

Abstract—The Linear Feedback Shift Register is the simplest kind
of feedback shift register. Based on the simple feedback sequences a
large body of mathematical theory can be applied to analyzing
LFSRs. A LFSR generates a random sequence of bits because it
depends on the output feedback to the XOR gate. This property leads
to generate pseudo-noise and pseudo-random number sequences and
so LFSR are used in cryptography in data encryption and data
compression circuits and also in communication and in error
correction circuits. During the time a main problem was the speed.
So, many research were develop in the frame of choosing the proper
polynomial. This paper present an analysis for the 8th degree
Irreducible Polynomials from the point of view of time. The
conclusion of this experiment is that almost all obtained results are in
the same time distribution.

Keywords: Cryptosystem, Irreducible polynomials, Pseudo-

Random Sequence, Shift registers.

I. INTRODUCTION
 A code-breaking machine appeared as one of the first
forms of a shift register early in the 40’s, in Colossus. It was a
five-stage device built of vacuum tubes and thyratrons. Many
different implementation forms were developed along the
years.

The LFSR (Linear Feedback Shift Register) is the basis of
the stream ciphers and most often used in hardware designs.

A string of memory cells stored a string of bits and a clock
pulse can advance the bits with one position in that string.

For each clock pulse it is produced the new bit in the string
using the XOR of certain positions.

The basis of every LFSR is developed with a polynomial,
which can be irreducible or primitive.[4]

A primitive polynomial satisfies some additional
mathematical conditions and determines for the LFSR to have
its maximum possible period, meaning (2n-1), where n is the
number of cells of the shift register or the length.

LFSR can be built based on XOR (exclusive OR) circuits
or XNOR (exclusive denied OR).

The difference of status is, of course, the equivalent status
will be 1, where it was 0. For an n bits LFSR, all the registers
will be configured as shift registers, but only the last
significant register will determine the feedback.
An n bits register will always have n + 1 signals.

Every LFSR works by taking the XOR of the selected bits
in its internal state and any LFSR containing all zero bits will
never move to any other state, so one possible state must be
excluded from any cycle.

An LFSR is composed of memory cells connected together
as a shift register with linear feedback. In digital circuits a shift
register is formed by flip-flops and EXOR gates chained
together with a synchronous clock.

Shift registers are a form of sequential logic like counters.
Always the shift registers produce a discrete delay of a

digital signal or waveform. Considering that a shift register has
n stages, the waveform is delayed by n discrete clock times.

Usually the naming of the shift register follows a type of
convention shown normally in digital logic, with the least
significant bit on the left.

According to the communication protocol, the signals will
be addressed, not the registers. There are n+1 signals for each
n-bit register. Always the next state of an LFSR is uniquely
determined from the previous one by the feedback network.

Any LFSR will generate a sequence of different states
starting with the initial one, called seed.
A feedback shift register is composed of:
- a shift register
- a feedback function.

 Fig.1. Feedback Shift Register Scheme
The most common type of shift registers used in

cryptography are LFSR. A 4-bit LFSR tapped at the first and
fourth bit is presented as functioning in the following .

The next sequence of internal states before repeating are
produced when the initial value was 1111.

The total number of sequences are 15.
All of them are shown in the following rows:

1 1 1 1
0 1 1 1
1 0 1 1
0 1 0 1
1 0 1 0
1 1 0 1

Study of Software implementation for Linear
Feedback Shift Register based on 8th degree

irreducible polynomials
Mirella A. Mioc and Mircea Stratulat

INTERNATIONAL JOURNAL OF COMPUTERS Volume 8, 2014

ISSN: 1998-4308 46

0 1 1 0
0 0 1 1
1 0 0 1
0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0
1 1 0 0
1 1 1 0

The output sequence is the string of least significant bits:

1 1 1 1 0 1 0 1 1 0 0 1 0 0 0....

An LFSR can be represented as a polynomial of variable x

referred to as the characteristic polynomial or the generator
polynomial.

A LFSR is a shift register, whose input bit is given from a
linear function of the initial status.

The initial value of the register is called seed and the
sequence produced is completely determined by the initial
status.

Because the register has a finite number of possible
statuses, after a period the sequence will be repeated.

If the feedback function is very good chosen the produced
sequence will be random and the cycle will be very long.

There are two kinds of implementation for LFSR [7]:

• Fibonacci implementation
• Galois implementation.

Fig. 2. Fibonacci implementation

In Fibonacci form the weight for any status is 0, when there

isn’t any connection and 1 for sending back.
Exceptions of this are the first and the last one, both

connected, so always on 1.

Fig.3. Galois implementation

In Galois implementation there is a Shift Register, whose
content is modified each step at a binary value sent to the
output.

In Galois configuration the single bit shifted out is XORed
with several bits in the shift register and in conventional
configuration each new bit input to the shift register is the
XOR of several bits in the register.

Comparing the two scheme of representation it is shown
that the weight order in Galois is opposite the one in
Fibonacci.

From the hardware point of view, Galois implementation is
fastest than Fibonacci because of the reduced number of XOR
gates in feedback and so it is much more used.

There are some industries in which Fibonacci form is
referenced as SSRG (Simple Shift Register Generator) and
Galois as MRSRG (Multiple-Return Shift Register Generator).

There are two types of LFSR from the utilization point of
view: the well-known LFSR, that is an “in-tapping” LFSR and
the “out-tapping” LFSR.

The “in-tapping” LFSR is usually called a MISR (Multiple
Input Shift Register).

Cycle codes belong to algebraically codes for errors
detecting. Another kind of classification for LFSR is internal
and external. For each implementation there is the same
characteristic polynomial defined by XOR positions. An
important aspect is that this internal and external LFSRs with
the same primitive polynomial do not generate same sequence,
only same length.

An important point of view for an optimal use of LFSR is
to choose primitive polynomials with minimum of XORs,
because each gate produces its own delay and for increasing
the speed is necessary to decrease their number. Some of the
well known primitive polynomials with minimum of XORs are
shown in the table 1.

Degree n Polynomial Power for x

2,3,4,6,7,15,22

n,1,0

5,11,21,29

n,2,0

8,19

n,6,5,1,0

9

n,4,0

10,17,20,25,28

n,3,0

12

n,7,4,3,0

13,24

n,4,3,1,0

14

n,12,11,1,0

16

n,5,3,2,0

 Table I. Primitive polynomials with minimum of XORs

LFSR is used for designing encoder and decoder for various
communication channels and also for different cryptographic

INTERNATIONAL JOURNAL OF COMPUTERS Volume 8, 2014

ISSN: 1998-4308 47

applications. Some simulation programs were developed and
used for testing and verifying the functioning of 4, 8 and 16 bit
LFSR [11].

It is known that the total number of random state generated
on LFSR depends on the characteristic or feedback
polynomial.

By using maximum feedback polynomial it can obtain
maximum 2n-1. For 32 Bit LFSR the period is 4294967295,
enough for most of the applications. The feedback polynomial
can be expressed in finite field arithmetic as a polynomial mod
2,meaning that the coefficients must be 0 or 1.

Always the first and the last bits are connected as an input
and output tap. When the number of LFSR taps is even, only
then, LFSR will be maximum length.

From the synthesis results obtained for all 8-th, 16-th and
32-th degree polynomials the following can be concluded :

The total number of generated Random States for 8 bits are
255 and 65535 for 16 bits.

The 32 bits LFSR can generate in total 4294967295
Random States, but it takes a lot of time.

The large Random Sequence generated of 32 bits LFSR is
more secure than the others obtained, but produce a lot of
difficulties in practice, because the necessity of too much time.

So, in almost all cryptographic applications is sufficient to
use 8 bit and 16 bit LFSR.

This experiment develops an analysis of a Linear Feedback
Shift Register and a Multiple Input – output Shift Register.

By using a primitive polynomial in the polynomials
modulo 2 as modular polynomial in the polynomial
multiplication it can be created a Galois Field of order 2n with
a polynomial beginning with xn.

Many encryption system are based on a hardware platform
such a cipher using a LFSR generator. LFSR circuits are very
fast, because to obtain the next states of each bit cell registry it
is not necessary to have any combination functions, only input
of individual flip-flop in directly connected to the output of the
previous one.

A LFSR is capable to generate a maximum number of
pseudo-random sequence only having a characteristic
polynomial being also primitive polynomial.

Taking P(x) a primitive polynomial , the reciprocal
polynomial is also primitive polynomial.

For being a primitive polynomial the polynomial must not
have a common divisor of its coefficients greater than one.

P(x) polynomial is used in Galois implementation and the
reciprocal polynomial in Fibonacci implementation.

Application from Communication systems to cryptography
uses LFSRs as generators of pseudorandom sequences. Often
LFSR software implementation are defined over the binary
field GF(2).

The same software implementation over the extended fields
GF(2n) and in this case it will obtain an increase of speed.[24]

Such kind of field can be denoted as GF(2n) or GF(n) and
one of the famous applications for that is in the Rijndael
Algorithm (AES), where n=8.

Beginning with 2000 Rijndael [5] cryptosystem is officially
the Advanced Encryption System (AES).

The old DES (Data Encryption Standard) [9] was broken

from Electronic Frontier Foundation in three days. The two
authors Joan Daemen and Vincent Rijman from Holland chose
to use a Galois Field GF (28) with the following generator
polynomial.

P(x)=x8+x4+x3+x+1

or ‘11B’ in hexadecimal representation.
All arithmetical operations are developed in a Galois

group.
The Shift Register Cryptosystems variant has been

developed from the evolution of the encrypting techniques
[11]. Such a cryptosystem is based upon generating a sequence
in a finite field and for obtaining it a Feedback Shift Register
is used.

There are some methods for using LFSR to build secure
ciphers.

For increasing the strength of the output from an LFSR,
often it is used another LFSR for controlling how often it is
stepped.

Another technique uses three LFSRs with different periods
and it is known as the Geffe generator.

Usually it is necessary to combine the methods for
obtaining more elaborate constructions.

Almost all applications of using shift registers representing
generator polynomials need to be developed in a finite field.

Evariste Galois demonstrated that a field is an algebra with
both addition and multiplication forming a group. Some
ground information from Algebra demonstrated the importance
of working with irreducible polynomials and primitive
polynomials. Also the importance of using shift registers in
cryptosystems based on irreducible polynomials is
demonstrated in increasing the security obtained.

The Linear Feedback Shift Registers are used in a variety
of domains:

• Pattern Generators;
• Testing [1], [18];
• Optimized counters [2]
• Data Encryption/ Decryption;
• Built-in Self-Test (BIST) [7], [9];
• Digital Signal Processing
• Pseudo-random Number Generation(PN)
• Scrambler/Descrambler
• Data Integrity
• Checksums;
• Signature Analyzer [3];
• Error Correction;
• Wireless communications.

II. MATHEMATICAL BACKGROUND

A finite field (FF) or Galois Field (GF), so named in
honour of Evariste Galois, in abstract algebra is a field that
contains only finitely many elements.

 Finite fields are important in algebraic theory, number
theory, Galois theory, cryptography and coding theory [16].
It’s possible to classify the finite fields by size.

INTERNATIONAL JOURNAL OF COMPUTERS Volume 8, 2014

ISSN: 1998-4308 48

So, for each prime p and positive integer k there is exactly
one finite field up to isomorphism of size pk.

Each finite field of size q is the splitting field of the
polynomial xq – x.

Similarly the multiplicative group of the field is a cyclic
group.

Finite fields have applications in many areas of
mathematics and computer science, including coding theory
[20] and others.

The finite fields are classified as follows:
• The number of elements or order, of a finite field is of

the form pn, where p is a prime number called the
characteristics of the field, and n is a positive integer.

• There exists a finite field with pn elements for every
prime number p and positive integer n.

• Any two finite fields with the same number of
elements are isomorphic. It means that under same
remaining of the elements of one of these, both its
addition and multiplication tables become identical to
the corresponding table of the other one.

The use of a naming scheme for finite fields that specifies
only the order of the field is justified by this classification.

Notations for a finite field can be: Fp
n and GF(pn).

Arithmetic in a finite field is different from the standard
integer arithmetic.

In the finite field there are a limited number of elements
and the result of any operation performed is an element within
that field.

Each finite field is not infinite, but despite this there are
infinitely many different finite fields and their cardinal
(number of elements) is necessarily of the form pn where p is a
prime number and n is a positive integer.

Two finite fields of the same size are isomorphic.
The prime p is called the characteristic of the field and the

positive integer n is called the dimension of this field over its
prime field.

Finite fields are used in a variety of applications as in
classical coding theory in linear block codes such as BCH
(Bose Chaudhuri Hocquenghem) and RS (Reed Solomon) and
in cryptography algorithms such as DES (Data Encryption
Standard) and Rinjdael encryption algorithm (AES).

A binary polynomial f(x) of degree n has the form:
 f(x) = xn + an-1xn-1+ … +a1x + a0
where ai are binary coefficients.

Binary polynomials are added and multiplied in the normal
manner of adding and multiplying polynomials except that the
resulting coefficients are reduced modulo two.

A binary polynomial f(x) divides polynomial h(x) provided
one can find a binary polynomial g(x) such that f(x)g(X)=h(x).
For example let f(x) = x3 + x + 1 and h(x) = x7 + 1, then from
Example 3 f(x) divides h(x) since f(x)g(x) = h(x) where g(x) =
x4 + x2 + x + 1.

A binary polynomial f(x) is said to be irreducible if its only
divisors are 1 and f(x). For example one can show that x3 + x
+1 is an irreducible polynomial. It can be shown that if f(x) is
an irreducible binomial polynomial of degree n then f(x) is a
divisor of x2n-1 + 1.

An irreducible binomial polynomial on degree n is
primitive if f(x) is not a divisor of xr+1 for any r less than
2n-1. For example x3+x+1 is a primitive polynomial since

x3+ x + 1 does not divide xr + 1 for r less than 7.
 The binary vector and power representations are two other
methods of denoting GF(2n). As before let f(x) be a primitive
binomial polynomial of degree n. Let z be a number such that
f(z) = 0.

• Binary Vector Representation
For each element h(z) = a0 + a1z + ... + an-1zn-1 in GF(2n one

can define a binary n-tuple by identifying:
 h(z)={a0, a1, ..., an-1}

• Power Representation
 It can be shown that since f(x) is a divisor of x2n-1 + 1

and not a divisor of xr + 1 for t less than 2n-1 then z2n-1 = 1 and
that zi≠zj for i≤j≤2n-1. Using the exponential notation z0 = 1,
GF(2n) can be defined in terms of zi as:

GF(2n) = { z0, z1, z3, .., z2n-2} U {0}
 This is defined to be the power representation of GF(2n).

Since every non-zero element in GF(2n) can be expressed as a
power of z this element is a generator of GF(2n).

 For most applications of GF(2n) to cryptography, the
value of n is large and it is impossible to construct a complete
look-up table for the field. In transmission of data the binary n-
tuple representation (a0, a1, ..., an-1) is used. The discrete log
problem is that, given the binary n-tuple representation of an
element in GF(2n), find its power representation. For large n
this is an intractable problem. The reverse problem of given
the power representations find the binary n-tuple
representation can be easily solved by using the division
algorithm as follows:

• Let a = zi be an element of GF(2n) defined by
primitive polynomial f(x);

• By division algorithm xi =q(x)f(x) +r(x) where degree
of r(x) < n or 0;

• By substitution zi = q(z)f(z) +r(z) which implies that
zi =f(z).

For security reasons it was demonstrated that the
maximum number of pseudo-random sequences is obtained by
using irreducible polynomials [19].

III. EXPERIMENTAL RESULTS AND MATHEMATICAL CALCULUS

The main subject of analysis the functioning of linear
feedback shift register (LFSR) and multiple input output shift
register has the irreducible polynomials for degree 4, 8 and 16
[10].

All the analysis is based on the three possible
implementations for LFSR [21].

First of all were developed programs for simulating the
functioning for the three different types of implementations for
comparing the obtained results for 4 degree irreducible
polynomials [12].

For all analysis functioning of LFSR for 8 degree
irreducible polynomials a complete presentation was made in
[13].

INTERNATIONAL JOURNAL OF COMPUTERS Volume 8, 2014

ISSN: 1998-4308 49

In the following table there are presented all the 30 irreducible
polynomials of 8 degree.

No. Polynomial
1 x8+x4+x3+x+1
2 x8+x4+x3+x2+1
3 x8+x5+x3+x+1
4 x8+x5+x3+x2+1
5 x8+x5+x4+x3+1
6 x8+x5+x4+x3+x2+x+1
7 x8+x6+x3+x2+1
8 x8+x6+x4+x3+x2+x+1
9 x8+x6+x5+x+1
10 x8+x6+x5+x2+1
11 x8+x6+x5+x3+1
12 x8+x6+x5+x4+1
13 x8+x6+x5+x4+x2+x+1
14 x8+x6+x5+x4+x3+x+1
15 x8+x7+x2+x+1
16 x8+x7+x3+x+1
17 x8+x7+x3+x2+1
18 x8+x7+x4+x3+x2+x+1
19 x8+x7+x5+x+1
20 x8+x7+x5+x3+1
21 x8+x7+x5+x4+1
22 x8+x7+x5+x4+x3+x2+1
23 x8+x7+x6+x+1
24 x8+x7+x6+x3+x2+x+1
25 x8+x7+x6+x4+x2+x+1
26 x8+x7+x6+x4+x3+x2+1
27 x8+x7+x6+x5+x2+x+1
28 x8+x7+x6+x5+x4+x+1
29 x8+x7+x6+x5+x4+x2+1
30 x8+x7+x6+x5+x4+x3+1

 Table II. The 8 degree irreducible polynomials

It was developed a simulation program for the functioning

on LFSR of 8 degree for the Galois implementation [13].
In the following it will be presented an analysis for the

irreducible polynomial:
 P(x) = x8+ x6+ x5+ x3+1

 Fig.4. Fibonacci implementation for
 P(x) = x8+ x6+ x5+ x3+1

The weights for each position are shown in the next rows:

S0=1 P(x)
S1=x P(x)
S2=x2 P(x)

S3=(x3+x) P(x)
S4=(x4+x2+x) P(x)
S5=(x5+x3+x2) P(x)

S6=(x6+x4+x3+x) P(x)
S7=(x7+x5+x4+x2) P(x)

First of all in this analysis it was verified with the

simulation program for each weight the result, which is the
same with the result of the polynomial division and also with
the result obtained from the simulation table.

It is presented only the situation of the 7-th weight and
after that the next table contains all the other results for all the
weights.

All the analysis is referring the results obtained for the
Galois implementation.

The result is obtained by the quotient division between the
result of multiplying the remainder (the results from Fibonacci
implementation) and x8, and the used irreducible polynomial.

INTERNATIONAL JOURNAL OF COMPUTERS Volume 8, 2014

ISSN: 1998-4308 50

Table IV. The weights for Galois implementation for
 P(x) = x8+ x6+ x5+ x3+1

 The next program was developed for analysis of all 8th
degree irreducible polynomials. There are 30 different
processings for each polynomial and in the main program it
was counted the time for each situation. The program was
executed in linux and it was necessary to use – lrt option for
accessing time specific functions.

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

#include "prelucrareA0.c"
#include "prelucrareAl.c"
#include "prelucrareA2.c"
#include "prelucrareA3.c"
#include "prelucrareA4.c"
#include "prelucrareA5.c"
#include “prelucrareA6.c"
#include “prelucrareA7.c"

#include "prelucrareA8.c"
#include "prelucrareA9.c"
#include "prelucrareAlO.c"
#include "prelucrareAll.c"
#include "prelucrareAl2.c"
#include "prelucrareA13.c"
#include "prelucrareAl4.c"
#include "prelucrareA15.c"
#include “prelucrareA16.c"
#include "prelucrareAl7.c"
#include "prelucrareAl8.c"
#include "prelucrareA19.c"
#include "prelucrareA20.c"
#include "prelucrareA21.c"
#include "prelucrareA22.c"
#include "prelucrareA23.c"
#include "prelucrareA24.c"
#include "prelucrareA25.c"
#include "prelucrareA2 6.c"
#include "prelucrareA27.c"
#include "prelucrareA28.c"
#include “prelucrareA29.c"
struct timespec tstart={0,0}, tend={0,0};

FILE *pf,*fin;
int k,x[23],Lung;

void afis(int tab[],int n)
{
 int i;

 if(k==1)
 {
 printf(" ");
 fprintf(pf," ");
 }
 else
 {
 fprintf(pf,"x^%d.",Lung-k+1);
 printf("x^%d.",Lung-k+1);
 }

 for (i=0;i<n;i++)
 {
 printf(" %d ",tab[i]);
 fprintf(pf," %d ",tab[i]);
 }
 fprintf(pf,"\n");
 printf("\n");
}

typedef void (*prel_t)(int n, int knt, int a[],int s[]);

prel_t preltab[30] =
{prelucrareA0,prelucrareA1,prelucrareA2,prelucrareA3,preluc
rareA4,prelucrareA5,prelucrareA6,prelucrareA7,prelucrareA8,

The weight The result
7 x4+ x2
6 x6+ x5+ x4+ x2+ 1
5 x7+ x6+ x5+ x4+ 1
4 x7+ x3+ x2
3 x7+ x6+ x
2 x7+ x6+ x + 1
1 x5+ x4
0 x6+ x4+ x2+ 1

 SR0 SR1 SR2 SR3 SR4 SR5 SR6 SR7
 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 1
1 1 0 0 0 0 0 0 1
1 1 1 0 0 0 0 0 1
1 0 1 1 0 0 0 0 1
1 1 0 1 1 0 0 0 1
1 0 1 0 1 1 0 0 1
1 1 0 1 0 1 1 0 1
1 1 1 0 1 0 1 1 1
0 0 1 1 0 1 0 1 1
0 0 0 1 1 0 1 0 1
0 0 0 0 1 1 0 1 0
0 1 0 0 0 1 1 0 1
0 0 1 0 0 0 1 1 0
0 1 0 1 0 0 0 1 1
0 0 1 0 1 0 0 0 1
0 0 0 1 0 1 0 0 0
 x2 x4

 Table III. Calculus for S7

INTERNATIONAL JOURNAL OF COMPUTERS Volume 8, 2014

ISSN: 1998-4308 51

prelucrareA9,prelucrareA10,prelucrareA11,prelucrareA12,prel
ucrareA13,prelucrareA14,prelucrareA15,prelucrareA16,preluc
rareA17,prelucrareA18,prelucrareA19,prelucrareA20,
prelucrareA21,prelucrareA22,prelucrareA23,prelucrareA24,pr
elucrareA25,prelucrareA26,prelucrareA27,prelucrareA28,prel
ucrareA29};

int main(int argc, char *argv[])
{

 if(argc==1)
 {
 printf("Lipsa nume la functia prelucrare. (1 ,2 ,3 ...)\n");
 exit(EXIT_FAILURE);
 }
 else
 {

 int s[50],a[50],i,j,numprel;

 pf=fopen("LFSR8_Schema_A.txt","a");
 if(!pf)
 {
 printf("Eroare la deschiderea fisierului
LFSR8_Schema_A.txt !!!\n");
 exit(EXIT_FAILURE);
 }

 fin=fopen("lfsr8.txt","r");
 if(!fin)
 {
 printf("Eroare la deschiderea fisierului lfsr8.txt !!!\n");
 exit(EXIT_FAILURE);
 }

 for(i=0;i<8;i++)
 s[i]=0;

 if(fscanf(fin,"%d",&Lung)!=1)
 {
 printf("Eroare la citirea lungimii polinomului!\n");
 exit(EXIT_FAILURE);
 }

 for(i=0;i<Lung;i++)
 if(fscanf(fin,"%d",&x[i])!=1)
 {
 printf("Eroare la citirea indicelui %d\n",i);
 exit(EXIT_FAILURE);
 }

 numprel = atoi(argv[1]);

 clock_gettime(CLOCK_MONOTONIC, &tstart);
 k=1;

 printf("Se foloseste functia: %d!\n",numprel);
 fprintf(pf,"Se foloseste functia: %d!\n",numprel);

 for(i=0;i<Lung+1;i++)
 {
 afis(s,8);
 preltab[numprel-1](8, i, a, s);
 for(j=0;j<8;j++)
 s[j]=a[j];
 }

 clock_gettime(CLOCK_MONOTONIC, &tend);

 printf("Executarea buclei a durat: %.5f secunde.\n\n",
 ((double)tend.tv_sec + 1.0e-9*tend.tv_nsec) -
 ((double)tstart.tv_sec + 1.0e-9*tstart.tv_nsec));
 fprintf(pf,"Executarea buclei a durat: %.5f secunde.\n\n",
 ((double)tend.tv_sec + 1.0e-9*tend.tv_nsec) -
 ((double)tstart.tv_sec + 1.0e-9*tstart.tv_nsec));

 fclose(pf);
 fclose(fin);
 return 0;
 }
}

In this program it was used an input file (lfsr8.txt)
containing the input data polynomial and another output file
(LFSR8_Schema_A.txt) containing the output sequences
while the time is measured for each execution of functioning
simulation for all the 30 irreducible polynomials of 8th degree.

The following table contains the time measured in seconds.

Time
10bits

Time
 16 bits

Time
 255 bits

prelucrareA0 0.00083 0.0002 0.02697
prelucareA1 0.00016 0.00022 0.00361
prelucareA2 0.00007 0.00016 0.00389
prelucareA3 0.00012 0.00021 0.00373
prelucareA4 0.00016 0.00015 0.00384
prelucareA5 0.00012 0.00022 0.02516
prelucareA6 0.00017 0.00013 0.00364
prelucareA7 0.00012 0.00024 0.00414
prelucareA8 0.0002 0.00022 0.0039
prelucareA9 0.0008 0.00019 0.00392
prelucareA10 0.00018 0.00021 0.00397
prelucareA11 0.00011 0.00016 0.00346
prelucareA12 0.00018 0.00016 0.00425
prelucareA13 0.00007 0.00019 0.00397
prelucareA14 0.00016 0.00022 0.00424
prelucareA15 0.00022 0.00021 0.00696
prelucareA16 0.00015 0.00023 0.00387
prelucareA17 0.00007 0.00022 0.00405

INTERNATIONAL JOURNAL OF COMPUTERS Volume 8, 2014

ISSN: 1998-4308 52

prelucareA18 0.00013 0.00016 0.00377
prelucareA19 0.00015 0.00015 0.00396
prelucareA20 0.00017 0.0002 0.00446
prelucareA21 0.00017 0.00021 0.01093
prelucareA22 0.00012 0.00016 0.00382
prelucareA23 0.00016 0.00015 0.00396
prelucareA24 0.00016 0.0002 0.00399
prelucareA25 0.00007 0.00017 0.00825
prelucareA26 0.00015 0.00025 0.00351
prelucareA27 0.00013 0.00022 0.00377
prelucareA28 0.00012 0.00021 0.00374
prelucareA29 0.0002 0.00019 0.00382

 Table V. Results of the main program

The next two graphics show the obtained results from the

execution of the main program for each of all 30 degree 8
irreducible polynomials for three different situations
depending on the entrance data polynomial.

The lengths of the entrance polynomials were 10, 16,
255bits. The maximum length of sequences is 28-1 [17].

Fig.5. Time distribution for input data of 16, 255 bits

Fig.6. Time distribution for input data of 10, 16, 255 bits

The distribution obtaining in function of the lengths of
data input polynomial shows that time depends of input length,
but for lengths that are quit close the processing times obtain
are also close (this can be seen in Fig.6 results for 10 and 16
bits inputs).

Time does not change so much depending on which one of
the 30 different 8th degree irreducible polynomials has been
used.

IV. RELATED WORKS

A huge amount of digital data is being exchanged over
unsecured channels because the rapid growth of computer
networks and advances technology.
Information security has become a very critical point of
modern computing systems to protect data from unauthorized
access. Security in an important issue in communication and
storage. Transmission and storage of multimedia data has
increased in today’s digital communication. The advanced
Encryption Standard (AES), International Data Encryption
Algorithm and some conventional algorithms like Data
Encryption Standard have certain limitations in multimedia
data encryption, so many new methods for encryption were
developed by numerous researchers.
For protecting digital data from unauthorized eavesdropping
three different ways can be used: cryptography, steganography
and watermarking.
Cryptography has become one of the major tools for obtaining
high level of security dealing with the development of
techniques for converting information.
Yoon and Kim in 2010 developed a chaotic image cipher in
witch initially a small matrix was generated using chaotic
logistic map. Developing some conventional classical
cryptographic techniques is the most common way to protect
large multimedia fields.

0.0001

0.001

0.01

0.1

1
0 1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930

t 16 biti

t 255 biti

0.00001

0.0001

0.001

0.01

0.1

1
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

t 10biti

t 16 biti

t 255 biti

INTERNATIONAL JOURNAL OF COMPUTERS Volume 8, 2014

ISSN: 1998-4308 53

Both software and hardware implementations of RSA or El-
Gamal cannot support fast and high speed encryption rates.
Triple DES or Blowfish are suitable for transmission of large
amounts of information. Much more suitable for multimedia
content rich data encryption are the chaos-based crypto
schemes. V G. A. Sathishkumar, K. Bhoopathy proposed an
Encryption Algorithm using Chaotic Block Cipher [23].
They proved that the proposed approach is very good to
adeptly trade offs between the speed and protection. The
dimension and complexity of real world data sets is in an
continuous grown and determines combining two or more
algorithms for obtaining advanced data mining algorithms.
A special place in this research is occupied of a powerful
machine learning technique from the family of evolutionary
algorithms called genetic programming [22].Due cryptography
is the art of making ciphertext, cryptanalysis is the art of
breaking them.
Vimalathithan R., M. L. Valarmathi developed an approach for
breaking the key used in Simplified-Data Encryption Standard
(S-DES) using Genetic Algorithm (GA) combined with two
optimization techniques called Particle Swarm Optimization (
PSO) and Genetic Swarm Optimization (GSO) [15].
Analyzing the different kinds of LFSR implementation a new
problem appear. This problem is how LFSR parameters must
be chosen for developing an efficient implementation [8].
C. Lauradoux obtained a new tool for generatingthek-bit leap-
forward implementation of an LFSR with a given polynomial.
Putting together the feedback computation and shift operation
it results the leap-forwarding. This implementation uses a
vector-matrix multiplication for showing a single step of an
LFSR. The analyze uses both Fibonacci and Galois LFSR
setups in VLSI design.
The conclusions proved that for increasing the security the
characteristic polynomial must be primitive.
Design for Testability (DFT) is another area for using LFSR
functions.
Built-In Self-Test (BIST) allows for a circuit itself testing
without using any other external equipment.
So BIST are low cost comparing to any external testing.
Specially in BIST implementation LFSR can be used for
pseudo-random patterns, response compaction, polynomial
division and others. Also it is possible to use in the same
BIST, a LFSR for implementing the pseudo-random test –
pattern generator and a Multi-Input Shift Register (MISR) for
a signature analyzer.
LFSR is very popular for both implementation of Test Pattern
Generator (TPG) and Output Response Analyzer (ORA).
The popularity of LFSR used in BIST application is owed to
compact and simple design.

V. CONCLUSION

 The whole analysis of functioning for irreducible
polynomials of 8 degree proves that almost all obtained results
are in the same distribution of time.
 The aspect of security was taken into consideration, so that
the used polynomials are all irreducible or primitive
polynomials.

Another important aspect presented in this analysis is the
discovery of the new formula for the calculation of the weights
used for obtaining the final result.

 This formula was tested for all the situations referring to
degree 8 irreducible polynomials and the final conclusion is
that the mathematical relations discovered are correct.

 A shift register is a device whose function is to shift its
contents into adjacent positions within the register or, for the
end position, out of the register.

The main practical uses for a shift register are:
• the delay of a serial bit stream;
• the convert between parallel and serial data.

This study focuses on a comparative study of different
types of implementations for a Linear Feed-back Shift Register
for 8 degree irreducible polynomials. The results of all these
experiments were used for obtaining some graphics showing
the time distribution.

INTERNATIONAL JOURNAL OF COMPUTERS Volume 8, 2014

ISSN: 1998-4308 54

REFERENCES

[1] Abramovici M., Breuer M. A., Friedman A. D., Digital

Systems Testing and Testable Design, Computer
Science Press,1990;

[2] Alfke P., Efficient Shift Registers, LFSR,Counters,
and Long Pseudo-Random Sequence
Generators,XAPP 052, July 7,1996.

[3] Alvarez R., Martinez F.-M., Vicent J.-F., Zamora A.,
A Matricial Public Key Cryptosystem with Digital
Signature, WSEAS TRANSACTIONS on
MATHEMATICS Manuscript , vol.7,No.4,2008, pp.
195-204.

[4] Angheloiu I., Gyorfi E., Patriciu V.V., Securitatea şi
protecţia informaţiei în sistemele electronice de
calcul, Ed. Militară, Bucureşti, 1986.

[5] Daemen J., Rijmen V., "The Design of Rijndael: AES -
The Advanced Encryption Standard", Springer-Verlag,
2002.

[6] Delgado-Mohatar O., Fúster-Sabater A., Software
Implementation of Linear Feedback Shift Registers
over Extended Fields, International Joint Conference
CISIS’12-ICEUTE´12-SOCO´12 Special Sessions,
Advances in Intelligent Systems and Computing
Volume 189, 2013, pp 117-126.

[7] Goresky M., Klapper A., Fibonacci And Galois
Representations of Feedback with Carry Shift
Registers, December 4, 2004;

[8] Lauradoux C. From Hardware to Software Synthesis of
Linear Feedback Shift Registers, Parallel and
Distributed Processing Symposium, 2007. IPDPS
2007. IEEE International, Long Beach, CA, 26-30
March 2007.

[9] Matsui M., The First Experimental Cryptanalysis of
the Data Encryption Standard.In Advances in
Cryptology, Proceedings of Crypto'94, LNCS 839, Y.
Desmedt, Ed., Springer-Verlag, 1994.

[10] Mioc M. A., An analyze of functioning for a linear
feed-back shift register and a multiple input-output
shift register, Buletinul Stiintific al Universitatii
„Politehnica” din Timisoara, Seria ELECTRONICA si
TELECOMUNICATII, Transactions on electronics
and communications, Tom 50(64), Fascicola 2, 2005.

[11] Mioc M. A., A complete analyze of using Shift
Registers in Cryptosystems for Grade 4, 8 and 16
Irreducuble Polynomials, WSEAS Transactions on
Computers, Volume 7, October 2008, pp 1805-1817

[12] Mioc M. A., Simulation study of the functioning of
LFSR for grade 4 Irreducible Polynomials, WSEAS
Conference ISPRA, 21-23 February, 2009.

[13] Mioc M. A., Study of Using Shift Registers in
Cryptosystems for Grade 8 Irreducible Polynomials,
WSEAS Conference SMO, 23-25 September 2008.

[14] Owais S., Krömer P., Platoš J., Snášel V., Zelinka I.,
Data Mining by Symbolic Fuzzy Classifiers and
Genetic Programming–State of the Art and Prospective

Approaches, WSEAS TRANSACTIONS on
COMPUTERS, Issue 6, Volume 12, March 201385-
94.

[15] Sathishkumar G. A., Bhoopathy K., A Novel Image
Encryption Algorithm Using Pixel Shuffling and
BASE 64 Encoding Based Chaotic Block Cipher
(IMPSBEC) WSEAS TRANSACTIONS on
COMPUTERS, Issue 6, Volume 10, June 2011,pp
169-178.

[16] Schneier B., Applied Cryptology: Protocols,
Algorithms, and Source Code in C, John Wiley and
Sons, New York, 1996;

[17] Shannon C.E., Mathematical Theory of
Communication, 1948.

[18] Solomon G., Shift register sequences, Aegean Park
Press, Laguna Hills, Canada, 1967.

[19] Tsui F., LSI/VLSI Testability Design, McGraw-Hill
Book Company, 1987.

[20] Udar S., Kagaris D., LFSR Reseeding with Irreducible
Polynomials, IOLTS 2007, pp. 293-298.

[21] Van Lint J.H., Introduction to Coding Theory, 2nd ed.,
Springer-Verlag, USA, 1992.

[22] Vlăduţiu M., Crişan M., Tehnica testării
echipamentelor automate de prelucrare a datelor,
Editura Facla, Timişoara, 1989.

[23] Vimalathithan R., M. L. Valarmathi, Cryptanalysis of
Simplified-DES using Computational Intelligence,),
WSEAS TRANSACTIONS on COMPUTERS, Issue
6, Volume 10, July 2011,pp 210-219.

[24] Yoon J. W, Hyoungshick K., An image encryption
scheme with a pseudorandom permutation based on
chaotic maps, Communications in Nonlinear Science
and Numerical Simulation Volume 15, Issue 12,
December 2010, Pages 3998– 4006.

INTERNATIONAL JOURNAL OF COMPUTERS Volume 8, 2014

ISSN: 1998-4308 55

http://www.sciencedirect.com/science/article/pii/S1007570410000729#cor1

