
 

 

  
Abstract—The Linear Feedback Shift Register is the simplest kind 
of feedback shift register. Based on the simple feedback sequences  a 
large body of mathematical theory can be applied to analyzing 
LFSRs. A LFSR generates a random sequence of bits because it 
depends on the output feedback to the XOR gate. This property leads 
to generate pseudo-noise and pseudo-random number sequences and 
so LFSR are used in cryptography in data encryption and data 
compression circuits and also in communication and in error 
correction circuits. During the time a main problem was the speed. 
So, many research were develop in the frame of choosing the proper 
polynomial. This paper present an analysis for the 8th degree 
Irreducible Polynomials from the point of view of time. The 
conclusion of this experiment is that almost all obtained results are in 
the same time distribution.  

 
Keywords: Cryptosystem, Irreducible polynomials, Pseudo-

Random Sequence, Shift registers.  

I. INTRODUCTION 
 A code-breaking machine appeared as one of the first 
forms of a shift register early in the 40’s, in Colossus. It was a 
five-stage device built of vacuum tubes and thyratrons. Many 
different implementation forms were developed along the 
years. 

The LFSR (Linear Feedback Shift Register) is the basis of 
the stream ciphers and most often used in hardware designs. 

A string of memory cells stored a string of bits and a clock 
pulse can advance the bits with one position in that string. 

For each clock pulse it is produced the new bit in the string 
using the XOR of certain positions. 

The basis of every LFSR is developed with a polynomial, 
which can be irreducible or primitive.[4] 

A primitive polynomial satisfies some additional 
mathematical conditions and determines for the LFSR to have 
its maximum possible period, meaning (2n-1), where n is the 
number of cells of the shift register or the length. 

LFSR can be built based on XOR (exclusive OR) circuits 
or XNOR (exclusive denied OR). 

The difference of status is, of course, the equivalent status 
will be 1, where it was 0. For an n bits LFSR, all the registers 
will be configured as shift registers, but only the last 
significant register will determine the feedback. 
An n bits register will always have n + 1 signals. 

 
 

Every LFSR works by taking the XOR of the selected bits 
in its internal state and any LFSR containing all zero bits will 
never move to any other state, so one possible state must be 
excluded from any cycle. 

An LFSR is composed of memory cells connected together 
as a shift register with linear feedback. In digital circuits a shift 
register is formed by flip-flops and EXOR gates chained 
together with a synchronous clock. 

Shift registers are a form of sequential logic like counters. 
Always the shift registers produce a discrete delay of a 

digital signal or waveform. Considering that a shift register has 
n stages, the waveform is delayed by n discrete clock times. 

Usually the naming of the shift register follows a type of 
convention shown normally in digital logic, with the least 
significant bit on the left. 

According to the communication protocol, the signals will 
be addressed, not the registers. There are n+1 signals for each 
n-bit register. Always the next state of an LFSR is uniquely 
determined from the previous one by the feedback network.  

Any LFSR will generate a sequence of different states 
starting with the initial one, called seed. 
A feedback shift register is composed of: 
- a shift register 
- a feedback function. 

 
 
 
 
 
 
      Fig.1. Feedback Shift Register Scheme 
The most common type of shift registers used in 

cryptography are LFSR. A 4-bit LFSR tapped at the first and 
fourth bit is presented as functioning in the following . 

The next sequence of internal states before repeating are 
produced when the initial value was 1111. 

The total number of sequences are 15. 
All of them are shown in the following rows: 
 
1 1 1 1  
0 1 1 1  
1 0 1 1  
0 1 0 1  
1 0 1 0  
1 1 0 1  
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0 1 1 0  
0 0 1 1  
1 0 0 1  
0 1 0 0  
0 0 1 0  
0 0 0 1  
1 0 0 0  
1 1 0 0  
1 1 1 0 

 
The output sequence is the string of least significant bits:  
 
1 1 1 1 0 1 0 1 1 0 0 1 0 0 0....  

 
 
An LFSR can be represented as a polynomial of variable x 

referred to as the characteristic polynomial or the generator 
polynomial. 

A  LFSR is a shift register, whose input bit is given from a 
linear function of the initial status. 

The initial value of the register is called seed and the 
sequence produced is completely determined by the initial 
status. 

Because the register has a finite number of possible 
statuses, after a period the sequence will be repeated. 

If the feedback function is very good chosen the produced 
sequence will be random and the cycle will be very long. 

 
 
There are two kinds of implementation for LFSR [7]: 

• Fibonacci implementation  
• Galois  implementation. 

 
Fig. 2. Fibonacci implementation 

 
In Fibonacci form the weight for any status is 0, when there 

isn’t any connection and 1 for sending back. 
Exceptions of this are the first and the last one, both 

connected, so always on 1. 
 
 
 
 
 

 
 

Fig.3. Galois implementation 
 

In Galois implementation there is a Shift Register, whose 
content is modified each step at a binary value sent to the 
output. 

In Galois configuration the single bit shifted out is XORed 
with several bits in the shift register and in conventional 
configuration each new bit input to the shift register is the 
XOR of several bits in the register. 

Comparing the two scheme of representation it is shown 
that the weight order in Galois is opposite the one in 
Fibonacci. 

From the hardware point of view, Galois implementation is 
fastest than Fibonacci because of the reduced number of XOR 
gates in feedback and so it is much more used. 

There are some industries in which Fibonacci form is 
referenced as SSRG (Simple Shift Register Generator) and 
Galois as MRSRG (Multiple-Return Shift Register Generator). 

There are two types of LFSR from the utilization point of 
view: the well-known LFSR, that is an “in-tapping” LFSR and 
the “out-tapping” LFSR. 

The “in-tapping” LFSR is usually called a MISR (Multiple 
Input Shift Register). 

Cycle codes belong to algebraically codes for errors 
detecting. Another kind of classification for LFSR is internal 
and external. For each implementation there is the same 
characteristic polynomial defined by XOR positions. An 
important aspect is that this internal and external LFSRs with 
the same primitive polynomial do not generate same sequence, 
only same length. 

An important point of view for an optimal use of LFSR is 
to choose primitive polynomials with minimum of XORs, 
because each gate produces its own delay and for increasing 
the speed is necessary to decrease their number. Some of the 
well known primitive polynomials with minimum of XORs are 
shown in the table 1. 

 
Degree n Polynomial Power for x 

2,3,4,6,7,15,22 
 

n,1,0 

5,11,21,29 
 

n,2,0 

8,19 
 

n,6,5,1,0 

9 
 

n,4,0 

10,17,20,25,28 
 

n,3,0 

12 
 

n,7,4,3,0 

13,24 
 

n,4,3,1,0 

14 
 

n,12,11,1,0 

16 
 

n,5,3,2,0 
 

    Table I. Primitive polynomials with minimum of XORs 
 

LFSR is used for designing encoder and decoder for various 
communication channels and also for different cryptographic 
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applications. Some simulation programs were developed and 
used for testing and verifying the functioning of 4, 8 and 16 bit 
LFSR [11]. 

It is  known that the total number of random state generated 
on LFSR depends on the characteristic or feedback 
polynomial. 

By using maximum feedback polynomial it can obtain 
maximum 2n-1. For 32 Bit LFSR the period is 4294967295, 
enough for most of the applications. The feedback polynomial 
can be expressed in finite field arithmetic as a polynomial mod 
2,meaning that the coefficients must be 0 or 1. 

Always the first and the last bits are connected as an input 
and output tap. When the number of LFSR taps is even, only 
then, LFSR will be maximum length. 

From the synthesis results obtained for all 8-th, 16-th and 
32-th  degree polynomials the following can be concluded : 

The total number of generated Random States for 8 bits are 
255 and 65535 for 16 bits. 

The 32 bits LFSR can generate in total 4294967295 
Random States, but it takes a lot of time. 

The large Random Sequence generated of 32 bits LFSR is 
more secure than the others obtained, but produce a lot of 
difficulties in practice, because the necessity of too much time. 

So, in almost all cryptographic applications is sufficient to 
use 8 bit and 16 bit LFSR. 

This experiment develops an analysis of a Linear Feedback 
Shift Register and a Multiple Input – output Shift Register. 

By using a primitive polynomial in the polynomials 
modulo 2 as modular polynomial in the polynomial 
multiplication it can be created a Galois Field of order 2n with 
a polynomial beginning with xn. 

Many encryption system are based on a hardware platform 
such a cipher using a LFSR generator. LFSR circuits are very 
fast, because to obtain the next states of each bit cell registry it 
is not necessary to have any combination functions, only input 
of individual flip-flop in directly connected to the output of the 
previous one. 

A LFSR is capable to generate a maximum number of 
pseudo-random sequence only having a characteristic 
polynomial  being  also primitive polynomial. 

Taking P(x) a primitive polynomial , the reciprocal 
polynomial is also primitive polynomial. 

For being a primitive polynomial  the polynomial must not 
have a common divisor of its coefficients greater than one. 

P(x) polynomial is used in Galois implementation and the 
reciprocal polynomial in Fibonacci implementation. 

Application from Communication systems to cryptography 
uses LFSRs as generators of pseudorandom sequences. Often 
LFSR software implementation are defined over the binary 
field GF(2). 

The same software implementation over the extended fields 
GF(2n)  and in this case it will obtain an increase of speed.[24] 

Such kind of field can be denoted as GF(2n) or GF(n) and 
one of the famous applications for that is in the Rijndael 
Algorithm (AES), where n=8. 

Beginning with 2000 Rijndael [5] cryptosystem is officially 
the Advanced Encryption System (AES). 

The old DES (Data Encryption Standard) [9] was broken 

from Electronic Frontier Foundation in three days. The two 
authors Joan Daemen and Vincent Rijman from Holland chose 
to use a Galois Field GF (28) with the following generator 
polynomial. 

 
P(x)=x8+x4+x3+x+1 

 
 

 
or ‘11B’ in hexadecimal representation. 
All arithmetical operations are developed in a Galois 

group. 
The Shift Register Cryptosystems variant has been 

developed from the evolution of the encrypting techniques 
[11]. Such a cryptosystem is based upon generating a sequence 
in a finite field and for obtaining it a Feedback Shift Register 
is used. 

There are some methods for using LFSR to build secure 
ciphers. 

For increasing the strength of the output from an LFSR, 
often it is used another LFSR for controlling how often it is 
stepped. 

Another technique uses three LFSRs with different periods 
and it is known as the Geffe generator. 

Usually it is necessary to combine the methods for 
obtaining more elaborate constructions. 

Almost all applications of using shift registers representing 
generator polynomials need to be developed in a finite field.  

Evariste Galois demonstrated that a field is an algebra with 
both addition and multiplication forming a group. Some 
ground information from Algebra demonstrated the importance 
of working with irreducible polynomials and primitive 
polynomials. Also the importance of using shift registers in 
cryptosystems based on irreducible polynomials is 
demonstrated in increasing the security obtained. 

The Linear Feedback Shift Registers are used in a variety 
of domains: 

• Pattern Generators; 
• Testing [1], [18]; 
• Optimized counters [2] 
• Data Encryption/ Decryption; 
• Built-in Self-Test (BIST) [7], [9]; 
• Digital Signal Processing 
• Pseudo-random Number Generation(PN) 
• Scrambler/Descrambler 
• Data Integrity 
• Checksums; 
• Signature Analyzer [3]; 
• Error Correction; 
• Wireless communications. 

II. MATHEMATICAL BACKGROUND 
 

A finite field (FF) or Galois Field (GF), so named in 
honour of Evariste Galois, in abstract algebra is a field that 
contains only finitely many elements. 

 Finite fields are important in algebraic theory, number 
theory, Galois theory, cryptography and coding theory [16]. 
It’s possible to classify the finite fields by size. 
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So, for each prime p and positive integer k there is exactly 
one finite field up to isomorphism of size pk.  

Each finite field of size q is the splitting field of the 
polynomial xq – x. 

Similarly the multiplicative group of the field is a cyclic 
group.  

Finite fields have applications in many areas of 
mathematics and computer science, including coding theory  
[20] and others. 

The finite fields are classified as follows: 
• The number of elements or order, of a finite field is of 

the form pn, where p is a prime number called the 
characteristics of the field, and n is a positive integer. 

• There exists a finite field with pn elements for every 
prime number p and positive integer n. 

• Any two finite fields with the same number of 
elements are isomorphic. It means that under same 
remaining of the elements of one of these, both its 
addition and multiplication tables become identical to 
the corresponding table of the other one. 

The use of a naming scheme for finite fields that specifies 
only the order of the field is justified by this classification. 

Notations for a finite field can be: Fp
n  and GF(pn). 

Arithmetic in a finite field is different from the standard 
integer arithmetic. 

In the finite field there are a limited number of elements 
and the result of any operation performed is an element within 
that field. 

Each finite field is not infinite, but despite this there are 
infinitely many different finite fields and their cardinal 
(number of elements) is necessarily of the form pn where p is a 
prime number and n is a positive integer. 

Two finite fields of the same size are isomorphic.  
The prime p is called the characteristic of the field and the 

positive integer n is called the dimension of this field over its 
prime field.  

Finite fields are used in a variety of applications as in 
classical coding theory in linear block codes such as BCH 
(Bose Chaudhuri Hocquenghem) and RS (Reed Solomon) and 
in cryptography algorithms such as DES (Data Encryption 
Standard) and Rinjdael encryption algorithm (AES). 

A binary polynomial f(x) of degree n has the form: 
     f(x) = xn + an-1xn-1+ … +a1x  + a0 
where ai are binary coefficients. 

Binary polynomials are added and multiplied in the normal 
manner of adding and multiplying polynomials except that the 
resulting coefficients are reduced modulo two. 

A binary polynomial f(x) divides polynomial h(x) provided 
one can find a binary polynomial g(x) such that f(x)g(X)=h(x). 
For example let f(x) = x3 + x + 1 and h(x) = x7 + 1, then from 
Example 3 f(x) divides h(x) since f(x)g(x) = h(x) where g(x) = 
x4 + x2 + x + 1. 

A binary polynomial f(x) is said to be irreducible if its only 
divisors are 1 and f(x). For example one can show that x3 + x 
+1 is an irreducible polynomial. It can be shown that if f(x) is 
an irreducible binomial polynomial of degree n then f(x) is a 
divisor of x2n-1 + 1. 

An irreducible binomial polynomial on degree n is 
primitive if f(x) is not a divisor of xr+1 for any r  less than    
2n-1.  For example x3+x+1 is a primitive polynomial since  

x3+ x + 1 does not  divide xr + 1 for r less than 7. 
 The binary vector and power representations are two other 
methods of denoting GF(2n). As before let f(x) be a primitive 
binomial polynomial of degree n. Let z be  a number such that 
f(z) = 0. 

• Binary Vector Representation 
For each element h(z) = a0 + a1z + ... + an-1zn-1 in GF(2n one 

can define a binary n-tuple by identifying: 
 h(z)={a0, a1, ..., an-1} 

• Power Representation  
 It can be shown that since f(x)  is a divisor of x2n-1 + 1 

and not a divisor of xr + 1 for t less than 2n-1 then z2n-1 = 1 and 
that zi≠zj for i≤j≤2n-1. Using the exponential notation z0 = 1, 
GF(2n) can be defined in terms of  zi  as: 

GF(2n) = { z0, z1, z3, .., z2n-2} U {0} 
 This is defined to be the power representation of GF(2n). 

Since every non-zero element in GF(2n) can be expressed as a 
power of  z this element is a generator of GF(2n). 

 For most applications of GF(2n) to cryptography, the 
value of n is large and it is impossible to construct a complete 
look-up table for the field. In transmission of data the binary n-
tuple representation (a0,  a1,  ..., an-1) is used. The discrete log 
problem is that, given the binary n-tuple representation of an 
element in GF(2n), find its power representation. For large n 
this is an intractable problem. The reverse problem of given 
the power representations find the binary n-tuple 
representation can be easily solved by using the division 
algorithm as follows: 

• Let a = zi be an element of  GF(2n) defined by 
primitive polynomial f(x); 

• By division algorithm xi =q(x)f(x) +r(x) where degree 
of r(x) < n or 0; 

• By substitution zi = q(z)f(z) +r(z) which implies that    
zi =f(z).  

For security reasons it was demonstrated that the 
maximum number of pseudo-random sequences is obtained by 
using irreducible polynomials [19]. 
 

III. EXPERIMENTAL RESULTS AND MATHEMATICAL CALCULUS 
 

The main subject  of analysis the functioning of linear 
feedback shift register (LFSR) and multiple input output shift 
register  has the irreducible polynomials for degree 4, 8 and 16 
[10]. 

All the analysis is based on the three possible 
implementations for LFSR [21]. 

First of all were developed programs for simulating the 
functioning for the three different types of implementations for 
comparing the obtained results for 4 degree irreducible 
polynomials [12].  

For all analysis functioning of LFSR for 8 degree   
irreducible polynomials a complete presentation was made in 
[13]. 
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In the following table there are presented all the 30 irreducible 
polynomials of 8 degree. 

 
No. Polynomial 
1 x8+x4+x3+x+1 
2 x8+x4+x3+x2+1 
3 x8+x5+x3+x+1 
4 x8+x5+x3+x2+1 
5 x8+x5+x4+x3+1 
6 x8+x5+x4+x3+x2+x+1 
7 x8+x6+x3+x2+1 
8 x8+x6+x4+x3+x2+x+1 
9 x8+x6+x5+x+1 
10 x8+x6+x5+x2+1 
11 x8+x6+x5+x3+1 
12 x8+x6+x5+x4+1 
13 x8+x6+x5+x4+x2+x+1 
14 x8+x6+x5+x4+x3+x+1 
15 x8+x7+x2+x+1 
16 x8+x7+x3+x+1 
17 x8+x7+x3+x2+1 
18 x8+x7+x4+x3+x2+x+1 
19 x8+x7+x5+x+1 
20 x8+x7+x5+x3+1 
21 x8+x7+x5+x4+1 
22 x8+x7+x5+x4+x3+x2+1 
23 x8+x7+x6+x+1 
24 x8+x7+x6+x3+x2+x+1 
25 x8+x7+x6+x4+x2+x+1 
26 x8+x7+x6+x4+x3+x2+1 
27 x8+x7+x6+x5+x2+x+1 
28 x8+x7+x6+x5+x4+x+1 
29 x8+x7+x6+x5+x4+x2+1 
30 x8+x7+x6+x5+x4+x3+1 

 
  Table II. The 8 degree irreducible polynomials 
 
It was developed a simulation program for the functioning 

on LFSR of 8 degree for the Galois implementation [ 13]. 
In the following it will be presented an analysis for the 

irreducible polynomial: 
    P(x) = x8+ x6+ x5+ x3+1 

 
 
 
 
 
 
 
 
    Fig.4. Fibonacci implementation for  
       P(x) = x8+ x6+ x5+ x3+1 
 

The weights for each position are shown in the next rows: 
 
 

S0=1 P(x) 
S1=x P(x) 
S2=x2 P(x) 

 
 
 

S3=(x3+x) P(x) 
S4=(x4+x2+x) P(x) 
S5=(x5+x3+x2) P(x) 

S6=(x6+x4+x3+x) P(x) 
S7=(x7+x5+x4+x2) P(x) 

 

 
 

 
First of all in this analysis it was verified with the 

simulation program for each weight the result, which is the 
same with the result of the polynomial division and also with 
the result obtained from the simulation table. 

It is presented only the situation of the 7-th weight and 
after that the next table contains all the other results for all the 
weights. 

All the analysis is referring the results obtained for the 
Galois implementation. 

The result is obtained by the quotient division between the 
result of multiplying the remainder (the results from Fibonacci 
implementation) and x8, and the used irreducible polynomial.  
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Table IV. The weights for Galois implementation for  
      P(x) = x8+ x6+ x5+ x3+1 

 
 The next program was developed for analysis of all 8th 
degree irreducible polynomials. There are 30 different 
processings for each polynomial and in the main program it 
was counted the time for each situation. The program was 
executed in linux and it was necessary to use – lrt option for 
accessing time specific functions. 
 
#include <stdio.h> 
#include <stdlib.h> 
#include <time.h> 

#include "prelucrareA0.c" 
#include "prelucrareAl.c" 
#include "prelucrareA2.c" 
#include "prelucrareA3.c" 
#include "prelucrareA4.c" 
#include "prelucrareA5.c" 
#include “prelucrareA6.c" 
#include “prelucrareA7.c" 

#include "prelucrareA8.c" 
#include "prelucrareA9.c" 
#include "prelucrareAlO.c" 
#include "prelucrareAll.c" 
#include "prelucrareAl2.c" 
#include "prelucrareA13.c" 
#include "prelucrareAl4.c" 
#include "prelucrareA15.c" 
#include “prelucrareA16.c" 
#include "prelucrareAl7.c" 
#include "prelucrareAl8.c" 
#include "prelucrareA19.c" 
#include "prelucrareA20.c" 
#include "prelucrareA21.c" 
#include "prelucrareA22.c" 
#include "prelucrareA23.c" 
#include "prelucrareA24.c" 
#include "prelucrareA25.c" 
#include "prelucrareA2 6.c" 
#include "prelucrareA27.c" 
#include "prelucrareA28.c" 
#include “prelucrareA29.c" 
struct timespec tstart={0,0}, tend={0,0}; 
 
 
 
FILE *pf,*fin; 
int k,x[23],Lung; 
 
void afis(int tab[],int n) 
{  
    int i; 
 
    if(k==1) 
    { 
 printf("     "); 
 fprintf(pf,"     "); 
    } 
    else 
    { 
     fprintf(pf,"x^%d.",Lung-k+1); 
     printf("x^%d.",Lung-k+1); 
    } 
 
    for (i=0;i<n;i++) 
    {  
     printf(" %d ",tab[i]); 
     fprintf(pf," %d ",tab[i]); 
    } 
    fprintf(pf,"\n"); 
    printf("\n"); 
} 
 
typedef void (*prel_t)(int n, int knt, int a[],int s[]); 
 
prel_t preltab[30] = 
{prelucrareA0,prelucrareA1,prelucrareA2,prelucrareA3,preluc
rareA4,prelucrareA5,prelucrareA6,prelucrareA7,prelucrareA8,

The weight The result 
7 x4+ x2 
6 x6+ x5+ x4+ x2+ 1 
5 x7+ x6+ x5+ x4+ 1 
4 x7+ x3+ x2 
3 x7+ x6+ x 
2 x7+ x6+ x + 1 
1 x5+ x4 
0 x6+ x4+ x2+ 1 

 SR0 SR1 SR2 SR3 SR4 SR5 SR6 SR7 
 0 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 1 
1 1 0 0 0 0 0 0 1 
1 1 1 0 0 0 0 0 1 
1 0 1 1 0 0 0 0 1 
1 1 0 1 1 0 0 0 1 
1 0 1 0 1 1 0 0 1 
1 1 0 1 0 1 1 0 1 
1 1 1 0 1 0 1 1 1 
0 0 1 1 0 1 0 1 1 
0 0 0 1 1 0 1 0 1 
0 0 0 0 1 1 0 1 0 
0 1 0 0 0 1 1 0 1 
0 0 1 0 0 0 1 1 0 
0 1 0 1 0 0 0 1 1 
0 0 1 0 1 0 0 0 1 
0 0 0 1 0 1 0 0 0 
                      x2              x4 

        Table III. Calculus for S7 
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prelucrareA9,prelucrareA10,prelucrareA11,prelucrareA12,prel
ucrareA13,prelucrareA14,prelucrareA15,prelucrareA16,preluc
rareA17,prelucrareA18,prelucrareA19,prelucrareA20, 
prelucrareA21,prelucrareA22,prelucrareA23,prelucrareA24,pr
elucrareA25,prelucrareA26,prelucrareA27,prelucrareA28,prel
ucrareA29}; 
 
int main(int argc, char *argv[]) 
{ 
 
    if(argc==1) 
    { 
 printf("Lipsa nume la functia prelucrare. (1 ,2 ,3 ...)\n"); 
 exit(EXIT_FAILURE); 
    } 
    else 
    { 
 
     int s[50],a[50],i,j,numprel; 
 
     pf=fopen("LFSR8_Schema_A.txt","a"); 
     if(!pf) 
     { 
     printf("Eroare la deschiderea fisierului 
LFSR8_Schema_A.txt !!!\n"); 
     exit(EXIT_FAILURE); 
     } 
 
     fin=fopen("lfsr8.txt","r"); 
     if(!fin) 
     { 
     printf("Eroare la deschiderea fisierului lfsr8.txt !!!\n"); 
     exit(EXIT_FAILURE); 
        } 
 
        for(i=0;i<8;i++)  
     s[i]=0;  
 
     if(fscanf(fin,"%d",&Lung)!=1) 
        { 
     printf("Eroare la citirea lungimii polinomului!\n"); 
     exit(EXIT_FAILURE); 
       } 
 
     for(i=0;i<Lung;i++) 
         if(fscanf(fin,"%d",&x[i])!=1) 
     { 
      printf("Eroare la citirea indicelui %d\n",i); 
      exit(EXIT_FAILURE); 
     } 
 
 numprel = atoi(argv[1]);    
 
     clock_gettime(CLOCK_MONOTONIC, &tstart); 
     k=1; 
 
        printf("Se foloseste functia: %d!\n",numprel); 
 fprintf(pf,"Se foloseste functia: %d!\n",numprel); 

      
 for(i=0;i<Lung+1;i++) 
     { 
     afis(s,8); 
     preltab[numprel-1](8, i, a, s); 
         for(j=0;j<8;j++)  
      s[j]=a[j]; 
        } 
 
        clock_gettime(CLOCK_MONOTONIC, &tend); 
  
        printf("Executarea buclei a durat: %.5f secunde.\n\n", 
           ((double)tend.tv_sec + 1.0e-9*tend.tv_nsec) -  
           ((double)tstart.tv_sec + 1.0e-9*tstart.tv_nsec)); 
     fprintf(pf,"Executarea buclei a durat: %.5f secunde.\n\n", 
           ((double)tend.tv_sec + 1.0e-9*tend.tv_nsec) -  
           ((double)tstart.tv_sec + 1.0e-9*tstart.tv_nsec)); 
 
     fclose(pf); 
     fclose(fin); 
     return 0; 
    } 
} 
 

In this program it was used an input file (lfsr8.txt) 
containing the input data polynomial and  another output  file 
(LFSR8_Schema_A.txt) containing  the  output sequences 
while the time is measured for each execution of  functioning 
simulation for all the 30 irreducible polynomials of 8th degree.  

 
The following table contains the time measured in seconds. 
 

 
Time 
10bits 

Time 
 16 bits 

Time 
 255 bits 

prelucrareA0 0.00083 0.0002 0.02697 
prelucareA1 0.00016 0.00022 0.00361 
prelucareA2 0.00007 0.00016 0.00389 
prelucareA3 0.00012 0.00021 0.00373 
prelucareA4 0.00016 0.00015 0.00384 
prelucareA5 0.00012 0.00022 0.02516 
prelucareA6 0.00017 0.00013 0.00364 
prelucareA7 0.00012 0.00024 0.00414 
prelucareA8 0.0002 0.00022 0.0039 
prelucareA9 0.0008 0.00019 0.00392 
prelucareA10 0.00018 0.00021 0.00397 
prelucareA11 0.00011 0.00016 0.00346 
prelucareA12 0.00018 0.00016 0.00425 
prelucareA13 0.00007 0.00019 0.00397 
prelucareA14 0.00016 0.00022 0.00424 
prelucareA15 0.00022 0.00021 0.00696 
prelucareA16 0.00015 0.00023 0.00387 
prelucareA17 0.00007 0.00022 0.00405 
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prelucareA18 0.00013 0.00016 0.00377 
prelucareA19 0.00015 0.00015 0.00396 
prelucareA20 0.00017 0.0002 0.00446 
prelucareA21 0.00017 0.00021 0.01093 
prelucareA22 0.00012 0.00016 0.00382 
prelucareA23 0.00016 0.00015 0.00396 
prelucareA24 0.00016 0.0002 0.00399 
prelucareA25 0.00007 0.00017 0.00825 
prelucareA26 0.00015 0.00025 0.00351 
prelucareA27 0.00013 0.00022 0.00377 
prelucareA28 0.00012 0.00021 0.00374 
prelucareA29 0.0002 0.00019 0.00382 
 
  Table V.  Results of the main program  
 
 
 
The next two graphics show the obtained results from the 

execution of the main program for each of all 30 degree 8 
irreducible polynomials for three different situations 
depending on the entrance data polynomial. 

The lengths of the entrance polynomials were 10, 16, 
255bits. The maximum length of sequences is 28-1 [17]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.5. Time distribution for input data of  16, 255 bits 
 
 
 
 
 

 
 
 
 
 
 

 
  
  
 
 
 
 
 
 
 
 
 
 
Fig.6. Time distribution for input data of 10, 16, 255 bits 
 

The distribution obtaining in function of  the lengths of 
data input polynomial shows that time depends of input length, 
but for lengths that are quit close the processing times obtain 
are also close ( this can be seen in Fig.6 results for 10 and 16 
bits inputs).  

Time does not change so much depending on which one of 
the 30 different 8th degree irreducible polynomials has been 
used. 

  

IV. RELATED WORKS 
 
A huge amount of digital data is being exchanged over 
unsecured channels because the rapid growth of computer 
networks and advances technology. 
Information security has become a very critical point of 
modern computing systems to protect data from unauthorized 
access. Security in an important issue in communication and 
storage. Transmission and storage of multimedia data has 
increased in today’s digital communication. The advanced 
Encryption Standard (AES), International Data Encryption 
Algorithm and some conventional algorithms like Data 
Encryption Standard have certain limitations in multimedia 
data encryption, so many new methods for encryption were 
developed by numerous researchers. 
For protecting digital data from unauthorized eavesdropping 
three different ways can be used: cryptography, steganography 
and watermarking. 
Cryptography has become one of the major tools for obtaining 
high level of security dealing with the development of 
techniques for converting information. 
Yoon and Kim in 2010 developed a chaotic image cipher in 
witch initially a small matrix was generated using chaotic 
logistic map. Developing some conventional classical 
cryptographic techniques is the most common way to protect 
large multimedia fields. 
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Both software and hardware implementations of RSA or El-
Gamal cannot support fast and high speed encryption rates. 
Triple DES or Blowfish are suitable for transmission of large 
amounts of information. Much more suitable for multimedia 
content rich data encryption are the chaos-based crypto 
schemes. V G. A. Sathishkumar, K. Bhoopathy proposed an 
Encryption Algorithm using Chaotic Block Cipher [23]. 
They proved that the proposed approach is very good to 
adeptly trade offs between the speed and protection. The 
dimension and complexity of real world data sets is in an 
continuous grown and determines combining two or more 
algorithms for obtaining advanced data mining algorithms. 
A special place in this research is occupied of a powerful 
machine learning technique from the family of evolutionary 
algorithms called genetic programming [22].Due cryptography 
is the art of making ciphertext, cryptanalysis is the art of 
breaking them. 
Vimalathithan R., M. L. Valarmathi developed an approach for 
breaking the key used in Simplified-Data Encryption Standard 
( S-DES) using Genetic Algorithm (GA) combined with two 
optimization techniques called Particle Swarm Optimization ( 
PSO ) and Genetic Swarm Optimization ( GSO ) [15]. 
Analyzing the different kinds of LFSR implementation a new 
problem appear. This problem is how LFSR parameters must 
be chosen for developing an efficient implementation [8]. 
C. Lauradoux obtained a new tool for generatingthek-bit leap-
forward implementation of an LFSR with a given polynomial. 
Putting together the feedback computation and shift operation 
it results the leap-forwarding. This implementation uses a 
vector-matrix multiplication for showing a single step of an 
LFSR. The analyze uses both Fibonacci and Galois LFSR 
setups in VLSI design. 
The conclusions proved that for increasing the security the 
characteristic polynomial must be primitive. 
Design for Testability (DFT) is another area for using LFSR 
functions. 
Built-In Self-Test (BIST) allows for a circuit itself testing 
without using any other external equipment. 
So BIST are low cost comparing to any external testing. 
Specially in BIST implementation LFSR can be used for 
pseudo-random patterns, response compaction, polynomial 
division and others. Also it is possible to use in the same 
BIST, a LFSR for implementing the pseudo-random test –
pattern generator and a Multi-Input Shift Register (MISR) for 
a signature analyzer. 
LFSR is very popular for both implementation of Test Pattern 
Generator (TPG) and Output Response Analyzer (ORA). 
The popularity of LFSR used in BIST application is owed to 
compact and simple design. 

V. CONCLUSION 
 

 The whole analysis of functioning for irreducible 
polynomials of 8 degree proves that almost all obtained results 
are in the same distribution of time.  
 The aspect of security was taken into consideration, so that 
the used polynomials are all irreducible or primitive 
polynomials. 

Another important aspect presented in this analysis is the 
discovery of the new formula for the calculation of the weights 
used for obtaining the final result. 

 This formula was tested for all the situations referring to 
degree 8 irreducible polynomials and the final conclusion is 
that the mathematical relations discovered are correct. 

 A shift register is a device whose function is to shift its 
contents into adjacent positions within the register or, for the 
end position, out of the register. 

The main practical uses for a shift register are: 
•  the delay of a serial bit stream; 
•  the convert between parallel and serial data. 

This study focuses on a comparative study of different 
types of implementations for a Linear Feed-back Shift Register 
for 8 degree irreducible polynomials. The results of all these 
experiments were used for obtaining some graphics showing 
the time distribution. 
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