

Abstract—The complexity of embedded software running in

modern distributed large-scale systems is going so high that it

becomes hardly manageable by humans. Formal methods and the

supporting tools are offering effective means for mastering

complexity, and therefore they are remaining to be an important

subject of intensive research and development in both industry and

academia. This paper makes a contribution to the overall R&D efforts

in the area by proposing a method, and supporting tools, for formal

verification of a class of embedded software, which may be modeled

as a collection of distributed finite state machines. The method is

based on the model checking of certain properties of embedded

software models by Cadence SMV tool. These properties are

systematically derived from the compliance test suites normally

defined by relevant standards for compliance software testing, and

therefore we refer to them as the compliance software properties.

Another specificity of our approach is that we enable explicit usage

of time within the software properties being verified, which gives

more expressiveness to these properties and bring them more close to

system properties that are analyzed in other engineering disciplines.

The supporting tools enable generation of these models from the

high-level design models and/or from the target source code, for

example in C/C++ language. We demonstrate the usability of the

proposed method on a case study. The subject of the case study is

formal verification of distributed embedded software actually used in

real telephone switches and call centers.

Keywords—Embedded software, Formal verification, Model

checking, SDL language, SMV language.

I. INTRODUCTION

OWADAYS embedded software is used everywhere. It is

present in the whole spectrum of systems, starting from

relatively simple hand held devices, across home appliances,

vehicles, and ending with the large-scale systems, such as air

planes, telephone network, Internet, electricity power

distribution networks, etc. Modern distributed large-scale

systems comprise very large number of embedded processors,

which are running embedded software. The complexity of

Manuscript received ___: Revised version received ___. This work was

supported in part by the Serbian Ministry of Science and Technology

Development under Grants III-44009 and TR-32031, 2011-2014.

M. P. is with the Faculty of Technical Sciences, University of Novi Sad,

21000 Novi Sad, Serbia (phone: +381-21-4801-101; fax: +381-21-450-721;

e-mail: miroslav.popovic@rt-rk.com).

I. B. is with the Faculty of Technical Sciences, University of Novi Sad,

21000 Novi Sad, Serbia (e-mail: ilija.basicevic@rt-rk.com).

these systems of systems is so high that it becomes

unmanageable by humans.

Under such circumstances, formal methods and the

corresponding tools are being subject of intensive research and

development in both industry and academia. Although formal

methods are being successfully applied in hardware design of

conventional CUPs, new multicore processors, multiprocessor

computers, and parallel architectures are opening new

challenges for their formal verification. On the other hand,

even though there are some promising results of formal

verification of embedded software in the area of mission-

critical infrastructure, it is far from being considered as a

routine practice in the mainstream commercial industry. The

objective of this paper is to make a contribution to the overall

efforts in this area by proposing a method, and accompanying

tools, for the formal verification of a class of embedded

software that may be modeled as a collection of distributed

finite state machines.

The method is based on the symbolic model verification of

certain properties of embedded software models expressed in

the SMV language [1]. The proposed method specifies a

systematic procedure that can be used to create the software

model and its properties from the given embedded software

specification, e.g. in ITU-T SDL language, and the given test

suite defined for verifying software compliance to the

specification. The resulting set of model properties may be

extended manually with the additional ad-hoc model properties

based on the intuition and experience of engineers doing the

verification.

The accompanying tools enable creation of these models

from the high-level design models and/or from the target

program code, e.g. in C/C++ language. The prototypes of these

tools are based on the previously developed tools [2], [3] and

[4], and they are under development as of the time of these

writings. The viability of the proposed method is demonstrated

on a case study.

The subject of the case study is the verification of

distributed embedded software that executes in the telephone

switches and call centers. More details about the latter may be

found in [5] and [6]. The results of the case study show that

the proposed method is applicable for the real-world systems.

We hope that this paper may inspire other researchers to

develop similar methods and tools. We also hope that

Formal verification of embedded software based

on software compliance properties and explicit

use of time

Miroslav Popovic and Ilija Basicevic

N

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 5, 2011

423

practitioners will find useful the approach presented in this

paper and that it will help them to manage their own projects.

The text of the paper is organized as follows. The related

work is presented in the next subsection. Modeling of the

target class of embedded software and the proposed method

are covered in Section 2 and 3, respectively. The case study is

presented in Section 4. The final conclusions are given in

Section 5.

A. Related work

This subsection provides a brief coverage of the state of the

art methods and tools for the embedded software verification

[7-10].

Generally, model checkers are formal verification tools that

evaluate a model to determine if it satisfies a given set of

properties, see [7]. Modern symbolic model checkers use

logical representations of sets of states, such as BDDs (Binary

Decision Diagrams), to represent regions of the state space,

which satisfy the properties being evaluated. For example, a

BDD-based model checker that we used in this paper [1] can

effectively analyze models with over 10
100

 reachable states.

Furthermore, model checkers like SAL and Prover Plug-In use

SMT (Satisfiability Modulo Theories) to analyze infinite state

models. Although most embedded software nowadays is still

modeled as FSMs (Finite State Machines), emerging SMT

based model checkers enable model checking of future ISM

(Infinite State Machine) models. Finally, practitioners may use

translators to combine popular modeling languages and

various model checkers and theorem provers, e.g. see [8].

The results provided by these modeling languages and tools

are promising, but there are still open issues. For example,

lessons learned from the three case studies [9], related to the

verification of embedded software in the aircraft industry,

indicate that determining what properties to verify may be a

difficult problem. It can also be difficult to determine how

many properties must be checked. Their experience is that

checking even a few properties will find errors, but that

checking more properties will find more errors. In this paper

we are addressing this issue, and we are making a contribution

by proposing a method that systematically generates the

properties that should be verified for a class of embedded

software that may be modeled as a collection of distributed

FSMs. These properties are generated by translating the given

test suite originally used for compliance testing into the SMV

properties.

David Parnas in his recent and provoking paper on

rethinking formal methods [10] discusses a list of open issues

in a form of open questions to the community. His general

message is that those issues should be revisited and perhaps

approached in a different way than they are treated today. One

of those issues is a question: should time be treated as a special

variable or just another variable? Historically, special logics

were developed for dealing with time issues. This is quite

different from control theory and circuit theory, where time is

represented by an additional variable that is not treated in any

special way. Parnas concludes that rethinking would require

serious consideration of this alternative. We agree, and in this

paper we show how to replace a set of timers that are managed

by an individual FSM with an enumerated variable, which

represents the time.

Aoki and Matsuura recently proposed a method, based on

model checking, for detecting hard-to-discover defects in

enterprise systems [14]. Their approach is very similar to work

of Achenbach and Ostermann [15]. In their approach, Aoki

and Matsuura manually rewrite ABAP programs into Java

programs, and then automatically translate Java programs into

appropriate UPPAAL abstracts models, which they use to

observe the program behavior. Their method of specializing

models and defining model properties in the course of

detecting defects heavily depends on the inspectors familiarity

with the basic design of the target program and on their

intuition, whereas our approach relies on the existing

international standards, as will be shown shortly in the

following text. Also, although they use UPPAAL language,

they do not use the explicit notion of time in their model

properties in the presented case study, whereas we do.

Kum et al. proposed a design methodology for safety model

in automotive software architecture [16], which is based on

AUTOSAR [17]. In their paper [16], Kum et al. presented

their Context Action Reaction (CAR) logic, which they use to

reason about the vehicle environment, driver actions, and

vehicle reactions. Similarly to our approach, they also use the

three cooperating FSMs to model the environment, the driver

actions, and the vehicle reactions. As means of illustration of

their approach, they prove two ad hoc defined safety properties

using sequent calculus. However, they do not provide a

systematic method of defining system properties to be check

like we do. They also do not use the explicit notion of time in

their model properties; rather they use it implicitly as an

argument of predicates in their logic, e.g. they use the

expression travel(t-4, t) to model the four hours of travel.

Yamada, Nakaga, and Nakahodo proposed the check-points

extraction method by which temporal formulas can be obtained

inductively from a given system specification, based on the

notion of strong and weak temporal relations [18]. They use

this method to reduce a system signal transition graph and

therefore reduce the size of the model that is the subject of

model checking. Advantage of their approach is seen in

smaller OBDD size when compared to traditional approach on

some arbitration modules, which they model checked by

NuSMV tool. Although this a useful method to reduce the

OBDD size, it does not foresee explicit usage of time in model

properties that are to be checked.

Pura, Patriciu, and Bica presented how AVISPA formal

verification tool can be used to validate the security properties

of implicit on-demand ad hoc secure routing protocols. In

order to prove the technique, they demonstrated it in a case

study: formal verification of the ARAN protocol. However,

they pointed out that since AVISPA does not support time,

they were only able to prove the weak authentication security

goal, and they were not able to check the standard

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 5, 2011

424

authentication prescribed by the ARAN protocol.

Millan et al. introduced an OCL extension for checking and

transforming UML models [20]. The extended OCL language,

which they call pOCL (procedural OCL), has two parts – one

for the simultaneous access and manipulation of several

models and the other for the introduction of transformation

primitives. Although this approach is not directly related to

model checking, it would be interesting to see, would it be

possible to make a use of a language, such as pOCL, to check

model properties typically checked by a model checker.

Another interesting application of their approach would be to

convert UML models, or SDL models, into SMV models.

These are the applications we plan to study in more detail in

our future work, and we believe these are interesting to

broader research community.

II. MODELING

In this section we present an approach to model a collection

of distributed FSMs, such as communication protocols, in

SMV language. The communication protocols are typically

specified in the ITU-T SDL language, UML state-charts, UML

activity diagrams, or classical state transition graphs as the

ones used in hardware design. This section describes how to

encode any collection of such FSMs in SMV language, and it

does not depend on the language that is used in the original

specification of a collection of FSMs. The first subsection

describes modeling of individual FSMs, whereas the second

subsection covers modeling a collection of cooperating FSMs,

which may be deployed on geographically distributed

machines.

A. Modeling Individual FSMs

A FSM is modeled as a module with the given name and a

list of input and output parameters:

module name (param_i1, param_i2 ...
 param_o1, param_o2 ...) {
 ...
}

All the possible values of all the parameters are enumerated

inside the module definition:

 input param_i1 : {
 none, param_i1_value_1,
 param_i1_value_2, ...
 }
 ...
 output param_o1 : {
 none, param_o1_value_1,
 param_o1_value_2, ...
 }
 ...

 Here, individual parameter values correspond to particular

messages exchanged by FSMs. The value none is a special

value that represents the absence of any meaningful message.

This value corresponds to the three-state signal in the area of

hardware design.

 Then, all the possible FSM states are enumerated as the

possible values of the state variable, which is assigned the

initial value that corresponds to the initial state:

 state : {
 STATE_1, STATE_2, ...
 }
 init(state) := STATE_1;

Also, if the FSM maintains any timers, the corresponding

timer expiry moments are enumerated as the possible values of

the variable time:

 time : {
 t0, T1, T2, ...
 }

The value t0 represents the FSM operation starting time.

The value T1 corresponds to the moment when the first timer

expires, the value T2 corresponds to the moment when the

second timer expires, and so on.

If the FSM has any additional state variables and/or

operational variables, e.g. dependant on the values of message

parameters, they are also declared and initialized accordingly.

After all the declarations and initializations are made, the

behavior of the FSM is defined as a series of else-if clauses,

which of course starts with the initial if clause:

 if(precondition_1)
 {action_1}

 else if(precondition_2)
 {action_2}

...

This particular definition of the FSM behavior was selected

because it can be easily generated from the output of the tool

described in [3]. The preconditions in the FSM behavior

definition are the conjunctions of the equalities on the state

variables and the input parameters, or the state variables and

the variable time. The actions are the lists of the assignments

that are assigning the next values to the state variables, the

output parameters, and/or the variable time.

Each if or else-if clause defines a FSM reaction to a given

event (e.g. reception of a message or expiry of a given timer).

A FSM reaction is typically fired be the reception of a given

message on its input, and as the result of the reaction, FSM

moves to the new state and generates a corresponding message

on its output. For example, the following if clause defines that

if the FSM is in the state FE2_IDLE and it receives the

message r1_SetupReqInd, it will make a transition into the

state FE2_WAIT_FOR_DIGITS and it will send the message

r1_ProceedingReqInd:

 if(state=FE2_IDLE&fin1=r1_SetupReqInd)
 {next(state) := FE2_WAIT_FOR_DIGITS;
 next(fout1) := r1_ProceedingReqInd;}

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 5, 2011

425

B. Modeling Collections of FSMs

A collection of FSMs is modeled in a separate module. In

the case when the system has just one collection of FSMs it

may be modeled in the module main. Multiple collections of

FSMs may be used to model different subsystems located on

the same node or on the different nodes of the network. At the

beginning of the module all the variables that are used to

interconnect communicating FSM are declared. Then all the

FSMs in the collection are instantiated. The FSMs are

interconnected by an appropriate arrangement of the

input/output parameters of individual FSMs, and when needed

by additional assignments of the output parameters to the input

parameters.

For example, in the simple case when two FSMs

communicate to each other over dedicated input and output

parameters, it is sufficient to declare two variables. The first

variable is used as the output parameter of the first FSM and

the input parameter of the second FSM, whereas the second

variable is used as the output parameter of the second FSM

and the input parameter of the first FSM:

 v1 : {...};
 v2 : {...};
 fsm1_instance : fsm1(v1,v2);
 fsm2_instance : fsm2(v2,v1);

For the case when outputs of more than one FSM have to be

connected together to the same input of some FSM, the

associated input parameter is assigned the result of the union

of the associated output parameters. For example, consider the

case when the outputs of the FSM1 and the FSM2 are

connected to the input of the FSM3:

 v1 : {...};
 v2 : {...};
 v3 : {...};
 fsm1_instance : fsm1(...,v1);
 fsm2_instance : fsm2(...,v2);
 fsm3_instance : fsm2(v3,...);
 v3 := v1 union v2;

III. METHOD

The method, which is used in this paper for the formal

verification of a class of embedded software, is based on the

modeling approach presented in the previous section. The

proposed method specifies a systematic procedure that can be

used to create the SMV model and the model properties from

the given embedded software specification and the given test

suite, respectively. The given test suite is normally used for

verifying software conformance to the specification.

The resulting set of model properties may be extended

manually with the additional ad-hoc model properties. The

SMV model checker effectively verifies the software by

checking the resulting model properties of the resulting SMV

model. The method comprises the following steps:

Step1: The high-level embedded software specification

(a.k.a. software model) in form of ITU-T SDL (Specification

and Description Language) diagrams is entered into the SDL

editor. The SDL editor is typically a part of IDE (Integrated

Development Environment), such as the one described in the

paper [2]. This step is optional, but most usually it is

performed. The step may be skipped if the high-level software

specification or the tools are not available. If this step is

skipped, then SDL diagrams have to be manually transformed

into the target program code in the next step.

Step2: The SDL diagrams are automatically translated by

the SDL compiler into the target program code. For example,

the target code may be the C++ code, which runs on top of the

FSM library. The FSM library [4] is the specific run-time

library that supports applications based on the distributed

groups of FSMs. Alternatively the SDL diagrams may be

coded manually. For example, they may be coded in C++

using the restricted programming paradigm enforced by the

FSM library.

Step3: The axiomatic specification of individual FSMs is

automatically extracted from the target program code. For

example, the axiomatic specification may be extracted from

the target code by the reverse engineering tool, as the one

described in [3]. The resulting axiomatic specification is

translated into the SMV model by the tool that we are

currently developing to aid this translation.

Step4: The test suite normally used for the implementation

conformance testing, is translated into a set of corresponding

theorems, which are in turn translated to the corresponding

SMV model properties. Most commonly a test suite would be

given in the ITU-T TTCN (Tree and Tabular Combined

Notation) language. Optionally, additional application specific

model properties may be written manually to assert general

properties, such as safety and liveness that are typically

provided through the mutual exclusion and services, as well as

the absence of race conditions, deadlocks, and live-locks.

Step5: The model properties are automatically checked by

the SMV model checker [1]. Typically, manually written

model properties are added incrementally in iterations in

which the previous step number 4 and this step are repeated.

The properties are added incrementally because defining ad

hoc model properties depends on the human intuition and

experience. While working on verification of particular

software, humans get better insight in the inner workings of

that particular software. Sometimes they succeed to define

more general properties after defining some less general

properties in the beginning. Sometimes they make mistakes by

defining asserts that are not valid properties of that particular

software. That is why this process is incremental in its nature.

We may summarize the procedure as follows. The target

program code, e.g. in C++, is either manually written (if the

step 1 above is skipped), or automatically generated (if the

step 1 is not skipped). SMV model is then extracted from the

target program code using appropriate reverse engineering

tools. That is exactly the first essential idea of the proposed

method: the high-level software specification is not translated

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 5, 2011

426

to the SMV model; rather it is reverse engineered from the

target program code that we want to verify. On the other hand,

the initial set of SMV model properties is derived from the

given test suite that is used for software acceptance testing,

which leads us to the second essential idea of the proposed

method: the initial set of model properties is systematically

derived from the given test suite, rather then being ad hoc

written based on human intuition.

As already mentioned in the subsection on related work,

selecting properties to verify may be a difficult problem. This

proves to be true for the class of embedded software analyzed

in this paper. Therefore we propose to rely on the given test

suite and to verify at minimum the model properties derived

from the given test suite. The tests from the test suite that is

used for the implementation conformance testing are normally

divided into the following six categories:

1. Basic interconnection tests check if there is a sufficient

conformance for the interconnection of communicating

FSMs, and are the selected parameters valid for the

given configuration.

2. Capability tests check whether the declared capabilities

are observable.

3. Valid behavior tests check the message sequence and the

message contents.

4. Inopportune behavior tests check proper behavior when

implementations are exposed to invalid sequences of

valid messages.

5. Invalid behavior tests check proper behavior when

implementations are exposed to invalid messages.

6. Timer expiry and counter mismatch tests check proper

reactions to timer expiries and counter mismatches.

Detailed description of these six test categories may be

found in the related ISO recommendation [11], and it goes

outside the scope of this paper.

IV. CASE STUDY

In this section we demonstrate the applicability of the

proposed method by means of a case study (a shorter version

of this case study is presented in [12]). The subject of the case

study is the formal verification of the local call processing

software, which has been implemented in accordance with the

ITU-T Q.71 recommendation. The local call processing

software comprises four FSMs, which are referred to as FEs

(Functional Entities) in the Q.71 recommendation. The overall

functionality of the local call processing software is to

establish and release of calls between the calling and called

party, which are typically referred to as user A and user B,

respectively. The architecture of the resulting SMV model is

illustrated in the Fig. 1. Despite the fact that this study may

seem too simple, it actually captures all the significant aspects

of the existing software in telephone exchanges, call centers,

and similar communications systems.

Fig. 1 The interconnection of FSMs for the local call

processing

As shown on the left hand side of the Fig. 1, the FSMs

User_A and User_B, model the calling and the called user,

respectively. The remaining FSMs that are shown in the Fig. 1

model the FEs according to ITU-T Q.71 recommendation. As

previously mentioned in the section on modelling collections

of FSMs, FSMs communicate through the input and the output

variables. These variables create communication channels that

are shown in the Fig. 1 as the links connecting the

corresponding FSMs. For example, the FSM User_A

communicates directly only with the FSM FE1, the FSM FE1

communicates directly with the FSM User_A and with the

FSM FE2, and so on. Obviously, the FSMs User_A and

User_A communicate indirectly over a chain of four FEs,

namely the FE1, FE2, FE3, and FE4.

The data about the size of the SMV model that models the

collection of FSMs shown in the Fig. 1 is given in the Tab. 1.

The rows of the Tab. 1 show data about the individual FSM,

whereas the columns of the Table 1 indicate the number of

states, the number of distinct input messages, the number of

distinct output messages, the number of timers, and the number

of lines of SMV code.

Table 1. The size of the SMV model

FSM No of

states

No of

inputs

No of

outputs

No of

timers

No of

lines

FE1 6 7 5 0 68

FE2 7 6 8 2 103

FE4 4 6 6 3 95

FE5 4 5 4 0 50

We derive individual model properties from individual test

cases of the given test suite. A test case comprises a series of

test steps. Each test step is triggered by an event, typically a

FSM receives a message in some of its states, and the test step

results in a certain action, typically the FSM sends a message,

and transits to the next state. These test steps are encoded as

individual implications, and a complete test case is encoded as

a series of properly parenthesized implications so that they are

evaluated from left to right.

Next we present the three typical model properties as

examples of the properties that were derived from the

conformance test suite and successfully checked by the SMV

model checker. The three sample model properties are the

following:

1. The successful call establishment (SCE): the user A

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 5, 2011

427

initiates the call by sending the hook-off signal, dials a

number (a single digit in this example), and the user B

accepts the call by sending the hook-off signal.

2. The successful call release (SCR): both user A and B

disconnect by sending the hook-on signal.

3. The expiry of the inter-digit timeout (IDT): the user A

initiates the call by sending the hook-off signal, then it

fails to send the digit, therefore timer T1 maintained by

the FSM FE2 expires (user receives the busy tone), and

finally user A disconnects by sending the hook-on

signal.

The SCE model property is the following:

 prt_SCE: assert F
 ((fe1_in=User_OFF_HOOK ->
 s_fe1=FE1_UNKNOWN_FE2 &
 fe1_out=r1_SetupReqInd) ->
 (fe1_in=User_DIGIT & fe2_t<FE2_T1 ->
 s_fe1=FE1_UNKNOWN_FE2 &
 s_fe2=FE2_CALL_SENT &
 s_fe4=FE4_CALL_SENT &
 s_fe5=FE5_WAIT_OFF_HOOK)) ->
 (fe5_in=User_OFF_HOOK ->
 s_fe1=FE1_ACTIV & s_fe2=FE2_ACTIV &
 s_fe4=FE4_ACTIV & s_fe5=FE5_ACTIV);

We read the SCE model property as follows. When the user

A sends the off-hook signal User_OFF_HOOK, the FSM FE1

will transit into the state FE1_UNKNOWN_FE2 and send the

signal r1_SetupReqInd. Then if the user A sends the signal

User_DIGIT and the time variable fe2_t is less than FE2_T1

(which means that the timer T1 maintained by FE2 is still

running), FE2 transits into the state FE2_CALL_SENT, FE4

transits into the state FE4_CALL_SENT, and FE5 transits into

the state FE5_WAIT_OFF_HOOK. At the end, when the user

B answers the call, by sending the signal User_OFF_HOOK,

all the FEs transit into the active state, which means that the

call is successfully established. The complete message

sequence during the call establishment is illustrated in Fig. 2.

The SCR model property is the following:

prt_SCR: assert F
 (s_fe1=FE1_ACTIV & s_fe2=FE2_ACTIV &
 s_fe4=FE4_ACTIV & s_fe5=FE5_ACTIV) ->
 (fe1_in=User_ON_HOOK &
 fe5_in=User_ON_HOOK ->
 s_fe1=FE1_ON_HOOK & s_fe2=FE2_IDLE &
 s_fe4=FE4_IDLE & s_fe5=FE5_ON_HOOK);

This property asserts that when all the FEs are in their active

states, and both users disconnect by sending the signal

User_ON_HOOK, all the FEs will finally transit to their

inactive (on-hook and idle) states, which means that the call is

successfully released. The complete message sequence during

the call release is illustrated in Fig. 3.

The IDT model property is the following:

prt_IDT: assert F

 ((fe1_in=User_OFF_HOOK ->
 s_fe1=FE1_UNKNOWN_FE2 &
 fe1_out=r1_SetupReqInd) ->
 (fe2_t=FE2_T1 ->
 s_fe2=FE2_DISCONNECTING_FE1)) ->
 (fe1_in=User_ON_HOOK ->
 s_fe1=FE1_ON_HOOK & s_fe2=FE2_IDLE &
 s_fe4=FE4_IDLE & s_fe5=FE5_ON_HOOK);

This property is interpreted as follows. At the beginning the

user A sends the off-hook signal and FE1 in its turn transits

into the state FE1_UNKNOWN_FE2 and sends the signal

r1_SetupReqInd. Then the user A does not send the digit and

the timer T1 (maintained by FE2) expires (subscriber A

receives the busy tone). At the end, the user A disconnects by

sending the on-hook signal.

The Table 2 shows the reachable states and the property

checking times for the previous properties.

Table 2. The reachable states and property checking times

Property Reachable

states

User

time

[s]

Sys

time

[s]

Model

checking

time

[s]

prt_SCE 13291 0.12

5

0.01

5

0.031

prt_SCR 38494 0.21

8

0.01

5

0.062

prt_IDT 10331 0.03

1

0.01

5

0.031

It seems appropriate to mention that two program logic

errors were discovered during this case study, which were not

discovered by the previously conducted testing.

Finally, it is worth mentioning that recently we used the

same formalism in another case study [13] to formally verify a

distributed transaction management solution in a SOA based

control system. The results of [13] show that the formalism

presented in this paper may be successfully used for formal

verification of critical system aspects, related to complex, and

therefore hard to follow logic, commonly found within large-

scale distributed systems, such as SOA.

V. CONCLUSION

In this paper we proposed a method, with accompanying

tools, for formal verification of a class of embedded software

that may be modeled as a collection of FSMs. The method is

based on the symbolic model verification of SMV models,

which are automatically created from the target program code,

e.g. in C/C++ code, which in turn may be created from the

high-level design models, e.g. in ITU-T SDL language. The

foundation for the method is the proposed approach to

modeling individual FSMs and collections of FSMs. While

presenting our approach to modeling of FSMs and the

proposed method, we addressed two open issues that were

identified in the recent literature, see [9] and [10].

Firstly, the authors of [9] indicated that determining what

properties to verify may be a difficult problem. One of the

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 5, 2011

428

causes that make this difficult is the fact that specifying model

properties is still predominantly an ad hoc process. Therefore,

in this paper we propose a systematic method of specifying

model properties by translating the given conformance test

suite, typically given in the ITU-T TTCN language, for a class

of embedded software we were dealing with in this paper.

Secondly, we treat time as just another enumerated variable

whose values are periods of timers maintained by the FSM, as

independently suggested by the author of [10]. This approach

provides more expressive statements of model properties when

related to time, because it explicitly shows the value of time in

seconds. For example we may write the expression time < T1

to specify that current time is less than T1, which means that

the timer T1 is still running. Or for example we may write the

expression T1 ≤ time < T2 to specify that the current time is

greater or equal to T1 and less than T2, which means that timer

T1 has expired, but that the timer T2 did not. Traditional

representation of timeouts, in form of events that are typically

encoded as special messages, is less expressive, because it

does not explicitly show the value of time.

The usability of the proposed method has been successfully

demonstrated by the means of a case study, the verification of

the real call processing embedded software that runs in the

existing telephone switches and call centers. This paper

motivates future activities of both researchers and

practitioners. The former may find it inspiring to explore and

invent similar methods to systematically generate model

properties and to introduce more expressive models, whereas

the latter may find useful the approach to modeling collections

of FSMs, as well as the concepts related to accompanying

tools.

REFERENCES

[1] K.L. McMillan, “The SMV language”, Cadence Berkeley Labs, 1999,

pp. 1-49.

[2] I. Velikic, M. Popovic, and V. Kovacevic, “A Concept of an Integrated

Development Environment for Reactive Systems”, Proc. of IEEE ECBS,

2004, pp. 233-240.

[3] M. Popovic, V. Kovacevic, and I. Velikic, “A Formal Software

Verification Concept Based on Automated Theorem Proving and

Reverse Engineering”, Proc. of IEEE ECBS, 2002, pp. 59-66.

[4] M. Popovic, Communication Protocol Engineering, CRC Press, Boca

Raton, FL, USA, 2006, ch. 5.

[5] M. Popovic, B. Atlagic, and V. Kovacevic, “Case study: a maintenance

practice used with real-time telecommunication software”, Journal of

Software Maintenance and Evolution Research and Practice, John

Wiley & Sons, Ltd., No. 13, pp. 97-126, 2001.

[6] M. Popovic and V. Kovacevic, “An Approach to Internet-Based Virtual

Call Center Implementation”, Networking - ICN 2001, Part I, LNCS,

Vol. 2093/2001, P. Lorenz, Ed., Springer, 2001, pp. 75-84.

[7] E. Clarke, O. Grumberg, and D. Peled , Model Checking, The MIT

Press, Cambridge, MA, 2001.

[8] S. Miller, A. Trible, and M. Whalen, M.P.E. Heimdahal, “Proving the

Shalls”, International Journal on Software Tools for Technology

Transfer, Feb. 2006.

[9] S. Miller and M. Whalen, D. Cofer, Software Model Checking Takes

Off, Comm. of ACM, Vol. 53, No. 2, 2010, pp. 58-64.

[10] D. Parnas, “Really Rethinking Formal Methods”, Computer, Jan. 2010,

pp. 28-34.

[11] TTCN notation for validation and verification, ISO/IEC 9646 (X.290).

[12] M. Popovic and I. Basicevic, “An Approach to Formal Verification of

Embedded Software”, Proc. of 15th WSEAS Int. Conf. on

COMPUTERS, 2011, to be published.

[13] I. Popovic, V. Vrtunski, and M. Popovic, “Formal verification of

Distributed Transaction Management in a SOA Based Control System”,

Proc. of IEEE ECBS, 2011, pp. 206-215.

[14] Y. Aoki and S. Matsuura, “A method for Detecting Unusual Defects in

Enterprise System Using Model Checking Techniques”, Proc. of 10th

WSEAS Int. Conf. SEPADS, 2011, pp. 165-171.

[15] M. Achenbach and K. Ostermann, “Engineering Abstractions in Model

Checking and Testing”, Proc. of 9th IEEE Int. Working Conf. SCAM,

2009, pp. 137-146.

[16] S. Chandrasekaran, R. P. Vijaya, and R. S. Vijayravikumaran, “CAR

Based Safety Model in Automotive Software Engineering”, Proc. of

10th WSEAS Int. Conf. SEPADS, 2011, pp. 206-201.

[17] D. Kum, G. M. Park, S. Lee, and W. Jung, “AUTOSAR Migration from

existing Automotive Software”, Proc. of Int. Conf. ICCAS, 2008, pp.

558-562.

[18] C. Yamada, Y. Nakaga, and M. Nakahodo, “An Efficient Model

Checking Using Check-Points Extraction Method” Int. J. of

Computers, vol. 1, no. 3, pp. 95–101, 2007.

[19] M. L. Pura, V. V. Patriciu, and I. Bica, “Modeling and formal

verification of implicit on-demand secure ad hoc routing protocols in

HLPSL and AVISPA” Int. J. of Computers and Communications, vol.

3, no. 2, pp. 25–32, 2009.

[20] T. Millan, L. Sabatier, T. T. Le Thi, P. Bazex, and C. Percebios, “An

OCL extension for checking and transforming UML models”, Proc. of

8th WSEAS Int. Conf. SEPADS, 2009, pp. 144-149.

Miroslav V. Popovic was

born in Novi Sad, Serbia on

February 1, 1961. He received

his M.Sc. degree in electrical

engineering from the Faculty

of technical sciences at the

University of Novi Sad, Novi

Sad, Serbia, in 1984, and his

Ph.D. degree in electrical and

computer engineering from the

University of Novi Sad, Novi

Sad, Serbia, in 1990. His

major field of study was

computer engineering.

 He started his career as an

assistant professor at the Faculty of technical sciences, where he remained

working to the present day. He was promoted to a lecturer (docent) in 1992

and to an associated professor in 1997. Finally, he was promoted to a tenured

professor in 2002. He is currently the head of the Chair of computer

engineering and can be reached at the University of Novi Sad, Faculty of

technical sciences, Department of computing and control, Trg Dositeja

Obradovica 6, 21000 Novi Sad, Serbia. He wrote the book Communication

Protocol Engineering (Boca Raton, Florida, USA: CRC Press, 2006) and

about 150 papers published in international and domestic journals and

conference proceedings. His current research interests are in the area of

Engineering of computer based systems (ECBS), especially model-based

development, test, and verification.

 Prof. Popovic is the member of the program committee of the IEEE

Annual Conference on Engineering of Computer Based Systems, and also the

member of IEEE, IEEE Computer Society, IEEE TC on ECBS, and ACM.

Ilija V. Basicevic received his B.Sc.Eng,

M.Sc, and PhD degrees from the Faculty of

Technical Sciences of the University of Novi

Sad in 1998, 2001, and 2009 respectively.

His major field of study was computer

engineering.

 He is currently assistant professor at the

Faculty of Technical Sciences. He has

published more than 30 papers in journals

and conferences. His research interests are in

the area of network communication

protocols.

 Dr. Basicevic is member of IEEE and

ACM.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 5, 2011

429

Fig. 2 The message sequence during the successful call establishment

Fig. 3 The message sequence during the successful call release

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 5, 2011

430

