
 

  

  
Abstract—The proposal presented in the paper concerns a 

general environment for probabilistic predictive monitoring. More 
precisely, the paper is conceptually subdivided in three parts. The 
first part presents the theoretical model underlying the proposal. In 
particular, the model is turn presented as a hierarchy of three 
conceptual levels. The first conceptual level is represented by a set of 
basic concepts and definitions. This first level is used like a platform 
on which the second conceptual level, represented by the definition 
of time-slices based causal network, is built. This second level is, in 
turn, a platform on which the third conceptual level, represented by 
the definition of probabilistic network, is built. This last level 
contains the mathematical foundations of the model and defines a 
general probabilistic prediction algorithm that can be applied to real 
world problems in heterogeneous domains. The second part of the 
paper presents a general predictive monitoring tool in which the 
predictive algorithm, defined in the first part, is embedded. Since 
such a general tool needs to be equipped with specific domain 
knowledge in order to be usefully applied to real world problems, the 
third part of the paper presents a general environment in which  users 
can easily build, use and administer specific predictive monitoring 
tools equipped with proper domain knowledge related to specific 
application fields. 
 

Keywords—Computer applications, Knowledge engineering, 
Decision support systems, Predictive monitoring.  

I. INTRODUCTION 
HE possibility of getting early warnings before an 
undesired event may occur has always been very 

appealing. Let us think, for example, of prevention of high risk 
events for health, or serious faults or anomalies of costly and 
strategic industrial equipments or plants. Similarly, the 
possibility of getting predictions about the occurrence of a 
desired event is useful for taking suitable measures in order to 
favor the event occurrence. Let us think, for example, of 
passing an exam or reaching a certain athletic performance in 
the sport field. The proposal considers predictive monitoring 
applied to both preventing undesired events and favouring 
desired events. 

The proposal presented in the paper concerns both a general 
probabilistic model for producing predictions and a general 
predictive monitoring tool embedded in a general environment 
for building, using and administering specific probabilistic 
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predictive monitoring tools addressing specific real world 
problems.  

The concept of prediction considered in the paper, 
expressed in an intuitive and brief way, refers to the following 
scenario. Let us suppose there is a population of subjects, for 
example: persons, machines, etc. There is an event E, desired 
or undesired, that can happen to everyone of the subjects. For 
example, if subjects are persons an undesired event might be 
“first cardiac infarct”. The probability of E occurrence is, in 
general, affected by both the mere aging of a subject and the 
contexts, i.e. the conditions, in which a subject ages (for 
example, a person who smokes ages in the context: “cigarette 
smoke”). Let us suppose that a domain expert monitors 
(considering certain aspects as, for example, state of health, 
degree of performance, etc.) each subject, not necessarily at 
constant time intervals. During a monitor session of a subject 
X the expert hypothesizes that the future time of X elapses in 
certain contexts and, as a consequence, wants to know the 
probability that E occurs to X in the future. The idea of the 
proposal is that such a goal can be reached by exploiting 
statistical information collected by all the subjects whose 
history is equal to the history X would have in the simulated 
future.   

 

A. Paper organization 

The paper is conceptually structured in three parts. The first 
part, sections II, III, IV, presents the theoretical model 
underlying the proposal. In particular, such presentation is 
structured in three conceptual levels: basic concepts and 
definitions (sect. II), time-slices based causal network (sect. 
III), probabilistic network (sect. IV). The result of this first 
part is the definition of a general probabilistic predictions 
algorithm. The second part (sect. V) presents a general 
predictive monitoring tool that uses the predictive algorithm, 
defined in the first part. Section VI illustrates a simulated-case 
study in order to better explain how the general predictive 
monitoring tool works. The third part (sect. VII) presents a 
general environment for probabilistic predictive monitoring in 
which  users can easily build, use and administer specific 
probabilistic predictive monitoring tools oriented to specific 
application fields. Section VIII concerns related work and 
discussion and finally section IX draws some conclusions.  
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II.  BASIC CONCEPTS AND DEFINITIONS 
This section presents the set of the basic concepts and 

definitions that will be used throughout the paper for building 
the theoretical model that constitutes the proposal.  

 

A. Definition 1 [Basic scenario] 

Let us consider a population of subjects (human beings, 
machines, etc.). For example, let us think of a population of 
mail persons. The subjects of the population are monitored by 
a domain expert through monitoring sessions. It is not required 
that monitoring sessions are separated by constant time 
intervals. Let us suppose that there is an event E (undesired or 
desired) that may happen or not to each subject of the 
population. For example, for a population of mail persons the 
event E might be represented by “First cardiac infarct”. The 
event E is represented by a variable with two values (or states): 
“occurred”, “not-occurred”. 

 

B. Definition 2 [Context] 

The probability that E occurs to a subject may be affected 
by both the mere aging of the subject and the contexts (i.e. 
conditions) C1, C2, … in which the subject ages. For example, 
a smoker is a subject that ages in the context “Cigarette 
smoke”. Ageing in this context increases the probability of 
having the first cardiac infarct. 

 

C. Definition 3  [Context state] 

A context C has a set of possible states s1, s2, … , just like a 
variable has a set of possible values. The set of possible states 
of C is denoted by C={s1, s2, ...}, and C=s1 means: “the 
context C is instantiated to the state s1”. For example, the 
context “Genetic predisposition” might have two states “yes” 
(s1), “no” (s2), whereas the context “Cigarette smoke” might 
have three states: “yes under 10 cigarettes a day” (s1), “yes 10 
or more cigarettes a day” (s2), “no” (s3). 

 

D. Definition 4  [History-segment of a subject] 

Given a context, say C1, it is reasonably to consider the 
possibility that a subject elapses a time interval ∆t1 under the 
state s1, and subsequently a time interval ∆t2 under the state 
s2, etc. For short, let us adopt the following dot notation: s1.n 
to represent the fact that a subject has elapsed a time interval 
of n time units with C1=s1. Let us consider for example the 
context C1= ”Cigarette smoke”, with time unit = year. 
Referring to the context C1, let us suppose that a subject X, 
who is 60, has spent the segment ∆T of his/her life between 20 
and 60 years (∆T = 40 years) in the following way. For 5 years 
he/she had been smoking less than 10 cigarettes a day, then for 
25 years he/she had been smoking more than 10 cigarettes a 
day, then he/she decided to stop smoking. Given the above 
definition of the 3 states of the context C1, the formal 
representation of such a history segment of the life of X with 

respect to the context “Cigarette smoke” and regarding the 
time interval (of 40 years) between the age of 20 years and the 
age of 60 years, is given by: XC1,20,60 = (s1.5, s2.25, s3.10). In 
general, let us define “history segment of a subject X with 
respect to a context C and regarding the time interval between 
the age A1 and the age A2” the sequence XC,A1,A2 = (st1.n, 
st2.m, st3.q, ...), where st1, st2, st3 stand for possible states of 
C, and n + m + q + … = ∆T = A2 – A1. As for A2, it is the age 
of the subject at the time of the current session. As for A1, it is 
0 in case the current session is the first one, the age of the 
subject at the time of the last session in case the current 
session is not the first one. Let us notice that there might be 
some contexts for which the initial state remains constant in 
time. This is the case, for example, of the context “Genetic 
predisposition”. If, on the basis of historical family-anamnesis, 
a subject X is considered to have genetic predisposition to 
cardiac infarct, then during the first monitoring session of X 
the context “Genetic predisposition” is instantiated to the state 
“yes” and such state keeps constant in time (there is no reason 
to change it in the future). 

 

E. Definition 5  [History of a subject] 

Given a subject X and a context C, let us call “history of a 
subject X with respect to a context C and regarding the age 
A”, and  let us denote with XC,A , the whole chain of all the 
history segments of X with respect to C, from the birth to the 
age A. For example, given the history segments XC1,A1,A2 = 
(s1.n1, s2.m1), XC1,A2,A3 = (s2.n2, s3.m2), where (A2 – A1) + 
(A3 – A2) = A, let us define “history of X with respect to C1 
and regarding the age A” the union (in temporal sequence) of 
all the history segments of X with respect to C1, that is XC1,A = 
(s1.n1, s2.m1, s2.n2, s3.m2). Let us suppose, for example, that 
the subject X is 70 and, regarding the context “Cigarette 
smoke” (C1), he/she has spent his/her life in the following 
way. The first time interval ∆T1 of 20 years (from the birth to 
the age of 20) has elapsed without smoking, i.e. XC1,0,20 = (s3). 
The second time interval ∆T2 of 40 years (between the age of 
20 and the age of 60) has elapsed according to the history 
segment above defined, i.e.  XC1,20,60 = (s1.5, s2.25, s3.10). 
The third time interval ∆T3 of 10 years (between the age of 60 
and the age of 70) has elapsed in state “no” for the first 5 years 
and in state “yes under 10 cigarettes a day” for the remaining 5 
years, so that XC1,60,70 = (s3.5, s1.5). On the basis of these 3 
history segments let us build the history of the subject X with 
respect to the context C1 = ”Cigarette smoke” and regarding 
the age A = 70 years: XC1,70 = (XC1,0,20 , XC1,20,60 , XC1,60,70 ) = 
(s3.20, s1.5, s2.25, s3.10, s3.5, s1.5). Let us notice that inside 
a history there might be some sub-sequences that might be 
compacted. For example, the sub-sequence  “s3.10, s3.5” 
indicates that after a period of 10 years in state s3, there is a 
period of 5 years in the same state s3. This is equivalent to 
consider a single period of 15 years in state s3. We can 
therefore say that XC1,70 = (s3.20, s1.5, s2.25, s3.15, s1.5). 
Obviously another subject, say Y, that is 70, might have a 
different history with respect to C1. For example, YC1,70 = 
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(s3.25, s1.15, s3.15, s1.15). 
 

F. Definition 6  [History variable] 

Given a context C, let us define the history variable HCA 
that represents “History with respect to the context C and 
regarding the age A”. The set of values of HCA is defined by 
the histories of the single subjects with respect to C and 
regarding the age A. More formally, HCA = {X C, A , YC, A , ZC,A 
, … }, where X, Y, Z, … are the subjects of the population. 
For example, let us consider again  XC1,70 = (s3.20, s1.5, s2.25, 
s3.15, s1.5). Another subject Y might add the history YC1,70 = 
(s3.25, s1.15, s3.15, s1.15) so that HC170 = {X C1,70 , YC1,70} = 
{( s3.20, s1.5, s2.25, s3.15, s1.5) , (s3.25, s1.15, s3.15, s1.15)}. 
The concept of history variable allows to consider histories 
regarding a context C and an age A, independently from the 
subject the history belongs to. 

 

G. Definition 7  [Profile] 

Let SC = {C1, C2, …, CN}  be the set of contexts that are 
considered. Let HC1A, HC2A, …, HCNA be the set of the 
related history variables regarding age A. A set of values of 
these history variables, i.e. {HC1A=(…),  HC2A(…), …, 
HCNA=(…)}, is said to be a profile with respect to SC and 
regarding the age A and is denoted by profSC,A, for short: profA 

In general, for an age A we have a set of profiles. The symbol  
profA denotes a single profile among the set of profiles related 
to age A. For example, beside “Cigarette smoke” (C1) let us 
consider two other contexts: “Genetic predisposition” (C2) and 
“Obesity” (C3). Let {“yes” (s1) , “no” (s2)} be the set of states 
for both C2 and C3. Given A = 70 years, we can write prof70 = 
{H C170 =(s3.20, s1.5, s2.25, s3.15, s1.5), HC270 =(s2.70), 
HC370 =(s2.50, s1.20)} to denote a profile in the set of profiles 
regarding age 70.  Such a profile represents the case of a 
subject that, with respect to “Cigarette smoke”, has a history 
given by XC1,70 (see above in def. 5), with respect to “Genetic 

predisposition”, indicates that the subject does not have any 
genetic predisposition, with respect to “Obesity”, shows that 
the subject is obese since he/she is 50. 

 

H. Definition 8  [Counter variable] 

At each subject age the model collects profiles regarding 
that age. Subjects give their contributions by adding their 
profiles. Let us distinguish between the case in which the 
profile is added under the condition E = not-occurred (for 
short En) from the case in which the profile is added under the 
condition E = occurred (for short Ey). For example, it might 
happen that when a subject adds the related profile the event E 
has not occurred yet. In this case the subject adds the profile 
under the condition En . Vice versa, it might happen that the 
profile is added under the condition Ey . Given these 
considerations let us associate to a profile profA two counter 
variables: EnprofA and EyprofA . The variable EnprofA contains 
the number of subjects that have added their profiles, related to 
age A, under the condition En . Similarly, the variable EyprofA 
contains the number of subjects that have added their profiles, 
related to age A, under the condition Ey . For example, if the 
subjects Z and X, at the age of 70 years, have the same profile 
prof70 under the condition En , then Enprof70 = 2, and Eyprof70 
= 0.  

Figure 1 shows how profiles are stored in model memory.  

 

III.  TIME-SLICES BASED CAUSAL NETWORK 
Calculating probabilistic predictions requires time 

modelling. In fact in real life, time elapses in a continuous 
way, but in the model we get time to elapse in a discrete way, 
that is as a sequence of time-slices: time-slice 1, time-slice 2, 
etc.  

 

Age                     HC1                                           HC2                                HC3                     Eyprof            Enprof 
 
…. 
61             (s3.40, s1.21)                       (s1.61)                            (s2.61)                         2                 113                    
61         (s3.20, s1.5, s2.25,                   (s2.61)                         (s2.40, s1.21)                 3                 124 
                     s3.10, s1.1) 
… 
62           (s3.20, s1.5, s2.25,                 (s2.62)                         (s2.40, s1.22)                 4                  117 
                      s3.10, s1.2) 
62           (s3.30, s1.10, s2.22)               (s1.62)                         (s2.50, s1.12)                 5                   87                                     
… 
 
Fig. 1    An example of how profiles are stored in model memory. In the example only three contexts are considered. 
             For each age there is a sub-set of profiles. Given a row, the set of values of HC1, HC2, HC3 related to that 
             row constitutes a profile. 
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A. Time-slices 

Let us consider different possible time units used to express 
the age of a subjects: “year”, “month”, “week”, “day”. The 
choice of the right time unit depends on the type of 
application. Among the four time units, let tu be the one 
suitable for a given application. The time-slice concept used in 
the model has the following features. 

 
Feature 1.  
The time interval of one tu in the real world, gets 

concentrated in a single point in the model: the related time-
slice. For example, the time interval of the first tu of life gets 
concentrated in time-slice 1. For short, let time-slice i be 
denoted by tsi (e.g. time-slice 1 is denoted by ts1, time-slice 2 
by ts2, etc.) 

 
Feature 2.  
Each subject age has associated the related time-slice: (age= 

1 tu) � ts1, (age= 2 tu) � ts2, etc. 

 
Feature 3.  
Each time slice collects the event variable E and the history 

variables HC1, HC2, … So in ts1 there are E1, HC11, HC21, … 
in ts2 there are E2, HC12, HC22, … and so forth. 

 
Feature 4.  
A value of a history variable in a time-slice tsi, i.e. a value 

of HCi , represents the history of a subject, with respect to the 
context C, from the birth to the time-slice tsi. For example, if a 

subject X has elapsed the first tu of life in state C1=s1, and 
then the second tu of life in state C1=s2, then the values of 
HC11 and HC12 are (s1.1) and (s1.1, s2.1) respectively. 

 
Feature 5.  
If in the real world, E occurs to X in the course of the tu of 

life i, in the model E occurs to X in the time-slice tsi, and such 
occurrence is carried out by assigning Ei=occurred. 

 
Feature 6.  
Let us suppose that E occurs to X in the course of the tu of 

life n. If in the first part of the tu of life n (i.e. the part of the tu 
of life n before E occurrence) a context C is in state st, then let 
us assume that X has spent the whole tu of life n with C=st (it 
is an approximation).  For example, let us suppose that E 
occurs to X in the course of the year of life 1. If during the part 
of the first year of life before E occurrence, C1 is in state s1, 
then let us perform, in ts1, the assignment: HC11 = (s1.1). 

 

Figure 2 illustrates the concept of time-slice. Let us 
comment it. Let X be a subject and tu = year.  Let us suppose 
that C1 is the only context being considered. The interval time 
defined, in the real world, by the first year of life is 
concentrated, in the model, in a single point: the  time-slice 
ts1, the second year of life is concentrated in ts2, etc. In the 
real world we have that the current monitoring session is 
occurring during the third year of life of X, and since X is 2 
years old we have to do with the time-slices ts1 and ts2. In the 
session the expert acquires the following facts: 1) X spends the 

   
REAL WORLD 
 
                       Year 1                                        Year 2                                 Year 3                        
            (the first year of life)              (the second year of life)         (the third year of life) 
                  is elapsing.                               is elapsing.                              is elapsing. 
            Subject age= 0 years               Subject age = 1 year                Subject age = 2 years 
        0--------------------------------1-----------------------------------2----------------------------------3----------- > 
                                                                                     ↑                                                                  real  time 
                                                                                   E=y   
         -----------C1=s1-------------------------C1=s2-------|                               current session 
 
      birth                                    birthday 1                              birthday 2                              birthday 3 
                                              (first birthday)                      (second birthday)                   (third birthday) 
……………………………………………………………………………………………………………… 
 
MODEL                                     ●                                             ●                                           ● 
 
                                            time-slice 1  ts1                    time-slice 2   ts2                        time-slice 3   ts3 
                                             HC11=(s1.1)                           HC12=(s1.1,s2.1)         
                                             E1=n                                       E2=y               
 

Fig. 2   An application example of the time-slice concept.  
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first year of life with CT1=s1;  2) in the course of the second 
year of life the event E occurs to X; 3) the part of the second 
year of life before E occurrence, elapses with C1=s2. Such a 
situation is represented in the model by: {HC1=(s1.1), E1=n} 
in ts1; {HC2=(s1.1,s2.1), E2=y} in ts2. Let us now suppose 
that: 1) E occurs to X between the second birthday and the 
time of the current session; 2) C1 = s2 for all the second year 
and during the interval between the second birthday and the 
time of E occurrence. Such a situation is represented in the 
model by: {HC1=(s1.1), E1=n} in ts1; {HC2=(s1.1,s2.1), E2=n} 
in ts2 ; {HC3=(s1.1,s2.2), E3=y} in ts3. 

 
When, for a subject, it happens that at a certain time-slice tsi 

the expert sets Ei = “occurred”, then that subject is no longer 
monitored. For example, if a subject X has his/her first cardiac 
infarct at the age of 61 (i.e. during his/her sixty second year of 
life), the expert, during the session related to age 62 (i.e. the 
session corresponding to the time-slice 62) enters E62 = 
occurred. After this session the subject is no longer monitored. 
The fact that after E occurrence the subject is no longer 
monitored, has the following important implication. For each 
time-slice i (where i ≥ 2) we are sure that the profiles stored in 
the model have been entered or updated with the implicit fact 
Ei-1=not-occurred.  

By using the concept of time-slice let us define, in the next 
sub-section, the concept of time-slices based causal network. 

 

B. Time-slices based causal network 

Let us call “probability of E occurrence at time-slice j” the 
probability that the expert has to assign E=occurred in time-
slice j. Such a probability is denoted by P(Ej=occurred). For 
short let us adopt the following abbreviations: E=n stands for 
E= not-occurred, whereas E=y stands for E= occurred. If at 
present we are in time-slice i with Ei=n, the ultimate purpose 
of the model is to calculate the values of  P(Ej=y) for each j > 
i. In general, for many real world domains, we are not sure that 

the probability distribution on the states of E is constant in 
time. It may vary due to the only fact that time elapses. For 
example, the probability of the first cardiac infarct may be 
affected by the age of the subject. In general, given two time-
slices: a present one (tsi) and a future one (tsj), we can state 
that it might be that P(Ej=y) ≠ P(Ei=y) for the only reason that 
an interval time corresponding to tsj – tsi has elapsed. Let such 
a situation be represented by a mere causal chain whose 
definition has the following components.  

 
Component 1.  
The E variables Ei , Ei+1 ,…, Ej, that are present in the 

respective time-slices tsi, tsi+1, …, tsj, become nodes of the 
chain (E nodes). 

 
Component 2. 
E nodes are connected by causal links: Ei � Ei+1 � … � Ej  
 
Component 3.  
Links connecting E nodes represent time elapsing. For this 

reason they are called temporal links.  
 
Let us recall what has been stated above (sect. 2, definition 

2): “the occurrence probability of E for a subject may be 
affected by both the mere aging of the subject and the contexts 
C1, C2, … in which the subject ages”. For example, the value 
of P(Ej=y) may be affected by both the fact that the interval 

time between the birth and the age related to tsj has elapsed, 
and the fact that such time has elapsed in the context-states 
sequence defined by the values of HC1j , HC2j , … . We are so 
prompted to enrich the causal chain by adding the following 
components. 

 
Component 4.  
The history variables that are present in the time-slices 

become nodes of the network (HC nodes). 
 

  HC1i   HC2i … HCN i   HC1i+1  HC2i+1 … HCN i+1  HC1i+2  HC2i+2 … HCN i+2  ……  HC1m  HC2m … HCNm  
 
 
 
 
  
     Ei-1                Ei                         Ei+1                                 Ei+2                  ……                          Em 
 
  
 
Fig. 3.  The structure of the causal network used to produce predictions. The time-slice i-1 (i.e. age i-1) relates to the  
            age of the subject at the time of the present session. The time-slice i (i.e. age i) (i ≥ 2) relates to the first future age of 
            the subject. The time-slice m (i.e. age m) relates to the last future age. The arrows connecting E nodes represent 
            temporal links. The nodes in bold are instantiated: the set of nodes HC1i , …, HCNi  are instantiated by a profile profi  
             , etc. The probability  values of the E nodes in italic are to be calculated.  
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Component 5.  
In each time-slice, HC nodes are connected to the E node of 

the same time-slice by causal links. For example, in tsj we 
have: HC1j � Ej ; HC2j �Ej ; … 

 
Putting all the components together we get a causal network. 

The causal network that is used by the model for producing 
predictions is illustrated in Figure 3. 

 

IV. PROBABILISTIC NETWORK 
Given two events: A, B, where B causes A, the probability 

of A occurrence conditioned to B occurrence, for short the 
probability of A given B, denoted by P(A|B), is defined as 

)(
),()|(

BP

BAP
BAP =   From this definition we get the so-

called Product Rule ),()()|( BAPBPBAP =⋅ .  
The concept of conditioned probability needs to be 

embedded in a suitable conceptual structure in order to be 
actually useful when facing real world problems. This section 
illustrates both how the concept of conditioned probability is 
embedded in the conceptual structure of the time-slices based 
causal network, and the mathematical foundation of the model.  

Let us consider the causal network of Figure 3 and let us 
enrich it with the concept of conditioned probability in the 
following way. Let us establish that a causal relation like B � 
A (B causes A) has associated a quantitative aspect: the value 
of P(A|B), value that represents the strength of the causal 
relation. A causal network enriched by such quantitative aspect 
is called probabilistic causal network (for short: probabilistic 
network). The probabilistic network of Figure 3 is 
automatically created by the model (when the expert requires 
prediction), and instantiated to the future ages for which it is 
possible to simulate the future. For each future age the related 
history variables are automatically instantiated with the 
simulated profile produced for that age. The instantiated 
network is so ready for the algorithm of probability calculus, 
but a question arises: how can such a network be used to 
produce predictions? If i-1 (where i ≥ 2) is the time-slice of the 
present time, probabilistic predictions consist in calculating, 
for each future time-slice k, where i ≤ k ≤ m, the value of  

 
 
 
 

In order to be able to calculate the value of such a 
probability we have to accomplish some probabilistic 
reasoning. The following section illustrates two different but 
equivalent approaches to such a probabilistic reasoning: the 
evidence-propagation based approach, and the global joint 
probability table based approach. 

 

A. Conditioned probability based reasoning: evidence-
propagation based approach 

Let us define the following theorem characterized by the 
fact that it uses evidence-propagation rules in a causal 
network. Let EnprofA,  and EyprofA, be two counter variables 
(related to time-slice A) containing the numbers of subjects 
with profile profA, under the conditions E=n and E=y 
respectively. 

 
Theorem 1 [reasoning based on evidence-propagation] 

 
 
 
 

       
      = 

 
   if  k=i  

 
        if  i < k ≤ m  
   

 
where  

 
1)  
 
 
 

where profk represents the profile instantiating the set of 
history variables HC1k,…,HCNk related to time-slice k (i.e. 
age k) 

 
2)    

 
that is: Xk-1 is the prediction value calculated for the time-

slice k-1. 
 
Proof  

Let us premise the following considerations. 
For each profile profk (2 ≤ i ≤ k ≤ m) it can be stated the 
implicit fact 

 
   

 
Given that, by adopting the Frequency Probability definition, it 
can be stated that 

 
 
 

Obviously it has to be intended as an empirical probability 
value approximating the theoretical probability value, 
approximation that is as smaller as greater the sum 
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  is. 
 

Given this premise, let us enter the theorem proof. 
Let us consider first the case of k = i. 

If k=i we have  
 
 
 

but this is just  
 

Let us now consider the case    i < k ≤ m. 
For short let us use the symbol A to denote the sequence: 

 
 

 
It can be stated that 
 

 
 

           (1) 
 
 

 
In fact: 
1)  by applying the product rule we have 

 
 

 
 

and similarly 
 
 
 
 

2) since the two joint events (Ek=y, Ek-1=n) and (Ek=y, Ek-1=y) 
are mutually exclusive, on the basis of the addition axiom we 
have: 

 
3) since the set of states {Ek-1=n , Ek-1=y} is exhaustive, we 
have: 

 
On the basis of these considerations let us rewrite the (1) as 
follows (for short the sequence HC1i , …, HCNi,  …, HC1k , 
…, HCNk is represented by HC1i , …, HCNk): 

 
 

 
                               

 
                        
 

              
     
                            (2)                              
 

   
    (3) 

 
 
                               (4)      
 
 

         (5) 
 

Let us consider the (2). Every causal path connecting the nodes 
Ei-1 , HC1i ,…, HCNi ,…, HC1k-1 ,…, HCNk-1 to the node Ek is 
a serial structure in which Ek-1 is the last but one node. Since 
Ek-1 is instantiated to a state (i.e. the state n), each of its 
antecedents (that is the nodes Ei-1 , HC1i ,…, HCNk-1) does not 
affect Ek so they can be neglected (it is the so-called 
“evidence-propagation rule for serial structures”) and therefore 
the (2) is equivalent to 

 
 
 

  
which is   
 
Let us consider the (3). The value of the (3) is 

complementary to the value of the (5).  
Let us consider the (4). The value of the (4) is 1. In fact if 

Ek-1=y, then Ek=y independently of the combination of context 
states in session k: if when we are in time-slice k-1 we know 
that E has occurred, then the knowledge of that fact does not 
change for all the subsequent time-slices. 

Finally let us consider the (5). The nodes Ek-1 , HC1k ,…, 
HCNk are all direct causes of the node Ek (there is a causal 
structure converging to Ek). Since Ek  is not instantiated to any 
of its states, its causes are all independent (it is the so-called 
“evidence-propagation rule for converging structure”). 
Therefore the nodes  HC1k ,…, HCNk does not affect Ek-1 , and 
as a consequence they can be neglected. The ultimate 
consequence is that the (5) is equivalent to 

                    
    (6) 
 

But the value of the (6) is the prediction value calculated for 
session k-1.  
Putting all together, it can be stated that: 
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where Xk-1 stands for the prediction value calculated for 
session k-1.  
In conclusion: 

 
 
 
       

           = 
 
                                    if k=i 

 
      if i < k ≤ m 

 
End of proof [Theorem 1] 
 
 
 

B. Conditioned probability based reasoning: global joint 
probability-table based approach 

We know that from the global joint probability table of a 
network we can calculate the probability values of all the 
nodes of the network. Such a joint probability table can be 
built by applying the so-called Chain Rule. The Chain Rule, 
which is an application of the Product Rule, is defined as: 

 
 
 
 

where pa(Ai) stands for “direct parents of Ai”. 
Let us look at Figure 3 again and let us build the following 
theorem (Theorem 2) for calculating the value of 
 

 
 
 
 

Theorem 2, based on Chain Rule application, defines a general 
algorithm, that is equivalent to the one defined in Theorem 1. 
 
 

 
 

 
 
 
 
 
 
 

 
 
 
 
 

Theorem 2 [reasoning based on global joint probability-table] 
 

 
where Lj (where j is such that: i ≤ j ≤ k), is given by 

 
 
 
 
 

where profj  represents the profile instantiating the set of 
history variables HC1j,…,HCNj related to time-slice j (i.e. age 
j ) 

 
Proof 

For short, the sequence HC1i , …, HCNi,  …, HC1k , …, 
HCNk is represented by HC1i , …, HCNk . Before entering the 
reasoning of the proof let us define the following five general 
rules: 
 
RULE 1) Given that P(Ei-1=n)=1, and the symbols HC1i ,…, 
HCNk denote context instantiations (that is HC1i means HC1i 
= st, etc.) we have that: P(HC1i)=1 ,…, P(HCNk)=1. As a 
consequence: 

 
 

 
 

RULE 2) Given a time-slice j (j ≥ 2) it can be stated that:  
 

 
 

 
RULE 3) On the basis of Rule 2 it can be stated that: 
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RULE 4) As already noticed, if Ej-1=y, then Ej=y 
independently of the combination of context states. As a 
consequence: 

 
 

 
 

RULE 5) On the basis of Rule 4 it can be stated that: 
 

 
 

 
Let us now enter the proof.  
The proof is defined by an algorithm structured in three basic 
sequential steps. 
 
STEP 1) Let us consider the global joint probability table of 
the network in Figure 3. The value of 

 
 
 

is calculated by adding the values of all the table rows 
containing yEk =  and  kii HCNHCnE ,...,1,1 =−  . 
In more formal terms: 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
Let us notice that the number of addenda is 2k-i . In fact 
between Ek and Ei-1 there are the k-i E nodes: Ek-1 , Ek-2  ,…, 
Ei+1 , Ei . Such nodes are not instantiated and since each of 
them has two states {n, y}, the number of possible 
combinations for the set of states of these nodes is 2k-i . As a 
consequence we have 2k-i addenda. 
 
 
STEP 2) Let us apply the Chain Rule to each addendum. Let us 
consider the first addendum. We get: 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

By applying rules 1, 2, 3 the first addendum becomes: 
 

 
Let us now consider the second addendum. By applying the 
Chain Rule and then rules 1, 2, 3, 4, we get: 

 
 
 
 
 
 

And so forth for the remaining addenda.  
 
 
STEP 3) Let us sum the results obtained by applying the chain 
Rule and then the above five rules. At the end we get: 
 

 
End of proof  [Theorem 2] 
 
Let us notice the equivalence between the two algorithms 
defined by the two theorems respectively.  
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For example, let us suppose that k = i+2. By applying the 
algorithm of Theorem 2 we have: 

 
 
 
 
 
 
 

 
By applying the algorithm of Theorem 1 with k=i+2 we have: 
 

 
 
 
 

where 
 

 
 

where 
 
 
 

We can notice that even if the two results appear  to be 
formally different, they express the same conclusion. 
 

V. GENERAL TOOL FOR ROBABILISTIC PREDICTIVE 
MONITORING 

So far we have defined a hierarchy of three conceptual levels: 
the first level (at the bottom) is a collection of the basic 
concepts underlying the whole model, the second level (in the 
middle) defines the concept of time-slices based causal 
network using the concepts of the first level, the third level (at 
the top) consists in the probabilistic network definition, 
definition obtained by associating a conditioned probability 
value to each  causal relation of the causal network defined in 
the second level. The conditioned probability concept has been 
so embedded in a proper structure and  probabilistic reasoning 
has taken place producing two equivalent prediction 
algorithms. Having now at our disposal a general probabilistic 
prediction algorithm, the following question arises: how such 
an algorithm could, in practice, be used inside a predictive 
tool? We are therefore prompt to define a general monitoring 
tool in which the general probabilistic prediction algorithm is 
embedded. Let us now pass to define the structure and the 
features of such a tool.  
 

A. The basic algorithm of the general  predictive 
monitoring tool  

The tool works according to the following basic algorithm. 
At the beginning of a monitoring session of a subject X the 
model asks the expert to enter historic facts concerning the 
subject: has E occurred to X? In which context-states time has 

elapsed for X? If E has occurred to X, then the model memory 
is updated on the basis of the entered facts. Vice versa, if E has 
not occurred to X, the expert can ask the model for predictions 
about the probability that E occurs to X in the future. Then 
before the session ends the model memory is updated on the 
basis of the entered facts. More formally, the basic algorithm 
is the following. 
 
Beginning of the current session 

ACQUIRE SUBJECT DATA 
If  E has not occurred to X   then 
     While the expert has not yet clicked on “Session end” 
               SIMULATE THE FUTURE AND  
               PRODUCE PREDICTIONS 
     End of While 
     UPDATE MODEL MEMORY 
End of If 
If  E has occurred to X   then 
   UPDATE MODEL MEMORY 
End of If 

End of the current session 
 
The following sub-sections illustrate the algorithm in a deeper 
way. 
 

B. Acquire subject data  

This sub-algorithm concerns the acquisition of both the state 
of E and the history segments. Let us examine the two 
acquisitions separately.  

 
At the beginning of the current monitoring session of a 

subject X, the algorithm, in order to be able to asks the expert 
to enter, for each context C, the current history segment 
XC,A1,A2 , needs to establish the values of the two subject ages: 
A1 and A2. As for A1, if the current session is the first one, 
A1 = 0, else A1 = “age of the subject at the preceding 
session”. As for A2, let us distinguish between the case in 
which E has non occurred to X, from the case in which E has 
occurred to X. If the expert enters E= not-occurred, A2 = age 
of X at the time of the current session. If the expert enters E= 
occurred, then the expert is asked to specify the “age of X at 
the time of E occurrence”. Such value is acquired and stored in 
a variable, say AEO (Age of the subject at the time of E 
Occurrence). According to Feature 6 in section III.A , let us 
conclude that A2= AEO + 1. These considerations explain 
why the first step of the algorithm is: E state acquisition.  

 
After the E state acquisition phase the algorithm has the 

values of A1 and A2 and can therefore pass to the second 
phase, the “history segments acquisition” phase. The expert is 
asked to enter, for each context C, the proper history segment 
XC,A1,A2 . Precisely, the time interval defined by the couple 
(A1, A2) is the temporal length between: the birth (in the case 
A1 equals 0) or the birthday related to age A1 (in case A1 is 
different from 0), and the birthday related to age A2. For 
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example, referring to Figure 2, “age of X at the time of the 
current session”= 2, AEO= 1, A2= 2, A1=0. The expert is 
asked to enter the history segment XC1,0,2 that covers the time 
interval between the birth and the birthday 2 (according to 
Feature 6 in section III.A, we approximate by supposing that 
the condition C1=s2 covers the whole sub-interval between 
birthday 1 and birthday 2).  
 
By formalizing all these considerations let us define the 
following sub-algorithm 
 
ACQUIRE SUBJECT DATA 
   CA = current age of the subject X at the current session 
   If  the current session is the first one   then  

A1= 0 
   End of If 
   If the current session is not the first one   then  

A1= “age of the subject at the preceding session” 
   End of If 
   Ask and Acquire the state of E 
   If  E has not occurred to X   then  

  A2= CA 
   End of If 
   If  E has occurred to X   then  

  Ask and Acquire the age of the subject when E occurred 
  Store the acquired age in the variable AEO 
  A2= AEO + 1  

   End of If 
   For each context C 

  Ask and Acquire the history segment XC,A1,A2  
  Calculate the whole history XC,A2 

   End of For 
 
 

C. Simulate the future and produce predictions  

If in a monitoring session of subject X the entered state of E 
is “not-occurred”, the tool provides the expert with the 
possibility of getting probabilistic predictions about the 
occurrence of E to X in the future, supposing that the future 
time of X elapses in conditions of C1=stc1, C2=stc2, …, 
where stc1, stc2, … are states, of C1, C2, ... respectively, 
selected by the expert. More precisely, let i-1 (where i ≥ 2)  be 
the current age of X. Let m be a future age of X. The expert is 
provided by the tool with the possibility of:  

1) selecting for each context C the state that is supposed to 
be constant in the time interval between i-1 and m ;  

2) asking the tool to calculate the probability values of 
occurrence of E to X for all the future ages k (where i ≤ k ≤  
m) supposing that the time interval between i-1 and m elapses 
in conditions of C1=stc1, C2=stc2, … .  

The tool, in order to provide these possibilities, performs a 
sub-algorithm that is structured in three sequential steps: 
1) Ask and acquire future context states 
2) Simulate the future  
3) Produce predictions 

More formally, the basic scheme of such sub-algorithm is 

the following 
 
SIMULATE THE FUTURE AND PRODUCE 
PREDICTIONS 
  ASK AND ACQUIRE FUTURE CONTEXT STATES 
  SIMULATE THE FUTURE  
  PRODUCE PREDICTIONS 
 
 

C.1    Ask and acquire future context states  

This step simply consists in asking the expert to select 
context states and then in acquiring them. More formally: 
ASK AND ACQUIRE FUTURE CONTEXT STATES 

• Ask the expert to select, for each context C, the state 
that is supposed to be constant in the future 

• Acquire the selected states {stC1 , stC2 , …} of the 
contexts C1, C2, … respectively 

 
 

C.2    Simulate the future  

This step is in turn compound of two sequential sub-steps: 
simulation and check. Let C1=stc1, C2=stc2, … be the states 
selected by the expert (in step 1). The tool, for each future age 
k of X, 

a) creates, on the basis of the selected states, the 
following simulated history-segments: XC1,A2,k = 
(stc1.D), XC2,i-1,,k = (stc2.D), … where D = k – A2 

b) builds, on the basis of these simulated history-
segments and profXA2 (the profile of X at the age 
A2), the new profile profXsimk (simulated profile of 
X that relates to the future age k ). 

c) checks if the simulated profile profXsimk is present in 
the profiles set (stored in model memory) in a 
statistically significant number. To be more explicit: 
if the simulated profile is already present in model 
memory and the number of cases is ≥ Thr (where Thr 
is the threshold value required to make significant 
probabilistic inferences), then the simulated profile 
profXsimk can be used to calculate probabilistic 
prediction for the age k.  

The process stops at the first future age for which the check 
results not-OK. Let us notice that simulated profiles are 
created just for prediction purposes. They are not profiles got 
by real cases, as a consequence they are not added to the set of 
profiles stored in model memory (that is, they do not update 
real statistical data). Let us now pass to formalize this step.  
 
SIMULATE THE FUTURE  
  Let Thr be the threshold of minimum number of cases 
    required for producing statistically significant inferences 
  Let LFA (where LFA > A2) be the Last Future Age (of X) 
     considered for predictions  
  k = A2  
  STOP = “no” 
While (k < LFA) and (STOP = “no”) do 
     k = k + 1 
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     D = k – A2 
     Create the following simulated history segments of X: 

       XC1,A2,k = (stC1.D),       XC2,A2,k = (stC2.D), … 
     Calculate the following whole histories of X:  

                       XC1,k =(XC1,A2 , XC1,A2,k),  
                       XC2,k =(XC2,A2 ,  XC2,A2,k),    … 

     Create the following simulated profile of X:      
             profXsimk = {HC1= XC1,k , HC2= XC2,k , …} 

     If  profXsimk is not present in the model   then 
    STOP = “yes” 

     End of If  
     If profXsimk is present in the model    then 

    If [EyprofXsimk + EnprofXsimk] < Thr    then  
         STOP = “yes” 

         End of If  
   If [EyprofXsimk + EnprofXsimk] ≥ Thr    then  

               Put the couple (k, profXsimk) in the list LSIM  
         End of If 
     End of If 
End of While 
 
 

C.3    Produce predictions  

At the end of the execution of the step 2 we have the list 
LSIM (possibly empty) of the couples: (age, simulated profile) 
related to the profiles that have passed the check. Let such a 
list be: (i, profXsimi), (i+1, profXsimi+1), … (k, profXsimk), … 
(m, profXsimm), where i and m are the first and the last future 
age respectively. The profiles stored in LSIM are used for 
instantiating the probabilistic network of Figure 3 and, as a 
consequence, for calculating probabilistic predictions. More 
explicitly, let us consider the network of Figure 3 and the list 
LSIM. For each future age k (i≤k≤m) the history variables (of 
the time-slices tsi,… tsk): HC1i,… HCNi, …  HC1k,… HCNk,  
are instantiated by the profiles profXsimi , … profXsimk 
respectively and the prediction algorithm defined in Theorem 
1 (or Theorem 2, since the algorithms are equivalent) is 
applied, producing this way the probabilistic prediction for the 
time-slice k. Let us notice though that the dynamic creation of 
the network of Figure 3 and the related nodes instantiation 
represent a conceptual view of the algorithm. In practice this 
third step is formalized in the following way.  
 
PRODUCE PREDICTIONS 
Let i = A2 + 1    (and therefore i ≥ 2)  
If  LSIM is empty   then  
    Print: “It is not possible to produce predictions” 
End of If 
If  LSIM is not empty   then  
    Let m be the maximum age in LSIM 
    For k = i to m 

Get the couple (k, profXsimk) from the list LSIM 
       Select the row in model memory (e.g. Fig. 1) with 
                       Age= k and {HC1,…, HCN}  = profXsimk  
       Get the related values of Eyprof and Enprof, and  
                       calculate Lk = Eyprof / (Eyprof + Enprof) 

    End of For 
    For k = i to m 

Calculate (using Theorem 1 or Theorem 2), the value of 
           P(Ek = y | Ei-1 = n, HC1i ,.., HCNi ,…, HC1k ,.. , HCNk ) 

Print the couple: (age= k , E probability = P(Ek = y | …)    
    End of For 
End of If 
At the end of the “Produce Predictions” step the expert can 
repeat the “Simulate the future and produce predictions” sub-
algorithm again. That is, the expert can go back and select 
other context states that are supposed to be constant in the 
future. Then he/she can activate  a new simulation and 
prediction production process. Finally the expert, after having 
gathered a sufficient amount of data from such cycle of 
“simulation and prediction”, clicks on “Session end”. 
However, before the session actually ends, the model memory 
is updated on the basis of the entered facts. 
 
 

D. Update model memory  

A history segment XC,A1,A2 = (stC, A2-A1) implies: XC,A1,A1+1  
= (stC, 1), XC,A1,A1+2 = (stC, 2), … , XC,A1,A2 = (stC, A2-A1). In 
other words, acquiring, in the present session, the history 
segment XC,A1,A2 is equivalent to acquire the above A2-A1 sub-
segments in A2-A1 virtual sessions respectively (i.e. at the age 
A1+1 there is a (virtual) monitoring session in which the 
expert enters (stC, 1), at the age A1+2 there is a (virtual) 
monitoring session in which the expert enters (stC, 2), and so 
forth). Let us therefore update the model memory as if we had 
to do with A2-A1 sub-sessions. Let us notice that for the 
virtual sub-sessions related to the ages A1+1, A1+2, …, A2-2, 
A2-1, it is certain that EA1+1= not-occurred, EA1+2= not-
occurred, … , EA2-2= not-occurred, EA2-1= not-occurred. It is 
only for the age A2 that the state of EA2 may be “occurred” or 
“not-occurred”, depending on what the expert has entered. By 
formalizing these considerations let us define the following 
sub-algorithm. 
 
UPDATE MODEL MEMORY 
If  A2 > (A1+1)   then  
   For I = A1+1 to A2-1 do  
      For each context C 
            Calculate XC,I  
      End of For 
      Consider the current profile   
                              profX,I = {HC1I = XC1,I , HC2I  = XC2,I , … } 
      If in the set of profiles stored in model memory there is not 
                                        a profile equal to profX,I             then 
            Add, in model memory, the new row:  
                                      “age=I , profX,I , Enprof =1 , Eyprof =0” 
      End of If  
      If in the set of profiles stored in model memory there is a  
                                       a profile equal to profX,I              then 
            Increment (of 1) the related counter variable Enprof    
      End of If 
   End of For 
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End of If 
Consider the profile   
                 profX,A2 = {HC1A2 = XC1,A2 , HC2IA2 = XC2,A2 , … } 
If  in the set of profiles stored in model memory there is not a  

                 profile profA2 equal to profX,A2                     then 
Add, in model memory, one of the following two rows: 
“age= A2 , profX,A2 , Enprof =1, Eyprof=0”,   if E=not-occurred 
“age= A2 , profX,A2 , Enprof =0, Eyprof=1”,   if E=occurred 
End of If 
If  in the set of profiles stored in model memory there is a  
                       profile profA2 equal to profX,A2                    then 
Update, in model memory, the row with age= A2 and 
profA2 = profX,A2 by incrementing (of 1) the counter variable  
Enprof   if E=not-occurred          ,            Eyprof  if E=occurred 
End of If 
 

VI.  A SIMULATED-CASE STUDY 
In order to better understand how the general tool for 

probabilistic predictive monitoring works, let us apply it to a 
simulated example. Let us consider the above example where 
E = “First cardiac infarct”, and the considered contexts are: 
Smoke (with states “yes less than 10 cigarettes a day” (s1), 
“yes 10 or more cigarettes a day” (s2), “no” (s3)), Genetic 
predisposition (with states “yes” (s1), “no” (s2)), Obesity (with 
states “yes” (s1), “no” (s2)). Let tu (time unit) = year. 
 
 

A. Acquiring subject data in the case in which  the current 
session is the first one  

Let us suppose that for the subject X the current session is 
the first one and the current age is 60 years. As for the state of 
E let us suppose that at the time of the current session E has 
not occurred to X, and therefore the expert enters E60=not-
occurred. The expert is then asked to enter the history 
segments XC1,0,60 , XC2,0,60 , XC3,0,60  , history segments 
concerning the time interval from the birth to the birthday 60 
(i.e. A1= 0, A2=  60). As for the context “Smoke” (C1) let us 
suppose that X has begun to smoke at the age of 20 years. 
Then for five years X has been smoking less than 10 cigarettes 
a day. Then for 25 years X has been smoking more than 10  
cigarettes a day. Finally, at the age of 50 years X stopped 
smoking. As for the context “Genetic predisposition” (C2) let 
us suppose that X does not have any genetic predisposition 
regarding cardiac infarct. Finally, as for the context “Obesity” 
(C3) let us suppose that X has been obese since the age of 40 
years. The expert enters such case description by filling in 
suitable user-friendly forms. The tool acquires this information 
and converts it into formal history segments: XC1,0,60 =(s3.20, 
s1.5, s2.25, s3.10), XC2,0,60 =(s2.60), XC3,0,60 =(s2.40, s1.20). 
Since E= not-occurred, the expert is provided with simulation 
and prediction facilities. 
 
 

B. Asking future context states  

Let us now suppose that the expert asks the model for 
predictions. The model shows the following list and asks the 
expert to select, for each context, the state that has to be kept 
constant in the simulated future time of X. 
“Cigarette smoke” (C1) 

○   “yes under 10 cigarettes a day” (s1) 
○    “yes 10 or more cigarettes a day” (s2) 
○    “no” (s3) 

“Genetic predisposition” (C2)  
○    “yes” (s1)  
○    “no” (s2)  

“Obesity” (C3) 
○    “yes” (s1)  
○    “no” (s2)  

Let us suppose that the expert (interested in simulating that X 
begins again to smoke less than 10 cigarettes a day and 
continues to be obese) selects: C1=s1,  C2=s2 (obviously this 
state cannot change),  C3=s1. 
 
 

C. Simulating the future  

Let us consider the sub-algorithm “Simulate the future”. In 
the present case we have A2 = 60, profX60 = {HC160 = (s3.20, 
s1.5, s2.25, s3.10), HC260 = (s2.60), HC360 = (s2.40, s1.20)}, 
set of selected states = {C1=s1, C2=s2, C3=s1}. Let us 
suppose we are interested in the 10 future years, so LFA= 70. 
Let us now perform the While statement (see sect. V.C.2). Let 
us consider the first loop (k = 61 years, D= 1 year). Let us 
create the following simulated history segments: XC1,60,61 = 
(s1.1), XC2,60,61 = (s2.1), XC3,60,61 = (s1.1). Let us calculate the 
following simulated histories: XC1,61 = (XC1,0,60 , XC1,60,61) = 
(s3.20, s1.5, s2.25, s3.10, s1.1);  XC2,61 = (XC2,0,60 , XC2,60,61) = 
(s2.61) ;  XC3,61 = (XC3,0,60 , XC3,60,61) = (s2.40, s1.21). Let us 
create the simulated profile for the age 61, profXsim61 
={HC1= (s3.20, s1.5, s2.25, s3.10, s1.1), HPC2= (s2.61), 
HC2= (s2.40, s1.21)}. 

Let us check if profXsim61 is already present, the model and, 
if  it is, let us check if  [EyprofXsim61 + EnprofXsim61] ≥ Thr. 
Let us suppose that the model memory contains the rows 
illustrated in Figure 1. If, for example, Thr = 100, we can 
conclude that the check outcome is OK, so let us put the 
couple (61, profXsim61) into the list LSIM. And so forth for all 
the remaining future ages (i.e. for k= 62, D= 2; …. k= 70, D= 
10). For example, in the second loop the simulated profile is 
created starting from the history segments: XC1,60,62 = (s1.2), 
XC2,60,62 = (s2.2), XC3,60,62 = (s1.2). That is: profXsim62 
={HC1= (s3.20, s1.5, s2.25, s3.10, s1.2), HPC2= (s2.62), 
HC2= (s2.40, s1.22)}. Considering Figure 1 again, the check 
is OK and so we can put (62, profXsim62) into LSIM. And so 
forth. Let us notice that even if LFA = 70, in LSIM we might 
have a number of elements less than 10. If, for example, the 
check outcome related to age 63 is not OK, then LSIM only 
contains the two couples: (61, profXsim61), (62, profXsim62). 
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D. Producing predictions  

After the future simulation phase has been performed, the 
prediction procedure is applied to each couple in LSIM,  
producing this way the sequence of as many probabilistic 
values as the elements of LSIM. Let us consider the sub-
algorithm “Produce predictions” and Figure 1. Let us suppose 
that LSIM only contains two elements. As a consequence: i= 
61, m= 62. Let us get, from LSIM, the couple (61, 
profXsim61). Since 61 is the first future age, we have that P(E61 

= y | E60 = n, profXsim61) = L61 = EyprofXsim61 / 
(EyprofXsim61 + EnprofXsim61) = 3 / (3+124) = 0.024.  
Let us now get, from LSIM, the couple (62, profXsim62). Let 
us calculate L62 = EyprofXsim62 / (EyprofXsim62 + 
EnprofXsim62) = 4 / (4+117) = 0.033. We are now ready to 
calculate prediction for age = 62, i.e. P(E62 = y | E60 = n, 
profXsim61 , profXsim62). Let us use, for example, the 
algorithm of Theorem 1. The prediction for age 62 is given by 
L62 (1 - X61 ) + X61 = 0.033 (1 –  0.024) + 0.024 = 0.056.  
In conclusion, the model provides the expert with the 
following list concerning the subject X. 
Future age             Occurrence Probability of 
                                 “First cardiac infarct”  
61                                     0.024 
62                                     0.056 
Let us suppose we are not interested in selecting different 
context states and then activate a further  simulation-prediction 
cycle. Let us suppose we click on “Session end”. The tool, 
before ending the current session, updates model memory on 
the basis of the entered subject-data. 
 
 

E. Updating model memory  

The entered history segments are: XC1,0,60 =(s3.20, s1.5, 
s2.25, s3.10), XC2,0,60 =(s2.60), XC3,0,60 =(s2.40, s1.20). Let us 
consider the sub-algorithm “Update model memory”. Let us 
perform the external statement “For I = … “ (knowing that, in 
the current case, A1= 0, A2= 60). Let us consider the first loop 
(I = 1). For age = 1 year, we have XC1,1 =(s3.1), XC2,1 =(s2.1), 
XC3,1 =(s2.1)  and as a consequence: profX,1 = {HC11=(s3.1), 
HC21=(s2.1), HC31=(s2.1)}. If such a profile is not already 
present in the sub-set of profiles related to age 1, then let us 
store the row “age=1, HC1=(s3.1), HC2=(s2.1), HC3=(s2.1), 
Enprof=1, Eyprof=0” in model memory. If the profile is 
already present and has Enprof= n Eyprof= m, then no new row 
is created but the counter variable Enprof is updated: 
Enprof=n+1. And so forth for all the remaining ages (i.e. for I= 
2, …, I= 59). For example, at the loop identified by I = 41 we 
have profX,41 = {HC141 = (s3.20, s1.5, s2.16), HC241 = (s2.41), 
HC341 = (s2.40, s1.1)}, and we check if it is already present in 
model memory, etc. As for age = 60, since E has not occurred 
to X, if the profile is not present in memory already, we add 
the new row “age=60, HC1=(s3.20, s1.5, s2.25, s3.10), 
HC2=(s2.60), HC3=(s2.40, s1.20), Enprof=1, Eyprof=0”. Vice 
versa, if the profile is present in memory already, let us 

increment (by 1) the related variable Enprof. 
 
 

F. Acquiring subject data in the case in which  the current 
session is not the first one  

Let us suppose that after a certain time, say 4 years, X has 
the second monitoring session. The current age of X is 
therefore 64. Let us consider the case in which E has not 
occurred to X. The expert is asked to enter the history 
segments XC1,60,64 , XC2,60,64 , XC3,60,64  , history segments 
concerning the time interval from the birthday 60 to the 
birthday 64 (i.e. A1= 60, A2=  64). Alternatively, let us 
consider the case in which E occurred to X, say 2 years before 
(age of X = 62). The expert is then asked to enter the history 
segments XC1,60,63 , XC2,60,63 , XC3,60,63  , history segments 
concerning the time interval from the birthday 60 to the 
birthday 63 (i.e. A1= 60, A2=  63). (As for the year between 
the birthday 62 to the birthday 63 let us remember Feature 6 in 
sect. III.A). 
 

VII.  GENERAL ENVIRONMENT  FOR PROBABILISTIC PREDICTIVE 
MONITORING 

The general tool for probabilistic predictive monitoring 
(that has been defined in the preceding session) needs to be 
equipped with specific domain knowledge in order to be 
usefully applied to real world problems. More precisely, in a 
specific application, contexts C1, C2, … and related states s1, 
s2, … are instantiated by precise names that depend on the 
specific application field. Even the generic term tu (time-unit) 

is instantiated by a precise time-unit (year, month, week, day) 

 
Environment for BUILDING  
predictive monitoring TOOLS         
 
Environment for USING  
predictive monitoring TOOLS          
 
Environment for ADMINISTERING  
predictive monitoring TOOLS              
 
Environment for ADMINISTERING  
predictive monitoring SUBJECTS        
 
Environment for ADMINISTERING  
predictive monitoring ENVIRONMENTS  
 
 
 
Fig. 4    The home-page of the general  
              environment for probabilistic  
              predictive monitoring  
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depending on the specific application. In conclusion, for each 
specific application the general tool for probabilistic predictive 
monitoring has to be instantiated by creating proper contexts, 
states, etc. We are therefore prompted to define a general 
environment for probabilistic predictive monitoring, i.e. a 
general environment in which  users can easily build, use and 
administer specific probabilistic predictive monitoring tools. 
Such a general environment is in turn structured in five target 
environments (Fig. 4). The first two environments concern the 
construction and use of specific tools. The remaining three 
environments concern administration activities.  
 
 

A. Environment for Building predictive monitoring Tools  

The environment for building tools for specific applications, 
for short, the Tools Building environment, provides a set of 
functions for building a predictive monitoring tool in a friendly 

and effective way. The home-page of the Portal Building 
environment consists in a set of functions (Fig. 5) that allow 
the builder to create and edit the various application-oriented 
components of the tool (contexts, context-states, etc.). Let us 
examine the last two  functions in Figure 5. 
 
 

A.1   The function: Tool ready to definitely enter the Using 
environment  

At the end of the building work, the new tool is like a new 
ship ready to leave the shipyard, i.e. the Building environment, 
enter the sea, i.e. the Using environment, where it will be used 
by the crew, i.e. the domain expert, to serve passengers, i.e. the 
subjects of the population considered by the current 
application, and the launching of the ship is carried out by 
executing the function “Tool ready to definitely enter the 
Using environment”. The effects of such a function execution 
are:  

1) a set of new database tables, that will be used by  the 
new tool, are created in the Using environment 

2) the information (contexts, states, etc.) collected in the 
Building environment are copied into the new 
database tables of the Using environment and all the 
database tables, created and used in the Building 
environment during the tool building process, are 
eliminated. 

 
 

A.2    The function: Tool ready to be tested in  the Using 
environment  

This function provides the possibility of testing the tool 
under construction before declaring it finished and ready to 
definitely enter the Using environment. Such a possibility is 
very useful since the testing phase might reveal some 
imperfections concerning the domain knowledge entered 
during the building phase of the tool (for example: the name of 
a context is not completely appropriate, a new state should be 
added to the set of states of a context, etc.). Such imperfections 
can then be removed by resuming the building phase. The 
function “Tool ready to be tested in the Using environment” 
inserts the tool into the Using environment in TEST mode and 
as a consequence the database tables of the specific tool in the 
Building environment are not eliminated. Moreover, the Using 
environment, in order to make the specific tool usable in all its 
functions, provides a set of dummy subjects and simulates that 
in any session the specific tool has already collected, for any 
combination of context states, a number of cases greater than 
the threshold value required to make probabilistic inferences. 
As a consequence the user of the specific tool can test how the 
new tool works and looks in the Using environment, knowing, 
of course, that  probabilistic values displayed during the 
testing phase are dummy. 
 
 

B. Environment for Using predictive monitoring Tools  

This environment performs the basic algorithm of the 
general probabilistic predictive monitoring tool (illustrated in 
section V.A) by applying it to the specific contexts, context 
states, etc. (defined in the Building environment) related to the 
current specific application. The Using environment is 
equipped with several facilities for presenting, in both 

Cancel the tool  
 
Show the tool  
 
EDIT the tool name  
 
EDIT the tool category  
 
EDIT contexts  
 
EDIT context states  
 
EDIT probability levels  
 
TOOL READY TO DEFINITELY 
ENTER THE USING 
ENVIRONMENT  
 
TOOL READY TO BE TESTED IN 
THE USING ENVIRONMENT  
 
 
 
Fig. 5    The home-page of the Building 
              environment 
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quantitative and qualitative terms, probabilistic predictions. 
For each future age of the subject the related E occurrence 

probability is shown along with the related qualitative 
judgment (Fig. 6). Moreover, qualitative presentations are also 
carried out through histograms pointing out the trends of future 

probabilities. Such predictions may be useful in order to take 
suitable measures in advance, measures personalized to the 
subject under consideration. Moreover, the possibility to 
compare different predictions resulting from different 
simulated cases may help decision making in trade-off 
problems (Fig. 7). The user is also provided with the 
possibility of getting explanations about the procedure used to 
produce the predictions that have been displayed (which 
simulation plan has been used? Where do the displayed 
probability-numbers come from?). 
 
 

C. Administering Environments   

The general environment for probabilistic predictive 
monitoring contains three administering environments: the 
environment for administering predictive monitoring tools (for 
short: Tools Administering environment), the environment for 
administering monitored subjects (for short: Subjects 
Administering environment), the environment for 
administering environments (for short: Environments 
Administering environment).  

The Tools Administering environment concerns the 

administration of tools that are in the Using environment. The 
environment provides the tool administrator with several utility 
functions. Among such functions there is the one that allows 

Age   Prob       Level 
71    0.015      very-low 
72    0.286      low 
73    0.4074    low-middle 
74    0.5141    middle 
75    0.6064    middle-high 
76    0.6851    middle-high 
77    0.7512    high 
78    0.8059    high 
79    0.8505    high 
80    0.8864    high 
 
 
Fig. 6    An example of table showing  
             predictions in both  
             quantitative and qualitative 
             terms 

 
                        ^  Prob                                                                              ^ Prob       
                         |                                                                                         | 
                  100 |                                                                                  100 |  
                    90 |                                                                                    90 |                           
                    80 |                                                                                    80 |                           
                    70 |                                                                                    70 |                                 *  * 
                    60 |                                                                                    60 |                             *  *  * 
                    50 |                                                                                    50 |                             *  *  * 
                    40 |                                 *  *                                             40 |                      *  *  *  *  * 
                    30 |                         *  *  *  *                                             30 |                  *  *  *  *  *  * 
                    20 |                     *  *  *  *  *                                             20 |          *  *  *  *  *  *  *  * 
                    10 |         *  *  *  *  *  *  *  *                                             10 |   *  *  *  *  *  *  *  *  *  * 
                         ..*..*..*..*..*..*..*..*..*..*…..>                                           ..*..*..*..*..*..*..*..*..*..*…..> 
                          71            75                80                                                  71            75                80    
                                 Future ages (years)                                                            Future ages (years)  
 
                                          Case  A                                                                                         Case B 
 
 
                      Fig. 7    An example of histograms representing predictions for a subject X in two different cases.  
                                   If predictions concern an undesired event (e.g. First cardiac infarct) the case A shows  
                                   probabilistic predictions in the hypothesis that the ten future years of X elapses in rather good  
                                   conditions (e.g. no cigarette smoke, no hypertension, etc.), whereas the case B concerns the 
                                   the hypothesis that the future of X elapses in worse conditions (e.g. yes cigarette smoke, yes  
                                   hypertension, etc.). Of course if predictions concern a desired event, the better situation is  
                                   represented by the case B. 
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the administrator to eliminate a subject by the list of the 
subjects monitored by a tool. This function also re-establishes 
the statistical situation in the database of the tool as if the 
eliminated subject had never entered the tool. 
   The Subjects Administering environment contains functions 
to manage the subjects database and to operate on subjects 
independently from the specific tools to which they are 
assigned by tool administrators. 
   The Environments Administering environment is used by the 
Super-administrator only. The Super-administrator plays the 
role of general supervisor of the general probabilistic 
predictive monitoring environment. Among the many functions 
that the Environments Administering environment makes 
available to the Super-administrator let us notice the 
authorization functions, i.e. authorization to use a certain 
environment, or in other words, authorization to play the role 
of tool builder, or tool user, or tool administrator, or subjects 
administrator. The basic rules are: 

• a single subject can be monitored by n different tools 
(for example, in medicine a subject can be monitored 
with respect to various undesired pathologic events, 
and there is a tool for each undesired event 
respectively) 

• a user can use n tools (for example, an organization 
can study the occurrence probability of n undesired 
events) 

• a single tool can be used by m users (for example, 
different organizations, possibly international, can co-
operate in monitoring a large subjects population 
relatively to an undesired/desired event) 

These features contribute to make the proposed general 
environment for probabilistic predictive monitoring a product 
suitable to be successfully used even in large co-operation 
contexts, facilitating and structuring co-operation among 
working groups. 
 

VIII.  RELATED WORK AND DISCUSSION 
The great number of works concerning predictive 

monitoring, published in scientific journals and conferences 
both in past and in recent years, gives evidence of both the 
modernity of the topic and the remarkable effort so far 
accomplished by the researchers community.  

Industry is a typical world in which predictive monitoring, 
mostly intended as preventive monitoring, has find numerous 
applications with a variety of approaches. Twenty years ago 
already, preventive monitoring was a crucial theme for 
manufacturing processes (typically, for example, in the world 
of the large car manufacturing companies [1]). In 
manufacturing industries there is a considerable attention to 
reduce costly and unexpected breakdowns. As a consequence 
preventive maintenance is becoming more and more important. 
Maintenance should abandon the traditional “fail and fix” 
approach to pass to the more modern “predict and prevent” 
one [2]. As a consequence the fundamental need is monitoring 

degradation instead of detecting faults. A predictive 
performance and degradation monitoring is what is needed for 
an effective proactive maintenance to prevent machines from 
breakdown. The theme of degradation monitoring for failure 
prevention applied to vehicle electronics and sensor systems is 
faced in [3] where the authors propose a unified monitoring 
and prognostics approach that prevents failures by analyzing 
degradation features, driven by physics-of-failure. The need, 
for manufacturers of complex systems, to optimize equipment 
performance and reduce costs and unscheduled downtime, 
gives rise to system health monitoring. System states 
monitoring is augmented with prediction of future system 
health states and predictive diagnosis of possible future failure 
states [4]. Predictive monitoring has been also applied to 
flexible manufacturing systems. In [5], the main objective is to 
manage progressive failures in order to avoid breakdown state 
for the flexible manufacturing system. The approach to 
predictive monitoring proposed in [6] uses predictions from a 
dynamic model to predict whether process variables will 
violate an emergency limit in the future (predictions are based 
on a Kalman filter and disturbance estimation). Predictive 
monitoring has also been applied in many specific industry 
worlds like, for example, cold extrusion and forging processes 
[7] and chemical plants [8], [9]. In many industrial 
applications predictive monitoring assumes the meaning of 
preventive monitoring and aims to enhance the effectiveness of 
preventive maintenance by making it proactive. In some cases 
though, predictive monitoring is finalized to early intervening 
to maintain a system at a high level of performance. It is the 
case of a predicting monitoring application for wireless sensor 
networks: “...by monitoring and subsequently predicting trends 
on network load or sensor nodes energy levels, the wireless 
sensor network can proactively initiate self-reconfiguration…” 
[10]. In most industry applications the acquisition of 
monitoring data is carried out through sensors [11]. 

Predictive monitoring has found many applications in 
medicine too. Applications concern both clinical trials [12] 
and several specific fields. For example, interesting 
applications have been carried out in the field of diabetes 
therapy. In [13] and [14], continuous glucose monitoring 
devices provide data that are processed by mathematical 
forecasting models to predict future glucose levels in order to 
prevent hypo-/hyperglycemic events. Many other specific 
applications of preventive monitoring may be found in 
medicine. For example, in [15] the authors present the 
experience of predictive monitoring applied to some patients 
exposed to gentamicin (a commonly used antibiotic 
medication) ototoxicity: the most common single known cause 
of bilateral vestibulopathy. Patients undergoing exercise 
rehabilitation therapy were tested repeatedly during follow-up 
visits to monitor changes in their vestibulo-ocular reflex. 
Predictive monitoring turned out to be  useful for continuing or 
modifying the course of vestibular rehabilitation therapy. 

Very recently predictive monitoring has found many 
applications in the field of environment pollution [16], [17], 
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[18]. 
Li terature shows that, in general, prediction has been 

intended in the sense of prevention, that is as a means for 
preventing undesired events. Actually the possibility of getting 
early warnings before an undesired event may occur has 
always been very appealing. Let us think, for example, of 
prevention of high risk events for health, or serious faults or 
anomalies of costly and strategic industrial equipments or 
plants. The proposal presented in the paper has the ultimate 
purpose (monitoring and prediction) that is in common with all 
the cited applications, but, at the same time, it has many 
aspects that distinguish it from them. The proposal, is neither a 
predictive monitoring application nor a general prognostics 
tool for preventing undesired events in some fields like, for 
example, manufacturing industries, medicine, etc.  In fact the 
proposal concerns a general environment for building, using 
and administering specific application oriented predictive 
monitoring tools and concerns predictive monitoring applied 
to both preventing undesired events and favoring desired 
events. The proposal considers human operators using the 
various environments (Building, Using, Administering) by 
playing various roles (Tool builder, Tool user, Tool 
administrator). In particular, monitoring subjects is an activity 
carried out by a domain expert. In other words, it is the domain 
expert (i.e. a human agent) that carries out monitoring sessions 
and enters data about the current subject situation (context 
states, etc.). Again, it is the domain expert that defines the 
starting conditions for simulating the future (which context 
states are supposed to be constant in the future), and it is the 
domain expert that reads the simulation results and takes 
suitable measures. Let us notice though that the conceptual 
structure of the proposal concerning the theoretical model and 
the algorithm of the general Tool for probabilistic predictive 
monitoring (presented in section V), might be embedded in a 
software program. In such a case it is an automatic agent that 
plays the role of a human user of a specific predictive 
monitoring tool. For example, a software agent might 
periodically gather data about a subject (e.g. a machine) by 
means of sensors or other software programs interfacing a 
database. It is the software agent that activates simulations and 
then examines the results and as a consequence takes suitable 
measures (for example, if the probabilistic value related to a 
certain future age is greater than a given threshold, then the 
software agent activates suitable sub-programs). Finally, let us 
consider that, with respect to other approaches to predictive 
monitoring, the general predictive tool considered in the 
proposal is probabilistic. This means that the tool becomes 
predictive only after having collected a number of cases that is 
statistically significant, i.e. sufficient to be able to produce 
probabilistic inferences. Before reaching that condition the 
tool works like a mere monitoring tool (subject data 
acquisition and data entry into the database). 

 

IX.  CONCLUSION 
In this last decade predictive monitoring is an emerging 

theme of great social importance. In many real world fields the 
possibility for domain experts to have at their disposal tools 
that may support decisions and help take measures in advance 
is a crucial need. The paper has faced this problem by 
presenting a proposal that can be considered complete in that it 
includes both the theoretical model and its practical utilization 
inside a general tool for probabilistic predictive monitoring, 
tool that is in turn integrated in a general environment 
providing numerous and effective facilities for probabilistic 
predictive monitoring: facilities for creating new application 
oriented tools, monitoring subjects and simulating possible 
future probabilistic scenarios, administering tools and subjects 
and regulating co-operation among working groups. In this 
sense the proposal may represent a contribution to promote the 
use of predictive monitoring in heterogeneous domains.   

   

A. Future work  

The proposal implementation is in progress (the author is 
building a software prototype of the proposal). The prototype 
will be usable at the web address www.cheerup.it and should 
be ended by may 2013. Once the prototype will be available, it 
will be interesting to experiment the proposal by applying it to 
real world problems. To this end it will be crucial to select 
suitable application fields and co-operate with interested 
domain experts. 
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