reverse engineering tool, as the one 

described in [3]. The resulting axiomatic specification is 

translated into the SMV model by the tool that we are 

currently developing to aid this translation. 

Step4: The test suite normally used for the implementation 

conformance testing, is translated into a set of corresponding 

theorems, which are in turn translated to the corresponding 

SMV model properties. Most commonly a test suite would be 

given in the ITU-T TTCN (Tree and Tabular Combined 

Notation) language. Optionally, additional application specific 

model properties may be written manually to assert general 

properties, such as safety and liveness that are typically 

provided through the mutual exclusion and services, as well as 

the absence of race conditions, deadlocks, and live-locks. 

Step5: The model properties are automatically checked by 

the SMV model checker [1]. Typically, manually written 

model properties are added incrementally in iterations in 

which the previous step number 4 and this step are repeated. 

The properties are added incrementally because defining ad 

hoc model properties depends on the human intuition and 

experience. While working on verification of particular 

software, humans get better insight in the inner workings of 

that particular software. Sometimes they succeed to define 

more general properties after defining some less general 

properties in the beginning. Sometimes they make mistakes by 

defining asserts that are not valid properties of that particular 

software. That is why this process is incremental in its nature. 

We may summarize the procedure as follows. The target 

program code, e.g. in C++, is either manually written (if the 

step 1 above is skipped), or automatically generated (if the 

step 1 is not skipped). SMV model is then extracted from the 

target program code using appropriate reverse engineering 

tools. That is exactly the first essential idea of the proposed 

method: the high-level software specification is not translated 
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to the SMV model; rather it is reverse engineered from the 

target program code that we want to verify. On the other hand, 

the initial set of SMV model properties is derived from the 

given test suite that is used for software acceptance testing, 

which leads us to the second essential idea of the proposed 

method: the initial set of model properties is systematically 

derived from the given test suite, rather then being ad hoc 

written based on human intuition. 

As already mentioned in the subsection on related work, 

selecting properties to verify may be a difficult problem. This 

proves to be true for the class of embedded software analyzed 

in this paper. Therefore we propose to rely on the given test 

suite and to verify at minimum the model properties derived 

from the given test suite. The tests from the test suite that is 

used for the implementation conformance testing are normally 

divided into the following six categories: 

1. Basic interconnection tests check if there is a sufficient 

conformance for the interconnection of communicating 

FSMs, and are the selected parameters valid for the 

given configuration. 

2. Capability tests check whether the declared capabilities 

are observable. 

3. Valid behavior tests check the message sequence and the 

message contents. 

4. Inopportune behavior tests check proper behavior when 

implementations are exposed to invalid sequences of 

valid messages. 

5. Invalid behavior tests check proper behavior when 

implementations are exposed to invalid messages. 

6. Timer expiry and counter mismatch tests check proper 

reactions to timer expiries and counter mismatches. 

Detailed description of these six test categories may be 

found in the related ISO recommendation [11], and it goes 

outside the scope of this paper. 

IV. CASE STUDY 

In this section we demonstrate the applicability of the 

proposed method by means of a case study (a shorter version 

of this case study is presented in [12]). The subject of the case 

study is the formal verification of the local call processing 

software, which has been implemented in accordance with the 

ITU-T Q.71 recommendation. The local call processing 

software comprises four FSMs, which are referred to as FEs 

(Functional Entities) in the Q.71 recommendation. The overall 

functionality of the local call processing software is to 

establish and release of calls between the calling and called 

party, which are typically referred to as user A and user B, 

respectively. The architecture of the resulting SMV model is 

illustrated in the Fig. 1. Despite the fact that this study may 

seem too simple, it actually captures all the significant aspects 

of the existing software in telephone exchanges, call centers, 

and similar communications systems. 

 

 
Fig. 1 The interconnection of FSMs for the local call 

processing 

 

As shown on the left hand side of the Fig. 1, the FSMs 

User_A and User_B, model the calling and the called user, 

respectively. The remaining FSMs that are shown in the Fig. 1 

model the FEs according to ITU-T Q.71 recommendation. As 

previously mentioned in the section on modelling collections 

of FSMs, FSMs communicate through the input and the output 

variables. These variables create communication channels that 

are shown in the Fig. 1 as the links connecting the 

corresponding FSMs. For example, the FSM User_A 

communicates directly only with the FSM FE1, the FSM FE1 

communicates directly with the FSM User_A and with the 

FSM FE2, and so on. Obviously, the FSMs User_A and 

User_A communicate indirectly over a chain of four FEs, 

namely the FE1, FE2, FE3, and FE4. 

The data about the size of the SMV model that models the 

collection of FSMs shown in the Fig. 1 is given in the Tab. 1. 

The rows of the Tab. 1 show data about the individual FSM, 

whereas the columns of the Table 1 indicate the number of 

states, the number of distinct input messages, the number of 

distinct output messages, the number of timers, and the number 

of lines of SMV code. 

 

Table 1. The size of the SMV model 

FSM No of 

states 

No of 

inputs 

No of 

outputs 

No of 

timers 

No of 

lines 

FE1 6 7 5 0 68 

FE2 7 6 8 2 103 

FE4 4 6 6 3 95 

FE5 4 5 4 0 50 

 

We derive individual model properties from individual test 

cases of the given test suite. A test case comprises a series of 

test steps. Each test step is triggered by an event, typically a 

FSM receives a message in some of its states, and the test step 

results in a certain action, typically the FSM sends a message, 

and transits to the next state. These test steps are encoded as 

individual implications, and a complete test case is encoded as 

a series of properly parenthesized implications so that they are 

evaluated from left to right. 

Next we present the three typical model properties as 

examples of the properties that were derived from the 

conformance test suite and successfully checked by the SMV 

model checker. The three sample model properties are the 

following: 

1. The successful call establishment (SCE): the user A 
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initiates the call by sending the hook-off signal, dials a 

number (a single digit in this example), and the user B 

accepts the call by sending the hook-off signal. 

2. The successful call release (SCR): both user A and B 

disconnect by sending the hook-on signal. 

3. The expiry of the inter-digit timeout (IDT): the user A 

initiates the call by sending the hook-off signal, then it 

fails to send the digit, therefore timer T1 maintained by 

the FSM FE2 expires (user receives the busy tone), and 

finally user A disconnects by sending the hook-on 

signal. 

 

The SCE model property is the following: 

 
   prt_SCE: assert F 
     ((fe1_in=User_OFF_HOOK -> 
     s_fe1=FE1_UNKNOWN_FE2 & 
     fe1_out=r1_SetupReqInd) -> 
     (fe1_in=User_DIGIT & fe2_t<FE2_T1 -> 
     s_fe1=FE1_UNKNOWN_FE2 & 
     s_fe2=FE2_CALL_SENT & 
     s_fe4=FE4_CALL_SENT & 
     s_fe5=FE5_WAIT_OFF_HOOK)) -> 
     (fe5_in=User_OFF_HOOK -> 
     s_fe1=FE1_ACTIV & s_fe2=FE2_ACTIV & 
     s_fe4=FE4_ACTIV & s_fe5=FE5_ACTIV); 

 

We read the SCE model property as follows. When the user 

A sends the off-hook signal User_OFF_HOOK, the FSM FE1 

will transit into the state FE1_UNKNOWN_FE2 and send the 

signal r1_SetupReqInd. Then if the user A sends the signal 

User_DIGIT and the time variable fe2_t is less than FE2_T1 

(which means that the timer T1 maintained by FE2 is still 

running), FE2 transits into the state FE2_CALL_SENT, FE4 

transits into the state FE4_CALL_SENT, and FE5 transits into 

the state FE5_WAIT_OFF_HOOK. At the end, when the user 

B answers the call, by sending the signal User_OFF_HOOK, 

all the FEs transit into the active state, which means that the 

call is successfully established. The complete message 

sequence during the call establishment is illustrated in Fig. 2. 

The SCR model property is the following: 

 
prt_SCR: assert F 
   (s_fe1=FE1_ACTIV & s_fe2=FE2_ACTIV & 
    s_fe4=FE4_ACTIV & s_fe5=FE5_ACTIV) -> 
   (fe1_in=User_ON_HOOK & 
    fe5_in=User_ON_HOOK -> 
    s_fe1=FE1_ON_HOOK & s_fe2=FE2_IDLE & 
    s_fe4=FE4_IDLE & s_fe5=FE5_ON_HOOK); 

 

This property asserts that when all the FEs are in their active 

states, and both users disconnect by sending the signal 

User_ON_HOOK, all the FEs will finally transit to their 

inactive (on-hook and idle) states, which means that the call is 

successfully released. The complete message sequence during 

the call release is illustrated in Fig. 3. 

The IDT model property is the following: 

 
prt_IDT: assert F 

   ((fe1_in=User_OFF_HOOK -> 
    s_fe1=FE1_UNKNOWN_FE2 & 
    fe1_out=r1_SetupReqInd) -> 
   (fe2_t=FE2_T1 -> 
    s_fe2=FE2_DISCONNECTING_FE1)) -> 
   (fe1_in=User_ON_HOOK -> 
    s_fe1=FE1_ON_HOOK & s_fe2=FE2_IDLE & 
    s_fe4=FE4_IDLE & s_fe5=FE5_ON_HOOK); 

 

This property is interpreted as follows. At the beginning the 

user A sends the off-hook signal and FE1 in its turn transits 

into the state FE1_UNKNOWN_FE2 and sends the signal 

r1_SetupReqInd. Then the user A does not send the digit and 

the timer T1 (maintained by FE2) expires (subscriber A 

receives the busy tone). At the end, the user A disconnects by 

sending the on-hook signal. 

The Table 2 shows the reachable states and the property 

checking times for the previous properties. 

 

Table 2. The reachable states and property checking times 

Property Reachable 

states 

User 

time 

[s] 

Sys 

time 

[s] 

Model 

checking 

time 

[s] 

prt_SCE 13291 0.12

5 

0.01

5 

0.031 

prt_SCR 38494 0.21

8 

0.01

5 

0.062 

prt_IDT 10331 0.03

1 

0.01

5 

0.031 

 

It seems appropriate to mention that two program logic 

errors were discovered during this case study, which were not 

discovered by the previously conducted testing. 

Finally, it is worth mentioning that recently we used the 

same formalism in another case study [13] to formally verify a 

distributed transaction management solution in a SOA based 

control system. The results of [13] show that the formalism 

presented in this paper may be successfully used for formal 

verification of critical system aspects, related to complex, and 

therefore hard to follow logic, commonly found within large-

scale distributed systems, such as SOA. 

V. CONCLUSION 

In this paper we proposed a method, with accompanying 

tools, for formal verification of a class of embedded software 

that may be modeled as a collection of FSMs. The method is 

based on the symbolic model verification of SMV models, 

which are automatically created from the target program code, 

e.g. in C/C++ code, which in turn may be created from the 

high-level design models, e.g. in ITU-T SDL language. The 

foundation for the method is the proposed approach to 

modeling individual FSMs and collections of FSMs. While 

presenting our approach to modeling of FSMs and the 

proposed method, we addressed two open issues that were 

identified in the recent literature, see [9] and [10]. 

Firstly, the authors of [9] indicated that determining what 

properties to verify may be a difficult problem. One of the 

INTERNATIONAL JOURNAL OF COMPUTERS 
Issue 3, Volume 5, 2011

428



 

 

causes that make this difficult is the fact that specifying model 

properties is still predominantly an ad hoc process. Therefore, 

in this paper we propose a systematic method of specifying 

model properties by translating the given conformance test 

suite, typically given in the ITU-T TTCN language, for a class 

of embedded software we were dealing with in this paper. 

Secondly, we treat time as just another enumerated variable 

whose values are periods of timers maintained by the FSM, as 

independently suggested by the author of [10]. This approach 

provides more expressive statements of model properties when 

related to time, because it explicitly shows the value of time in 

seconds. For example we may write the expression time < T1 

to specify that current time is less than T1, which means that 

the timer T1 is still running. Or for example we may write the 

expression T1 ≤ time < T2 to specify that the current time is 

greater or equal to T1 and less than T2, which means that timer 

T1 has expired, but that the timer T2 did not. Traditional 

representation of timeouts, in form of events that are typically 

encoded as special messages, is less expressive, because it 

does not explicitly show the value of time. 

The usability of the proposed method has been successfully 

demonstrated by the means of a case study, the verification of 

the real call processing embedded software that runs in the 

existing telephone switches and call centers. This paper 

motivates future activities of both researchers and 

practitioners. The former may find it inspiring to explore and 

invent similar methods to systematically generate model 

properties and to introduce more expressive models, whereas 

the latter may find useful the approach to modeling collections 

of FSMs, as well as the concepts related to accompanying 

tools. 
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Fig. 2 The message sequence during the successful call establishment 

 

 
Fig. 3 The message sequence during the successful call release 
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