
 

 

  
Abstract— A Multi-Agent based approach to Data Mining using a 
Multi-Agent System (MADM) is described. The system comprises a 
collection of agents cooperating to address given Data Mining (DM) 
tasks. The exploration of the system is conducted by considering a 
specific parallel/distributed Association Rule Mining (ARM) 
scenario, namely data (vertical/horizontal) partitioning to achieve 
parallel/distributed ARM. To facilitate the partitioning a compressed 
set enumeration tree data structure (the T-tree) is used together with 
an associated ARM algorithm (Apriori-T). The aim of the scenario is 
to demonstrate that the MADM approach is capable of exploiting the 
benefits of parallel computing; particularly parallel query processing 
and parallel data accessing. Both of the data (vertical/horizontal) 
partitioning techniques are evaluated and compared. Comparison of 
the measures indicates that the data partitioning methods described 
are extremely effective in limiting the maximal memory requirements 
of the algorithms, while their execution time scale only slowly and 
linearly with increasing data dimensions.  

 
Keywords— Association Rule Mining, Multi-Agent Data 

Mining, Meta Mining, Frequent Itemsets, T-tree.  

I. INTRODUCTION 
HE advantages offered by Multi-Agent Systems (MAS) 
MADM can provide support to address a number of 

general data mining issues, such as: 
1) The size of the data sets to be mined: Ultimately data miners 

wish to mine everything: text, images, video, multi-media 
as well as simple tabular data. DM techniques to mine 
tabular data sets are well established, however ever larger 
data sets, more complex data (images, video), and more 
sophisticated data formats (graphs, networks, trees, etc.) 
are required to be mined. The resources to process these 
data sets are significant; an MADM approach may 
therefore provide a solution. 

2)  Data security and protection: The legal and commercial 
issues associated with the security and protection of data 
are becoming of increasing significance in the context of 
data mining. The idea of sharing data for data mining by 
first compiling it into a single data warehouse is often not 
viable, or only viable if suitable preprocessing and 
annoimization is first undertaken. MADM provides a 
mechanism to support data protection. 
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3)  Appropriateness of DM Algorithms: An interesting 
observation that can be drawn from the DM research 
conducted to date is that for many DM tasks (for example 
ARM) there is little evidence of a “best” algorithm suited 
to all data. Even when considering relatively 
straightforward tabular data, in the context of ARM, there 
is no single algorithm that produces the best (most 
representative) association rules in all cases. An agent-
based process of negotiation/interaction, to agree upon the 
best result, seems desirable. 

4)  Resource intensive: Common feature of most DM tasks is 
that they are resource intensive and operate on large sets 
of data. Data sources measured in gigabytes or terabytes 
are quite common in DM. This has called for fast DM 
algorithms that can mine very large databases in a 
reasonable amount of time. However, despite the many 
algorithmic improvements proposed in many serial 
algorithms, the large size and dimensionality of many 
databases makes the DM of such databases too slow and 
too big to be processed using a single process. There is 
therefore a growing need to develop efficient parallel DM 
algorithms that can run on distributed systems. 

There are several ways in which data distribution can occur, 
and these require different approaches to model construction, 
including: 
• Horizontal Data Distribution. The most straight forward 
form of distribution is horizontal partitioning, in which 
different records are collected at different sites, but each 
record contains all of the attributes for the object it describes. 
This is the most common and natural way in which data may 
be distributed. For example, a multinational company deals 
with customers in several countries, collecting data about 
different customers in each country. It may want to understand 
its customers worldwide in order to construct a global 
advertising campaign.  
• Vertical Data Distribution. The second form of distribution 
is vertical partitioning, in which different attributes of the same 
set of records are collected at different sites. Each site collects 
the values of one or more attributes for each record and so, in 
a sense, each site has a different view of the data. For example, 
a credit-card company may collect data about transactions by 
the same customer in different countries and may want to treat 
the transactions in different countries as different aspects of 
the customers total card usage. Vertically partitioned data is 
still rare, but it is becoming more common and important [9]. 

This paper addresses a generic MADM scenario, that of 
distributed/parallel DM. This scenario assumes an end user 
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who owns a large data set and wishes to obtain DM results but 
lacks the required resources (i.e. processors and memory). The 
data set is partitioned into horizontal or vertical partitions that 
can be distributed among a number of processors (agents) and 
independently processed, to identify local itemsets, on each 
process. 

In the exploration of the applicability of MADM to 
parallel/distributed ARM, the two data partitioning 
approaches, based on the Apriori algorithm, are described and 
their performance evaluated as indicated above. Recall that 
DATA-HS (Horizontal Segmentation) makes use of a 
horizontal partitioning of the data. The data is apportioned 
amongst a number of data agents, typically by horizontally 
segmenting the dataset into sets of records. 

DATA-VP makes use of a vertical partitioning approach to 
distributing the input dataset over the available number of DM 
(worker) agents. To facilitate the vertical data partitioning the 
tree data structure, described in [7], is again used together with 
the Apriori-T ARM algorithm [6]. Using both approaches each 
partition can be mined in isolation, while at the same time 
taking into account the possibility of the existence of frequent 
itemsets dispersed across two or more partitions. In the first 
approach, DATA-HS, the scenario complements the meta 
ARM scenario described in Albashiri et al. [3]. 
The rest of the paper is organized as follows. Section II 
provides an overview of the field of MADM. Data partitioning 
is introduced in Section III. Data partitioning may be achieved 
in either a horizontal or vertical manner. A brief note on the 
data structures used by the ARM algorithms is then presented 
in Section IV. Before describing the data partitioning 
approaches the Apriori-T algorithm is briefly described in 
Section V. In Section VI a parallel/distributed task with Data 
Horizontal Segmentation (DATA-HS) algorithm is described. 
the nature of the agent communication protocols is given in 
Section VII. The parallel/distributed task with Data Vertical 
Partitioning (DATA-VP) algorithm (which is founded on 
Apriori-T) is then described in Section VIII. The DATA-VP 
MADM task architecture and network configuration is 
presented in Section IX. Experimentation and Analysis, 
comparing the operations of DATA-HS and DATA-VP, is 
then presented in Section X. Discussion of how this scenario 
addresses the goal of this paper is presented in Section XI. 
Finally a conclusion is given in Section XII. 

II. BACKGROUND AND RELATED WORK 
This section briefly presents a review of the current research 

relating to Multi-Agent Data Mining (MADM). It provides an 
overview of the theoretical background of the research 
discipline, identifying the approaches adopted, and discusses 
the benefits and challenges posed. 

During the last two decades, our ability to collect and store 
data has significantly outpaced our ability to analyze, 
summarize and extract “knowledge” from this data. The phrase 
Knowledge Discovery in Databases (KDD) denotes the 
complex process of identifying valid, novel, potentially useful 
and ultimately understandable patterns in data [15]. DM refers 
to a particular step in the KDD process. It consists of 
particular algorithms that, under acceptable computational 

efficiency limitations, produce a particular enumeration of 
patterns (models) over the data. 

A considerable number of algorithms have been developed 
to perform DM tasks, from many fields of science [16]. 
Typical DM tasks are classification (the generation of 
classifiers which can be used to assign each record of a 
database to one of a predefined set of classes), clustering 
(finding groups of database records that are similar according 
to some user defined metrics) or ARM (determining 
implication rules for a subset of database record attributes). 

Agents and multi-agent systems are an emergent technology 
that is expected to have a significant impact in realizing the 
vision of a global and information rich services network to 
support dynamic discovery and interaction of digital 
enterprises. Significant work on multi-agent systems has 
already been done for more than a decade since agents were 
first claimed to be the next breakthrough in software 
development, resulting in powerful multi-agent platforms and 
innovative e-business applications. 

Multi-agent Data Mining (MADM) is concerned with the 
use of agent and MAS to perform DM activities. MAS has 
some particular advantages to offer with respect to Knowledge 
Discovery in Data (KDD), and particularly data mining, in the 
context of sharing resources and expertise. 

KDD has evolved to become a well established technology 
that has many commercial applications. Research work in 
these fields continues to develop ideas, generate new 
algorithms and modify/extend existing algorithms. A diverse 
body of work therefore exists. KDD research groups and 
commercial enterprises, are prepared (at least to some extent) 
to share their expertise. In addition, many KDD research 
groups have made software freely available for download1. 
This all serves to promote and enhance the current “state of the 
art” in KDD. However, although the free availability of data 
mining software is of a considerable benefit to the KDD 
community, it still require users to have some programming 
knowledge — this means that for many potential end users the 
use of such free software is not a viable option. It is proposed 
in this paper that this disadvantage can be addressed by using 
the MAS mode of operation. 

An additional advantages offered by MAS, in the context of 
data mining, is that of privacy and (to an extent) security. By 
its nature data mining is often applied to sensitive data. MAS 
allows data to be mined remotely. Similarly, with respect to 
data mining algorithms, MAS can make use of algorithms with 
necessitating their transfer to users, thus contributing to the 
preservation of intellectual property rights. 

Several systems have been developed for MADM. These 
systems can be categorized, according to their strategy of 
learning, into three types: 
1) Central-learning, when all the data can be gathered at a 

central site and a single model built [18], [ 21]. 
2)  Meta-learning, is the process of automatic induction of 

correlations between tasks and solving strategies, based on 
a domain characterization [19],  [17],  [23]. 

3)  Hybrid-learning is a technique that combines local and 
remote learning for model building [20], [22]. 
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The most popular task of DM is to find patterns in data that 
show associations between domain elements. This is generally 
focused on transactional data, such as a database of purchases 
at a store. This task is known as Association Rule Mining 
(ARM), and was first introduced in Agrawal et al. [2]. 
Association Rules (ARs) identify collections of data attributes 
that are statistically related in the underlying data. 

III. SEGMENTATION AND PARTITIONING  
 Notwithstanding the extensive work that has been done in the 
field of ARM, there still remains a need for the development 
of faster algorithms and alternative heuristics to increase their 
computational efficiency. Because of the inherent intractability 
of the fundamental problem, much research effort has been 
directed at parallel ARM to decrease overall processing times 
(see [8], [11], [12], [13]), and distributed ARM to support the 
mining of datasets distributed over a network [4]. The main 
challenges associated with parallel DM include: 
• Minimizing I/O. 
• Minimizing synchronization and communication. 
• Effective load balancing. 
• Effective data layout (horizontal vs. vertical). 
• Good data decomposition. 
• Minimizing/avoiding duplication of work. 

To allow the data to be mined using a number of cooperating 
agents the most obvious approach is to allocate different 
subsets of the data to each agent. There are essentially two 
fundamental approaches to partitioning/segmenting the data: 
1) Horizontal segmentation where the data is divided 

according to row number. 
2) Vertical partitioning where the data is divided according to 

column number. 
Note that in this paper the term partitioning is used to 

indicate vertical subdivision of data, and segmentation to 
indicate horizontal subdivision of data. 

Horizontal segmentation, is in general more 
straightforward. Assuming a uniform/ homogeneous dataset it 
is sufficient to divide the number of records by the number of 
available agents and allocate each resulting segment 
accordingly. 

The most natural method to vertically partition a dataset is to 
divide the number of columns by the number of available 
agents so each is allocated an equal number of columns. 

Many parallel DM algorithms have been developed based on 
the Apriori algorithm or variations of the Apriori algorithm. 
The most common parallel methods are [2], [8]: 
• Count Distribution. This method follows a data-parallel 
strategy and statically partitions the database into horizontal 
partitions that are independently scanned for the local counts 
of all candidate itemsets on each process. At the end of each 
iteration, the local counts are summed across all processes to 
form the global counts so that frequent itemsets can be 
identified. 
• Data Distribution. The Data Distribution method attempts to 
utilize the aggregate main memory of parallel machines by 
partitioning both the database and the candidate itemsets. 
Since each candidate itemset is counted by only one process, 
all processes have to exchange database partitions during each 

iteration in order for each process to get the global counts of 
the assigned candidate itemsets. 
• Candidate Distribution. The Candidate Distribution method 
also partitions candidate itemsets but selectively replicates, 
instead of “partitioned-exchanging” the database transactions, 
so that each process can proceed independently. 

Experiments show that the Count Distribution method 
exhibits better performance and scalability than the other two 
methods [2]. The steps for the Count Distribution method may 
be generalized as follows (for distributed-memory 
multiprocessors): 
1) Divide the database evenly into horizontal partitions 

among all processes. 
2) Each process scans its local database partition to collect the 

local count of each item. 
3) All processes exchange and sum up the local counts to get 

the global counts of all items and find frequent 1-itemsets. 
4) Set level k = 2. 
5) All processes generate candidate k-itemsets from the mined 

frequent (k-1)-itemsets. 
6) Each process scans its local database partition to collect the 

local count of each candidate k-itemset. 
7) All processes exchange and sum up the local counts into 

the global counts of all candidate k-itemsets and find 
frequent k-itemsets among them. 

8) Repeat (5) - (8) with k = k + 1 until no more frequent 
itemsets are found. 

In the following sections two MADM tasks, using both 
vertical partitioning and horizontal segmentation, are 
introduced. These tasks were implemented using a task 
wrapper, so that they could be incorporated into the system as 
task agents. 

IV. NOTE ON P AND T TREES 
The Meta ARM algorithms described here make use of two 
data structures, namely P-trees and T-trees. The nature of these 
structures is described in detail in [3]; however, for 
completeness a brief overview is presented here. 

The P-tree (Partial support tree) is a set enumeration tree 
style structure with two important differences: (i) more than 
one item may be stored at any individual node, and (ii) the tree 
includes partial support counts. The structure is sued to store a 
compressed version of the raw data set with partial support 
counts obtained during the reading of the input data. The best 
way of describing the P-tree is through an example such as that 
given in Fig. 1. 

In the figure the data set given on the left is stored in the P-
tree on the right. The advantages offered by the P-tree are of 
particular benefit if the raw data set contains many common 
leading sub-strings (prefixes). The number of such sub-strings 
can be increased if the data is ordered according to the 
frequency of the 1-itemsets contained in the raw data. The 
likelihood of common leading sub-strings also increases with 
the number of records in the raw data. 
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Fig. 1. P-tree example 
 

The T-tree (Total support tree) is a “reverse” set enumeration 
tree structure that inter-leaves node records with arrays. It is 
used to store frequent item sets, in a compressed form, 
identified by processing the P-tree. An example, generated 
from the P-tree given Fig. 1, is presented in Fig. 2. From the 
figure it can be seen that the top level comprises an array of 
references to node structures that hold the support count and 
reference to the next level (providing such a level exists). 
Indexes equate to itemset numbers although for ease of 
understanding in the figure letters have been used instead of 
numbers. 
The structure can be though of as a “reverse” set enumeration 
tree because child nodes only contain itemsets that are 
lexicographically before the parent itemsets. This offers the 
advantage that less array storage is required (especially if the 
data is ordered according to the frequency of individual items). 
 

 
 

Fig. 2. T-tree example (support = 35%) 
 

The T-tree is generated using an algorithm called Total From 
Partial (TFP) which is also described in [7]. The TFP 
algorithm is essentially an Apriori style algorithm that 
proceeds in a level by level manner. At each level the P-tree is 
processed to generate appropriate support counts. Note that on 
completion of the TFP algorithm the T-tree contains details of 
all the supported itemsets, in a manner that provides for fast 
look up during AR generation, but no information about 
unsupported sets (other than that they are not supported). 
Referring to Fig. 2 unsupported sets are indicated by a null 
reference. 

V. THE APRIORI-T ALGORITHM  
 The Apriori-T (Apriori Total) algorithm is an Association 
Rule Mining (ARM) algorithm [7] that combines the classic 
Apriori ARM algorithm with the T-tree data structure. As each 

level is processed, candidates are added as a new level of the 
T-tree, their support is counted, and those that do not reach the 
required support threshold pruned. When the algorithm 
terminates, the T-tree contains only frequent itemsets. The 
Apriori-T algorithm was developed as part of the more 
sophisticated ARM algorithm The Apriori-TFP. The Apriori 
and Apriori-TFP algorithms are described in [7]. 

At each level, new candidate itemsets of size k are generated 
from identified frequent k-1 itemsets, using the downward 
closure property of itemsets, which in turn may necessitate the 
inspection of neighboring branches in the T-tree to determine 
if a particular k-1 subset is supported. This process is referred 
to as X-checking. Note that X-checking adds a computational 
overhead; offset against the additional effort required to 
establish whether a candidate k itemset, all of whose k-1 
itemsets may not necessarily be supported, is or is not a 
frequent itemset. 

The number of candidate nodes generated during the 
construction of a T-tree, and consequently the computational 
effort required, is very much dependent on the distribution of 
columns within the input data. Best results are produced by 
ordering the dataset, according to the support counts for the 1-
itemsets, so that the most frequent 1-itemsets occur first [5]. 

VI. THE PARALLEL/DISTRIBUTED TASK WITH HORIZONTAL 
SEGMENTATION (DATA-HS) ALGORITHM  

 The Data Horizontal Segmentation (DATA-HS) algorithm 
uses horizontal segmentation, dividing the dataset into 
segments each containing an equal number of records. ARM in 
this case involves the generation of a number of T-trees, 
holding frequent itemsets, one for each segment; and then 
merging these T-trees to create one global T-tree.  

The most significant issue when combining groups of 
previously identified frequent sets is that wherever an itemset 
is frequent in a data source A but not in a data source B a 
check for any contribution from data source B is required (so 
as to obtain a global support count). The challenge is thus to 
combine the results from N different data sources in the most 
computationally efficient manner. This in turn is influenced 
predominantly by the magnitude (in terms of data size) of 
returns to the source data that are required.  

The term meta mining is defined, in this paper , as the 
process of combining the individually obtained results of N 
applications of a DM activity. The motivation behind the 
scenario is that data relevant to a particular DM application 
may be owned and maintained by different, geographically 
dispersed, organizations. One approach to addressing the meta 
mining problem is to adopt a distributed approach. The meta 
mining scenario considered here is a meta Association Rule 
Mining (meta ARM) scenario where the results of N ARM 
operations, by N agents, are brought together. 
 

A. Dynamic Behavior of System for Meta ARM operations 
 

The meta ARM illustration described here was used to identify 
the most efficient Meta ARM agent process given a number of 
alternatives. The first algorithm was a bench mark algorithm, 
against which other Meta ARM algorithms were compared. 
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Four comparison meta ARM algorithms were constructed 
(Apriori, Brute Force, Hybrid 1 and Hybrid 2). Full details of 
the algorithms can be found in [3]. In each case it was assumed 
that each data source would produce a set of frequent sets, 
using some ARM algorithm, with the results stored in a 
common data structure. These data structures would then be 
merged in some manner through a process of agent 
collaboration. Each of the Meta ARM algorithms made use of 
a Return To Data (RTD) lists, one per data set, to contain lists 
of itemsets whose support was not included in the original 
ARM operation and for which the count was to be obtained by 
a return to the raw data held at a data agent. The RTD lists 
comprised zero, one or more tuples of the form < I, sup >, 
where I is an item set for which a count is required and sup is 
the desired count. RTD lists are constructed as a meta ARM 
algorithm progresses. During RTD list construction the sup 
value will be 0, it is not until the RTD list is processed that 
actual values are assigned to sup. The processing of RTD lists 
may occur during, and/or at the end of, the meta ARM process 
depending on the nature of the meta ARM algorithm used. 

The meta ARM scenario comprises a set of N data agents 
and N +1 DM agents: N ARM agents and one meta ARM 
agent. Note that each ARM agent could have a different ARM 
algorithm associated with it, however a common data structure 
was assumed to facilitate data interchange. The common data 
structure used was a T-tree, a set enumeration tree structure for 
storing item sets. 

Once generated the N local T-trees were passed to the Meta 
ARM agent which created a global T-tree. During the global 
T-tree generation process the Meta ARM agent interacted with 
the various ARM agents in the form of the exchange of RTD 
lists. 

In this paper the  the Apriori Meta ARM algorithm is used. 
For the Apriori Meta ARM algorithm, it was assumed that 
each data source would produce a set of frequent sets  stored 
in a T-tree. These T-trees would then be merged in some 
manner.  

 
Table 1: Apriori Meta ARM algorithm 

 
The Apriori Meta ARM algorithm described briefly below 

makes use of return to data (RTD) lists, one per data set, to 
contain lists of itemsets whose support was not included in the 
current T-tree and for which the count is to be obtained by a 
return to the raw data. RTD lists comprise zero, one or more 
tuples of the form < I, sup >, where I is an item set for which a 
count is required and sup is the desired count. RTD lists are 
constructed as the algorithm progresses. During RTD list 

construction the sup value will be 0, it is not until the RTD list 
is processed that actual values are assigned to sup. The 
processing of RTD lists may occur during, and/or at the end 
of, the Meta ARM process depending on the nature of the 
algorithm. If the RTD lists are not processed until the end of 
the merge phase. This means that many itemsets may be 
included in the merged T-tree sofar and/or the RTD lists that 
are in fact not supported. 

The objective of the Aprori Meta ARM algorithm is to 
identify such unsupported itemsets much earlier on in the 
process. The algorithm proceeds in a similar manner to the 
standard Apriori algorithm as shown in Table 1. Note that 
items are added to the RTD list for data source n if a candidate 
itemset is not included in T-tree n.  At the end of the merge 
phase the final merged T-tree is then pruned in phase three to 
remove any unsupported frequent sets according to the user 
supplied support threshold (expressed as a percentage of the 
total number of records under consideration). Further details of 
this Meta ARM process can be found in Albashiri et al. [3].  

Assuming that a data agent representing the large dataset 
has been launched by a user, the DATA-HS MADM algorithm 
comprises the following steps: 
1) User agent requests the task agent to horizontally segment 

the dataset according to the total number of segments 
required. 

2) The task agent assigns and sends each data segment to an 
interested data agent; if none exist then the task agent 
launches new data agents. 

3) Then a meta ARM task is called to obtain the Association 
Rules (ARs) as described in [3]. 

VII. AGENT COMMUNICATION 
Agents are identified by name; to communicate to one another, 
an agent sender sends a message to another agent receiver by 
specifying the message and receiver name. In JADE 
applications, the agents communicate by sending messages 
which are objects and identify each agent by a predefined 
constant name and a variable instance local name. Any request 
for container location is a REQUEST message and any result 
to a REQUEST message is a INFORM message according to 
ACL specifications. Notice that each message has an 
associated Result, Query or Location object. JADE (Java 
Agent Development Environment) [14] is a multi-agent 
platform which this system is implemented in. 

The system initially starts up with the two central JADE 
agents. When a user wishes to make its data available for 
possible data mining tasks, the user starts a data agent which in 
turn publish its name and description with the DF agent. In the 
context of ARM generation task, each DM agent could apply a 
different data mining algorithm to the data to produce its local 
T-tree. The frequent itemsets from each DM agent is collected 
by the task agent. Then the task agent merge the T-trees to 
generate one global T-tree. Once the T-tree is, association 
rules are generated and shown to the user through the user 
interface agent. 

K = 1 
Generate candidate K-itemsets 
Start Loop 
if (K-itemsets == null break) 
Add supports for level K from N T-trees or add to 
RTD list 
Prune K-itemsets according to support threshold 
K = K+1 
Generate K-itemsets 
End Loop 
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VIII. THE PARALLEL/DISTRIBUTED TASK WITH VERTICAL 
PARTITIONING (DATA-VP) ALGORITHM  

The second algorithm considered in the exploration of the 
applicability of MADM to parallel/distributed ARM is the 
Data Vertical Partitioning (DATA-VP). The DATA-VP 
algorithm commences by distributing the input dataset over the 
available number of workers (DM agents) using a vertical 
partitioning strategy. Initially the set of single attributes 
(columns) is split equally between the available workers so 
that an allocationItemSet (a sequence of single attributes) is 
defined for each DM agent in terms of a startColNum and 
endColNum: 
 
allocationItemSet = {n|startColNum < n endColNum} 
 

Each DM agent will have its own allocationItemSet which is 
then used to determine the subset of the input dataset to be 
considered by the DM agent. 

Using its allocationItemSet the task agent will partition the 
data among workers (DM agents) as follows: 
1)  Remove all records in the input dataset that do not intersect 

with the allocationItemSet. 
2)  From the remaining records remove those attributes whose 

column number is greater than endColNum. Attributes 
whose identifiers are less than startColNum cannot be 
removed because these may still need to be included in the 
subtree counted by the DM agent. 

3)  Send the allocated data partition to the corresponding DM 
agent. 

The input dataset distribution procedure, given an 
allocationItemSet, can be summarized as follows: 

 
 
 
 

ᵾ records ᵾ input data                        
if (record ∩ 
allocationItemSet ≡ true)                 
record = {n|n ᵾ    
n ≤ endColNum}  else 
delete record 
 

  
 
 

 
Table 2: Dataset Example 

 
As an example, the ordered data set in Table 2 has items with 

6 attributes, a, b, c, d, e and f. Assuming three worker agents 
are participating, the above partitioning process will result in 
three dataset partitions, with allocationItemSets {a, b}, {c, d} 
and {e, f}. Application of the above algorithm will create 
partitions as follows (but note that the empty sets, here shown 
for clarity, will in fact not be included in the partitions): 
Partition 1 (a to b): {{a}, {b}, {a}, {b}, {a}, {a, b}, {}, {a, 
b}, {}, {a, b}} 

Partition 2 (c to d): {{a, c}, {}, {a, c}, {b, d}, {}, {a, b, c}, 
{d}, {}, {c},{a, b, d}} 
Partition 3 (e to f): {{a, c, f}, {}, {a, c, e}, {}, {a, e}, {}, {}, 
{}, {}} 

Once partitioning is complete each partition can be mined, 
using the Apriori-T algorithm, in isolation while at the same 
time taking into account the possibility of the existence of 
frequent itemsets dispersed across two or more partitions. 

Fig. 3 shows the resulting sub T-trees assuming all 
combinations represented by each partition are supported. 
Note that because the input dataset is ordered according to the 
frequency of 1-itemsets the size of the individual partitioned 
sets does not necessarily increase as the endColNum 
approaches N (the number of columns in the input dataset); in 
the later partitions, the lower frequency leads to more records 
being eliminated. Thus the computational effort required to 
process each partition is roughly balanced. 

 

 
 

Fig. 3: Vertical Partitioning of a T-tree Example [6] 
 

The DATA-VP MADM task can thus be summarized as 
follows: 
1) A task agent starts a number of workers (DM agents); these 

will be referred to as workers. 
2) The task agent determines the division of allocationItemSet 

according to the total number of available workers 
(agents) and transmits this information to them. 

3) The task agent transmits the allocated partition of the data 
(calculated as described above) to each worker. 

4) Each worker then generates a T-tree for its allocated 
partition (a sub T-tree of the final T-tree). 

5)  On completion each DM (worker) agent transmits its 
partition of the T-tree to the task agent which are then 
merged into a single global T-tree (the final T-tree ready 
for the next stage in the ARM process, rule generation). 

The local T-tree generation process begins with a top-level 
“tree” comprising only those 1-itemsets included in each 
worker (DM agent) allocationItemSet. 

The DM agent will then generate the candidate 2-itemsets 
that belong in its sub (local) T-tree. These will comprise all the 
possible pairings between each element in the 
allocationItemSet and the lexicographically preceding 
attributes of those elements (see Fig. 3). The support values for 
the candidate 2-itemsets are then determined and the sets 
pruned to leave only frequent 2-itemsets. Candidate sets for 
the third level are then generated. 
  Again, no attributes from succeeding allocationItemSet are 
considered, but the possible candidates will, in general, have 
subsets which are contained in preceding allocationItemSet 
and which, therefore, are being counted by some other DM 
agents. To avoid the overhead involved in the X-checking 

TID ItemSet 
1 acf 
2 b 
3 ace 
4 ad 
5 ae 
6 abc 
7 d 
8 ab 
9 c 
10 abd 
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process, described in Section 4, which in this case would 
require message-passing between the DM agents concerned, 
X-checking does not take place. Instead, the DM agent will 
generate its candidates assuming, where necessary, that any 
subsets outside its local T-tree are frequent. 

IX. DATA-VP TASK ARCHITECTURE AND NETWORK 
CONFIGURATION 

  The DATA-VP task architecture shown in Fig. 4 assumes 
the availability of at least one worker (DM agent), preferably 
more. Fig. 4 shows the assumed distribution of agents and 
shared data across the network. The figure also shows the 
house-keeping JADE agents (AMS and DF) through which 
agents find each other.  

A. Messaging 
Parallel/distributed ARM tends to entail much exchange of 

data messaging as the task proceeds. Messaging represents a 
significant computational overhead, in some cases outweighing 
any other advantage gained. Usually the number of messages 
sent and the size of the content of the message are significant 
factors affecting performance. It is therefore expedient, in the 
context of the techniques described here, to minimize the 
number of messages that are required to be sent as well as their 
size. 

The technique described here is One-to-Many approach, 
where only the task agent can send/receive messages to/from 
DM agents. This involves fewer operations, although, the 
significance of this advantage decreases as the number of 
agents used increases. 
 

 
 
Fig. 4: Parallel/Distributed ARM Model for DATA-VP Task 

Architecture 

X. EXPERIMENTATION AND ANALYSIS 
To evaluate the two approaches, in the context of the 

MADM vision, a number of experiments were conducted. 
These are described and analyzed in this section. 

The experiments presented here used up to six data 
partitions and two artificial datasets: 

 (i) T20.D100K.N250.num, and (ii) T20.D500K.N500.num 
where T = 20 (average number of items per transactions), D = 
100K or D = 500K (Number of transactions), and N = 500 or 
N = 250 (Number of items) are used. The datasets were 

generated using the IBM Quest generator used in Agrawal and 
Srikant [1]. 

As noted above the most significant overhead of any 
parallel/distributed system is the number and size of messages 
sent and received between agents. For the DATA-VP 
approach, the number of messages sent is independent of the 
number of levels in the T-tree; communication takes place only 
at the end of the tree construction. DATA-VP passes entire 
pruned sub (local) T-tree branches. Therefore, DATA-VP has 
a clear advantage in terms of the number of messages sent. 

 

    
 

(a)  Number of Data Partitions           (b) Support Threshold 
 

Fig. 5: Average of Execution Time for Dataset 
T20.D100K.N250.num 

 

   
 

(a) Number of Data Partitions           (b) Support Threshold 
 

Fig. 6: Average of Execution Time for Dataset 
T20.D500K.N500.num 

 
Fig. 5 and Fig. 6 show the effect of increasing the number of 

data partitions with respect to a range of support thresholds. 
As shown in Fig. 5 the DATA-VP algorithm shows better 
performance compared to the DATA-HS algorithm. This is 
largely due to the smaller size of the dataset and the T-tree 
data structure which: (i) facilitates vertical distribution of the 
input dataset, and (ii) readily lends itself to 
parallelization/distribution. However, when the data size is 
increased as in the second experiment, and further DM 
(worker) agents are added (increasing the number of data 
partitions), the results shown in Fig. 6, show that the increasing 
overhead of messaging size outweighs any gain from using 
additional agents, so that parallelization/distribution becomes 
counter productive. Therefore DATA-HS showed better 
performance from the addition of further data agents compared 
to the DATA-VP approach. 

XI. DISCUSSION 
MADM can be viewed as an effective distributed and 

parallel environment where the constituent agents function 
autonomously and (occasionally) exchange information with 
each other. The MADM system is designed with 
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asynchronous, distributed communication protocols that 
enable the participating agents to operate independently and 
collaborate with other peer agents as necessary, thus 
eliminating centralized control and synchronization barriers. 

Distributed and parallel DM can improve both efficiency and 
scalability first by executing the DM processes in parallel 
improving the run-time efficiency and second, by applying the 
DM processes on smaller subsets of data that are properly 
partitioned and distributed to fit in main memory (a data 
reduction technique). 

The scenario, described in this paper, demonstrated that 
MADM provides suitable mechanisms for exploiting the 
benefits of parallel computing; particularly parallel data 
processing. The scenario also demonstrated that MADM is 
suitable for re-usability and illustrated how it is supported by 
re-employing the meta ARM task agent, described in the 
previous paper, with the DATA-HS task. 

XII. CONCLUSION 
In this paper a MADM method for parallel/distributed ARM 

has been described so as to explore the MADM issues of 
scalability and re-usability. Scalability is explored by parallel 
processing of the data and re-usability is explored by 
reemploying the meta ARM task agent with the DATA-HS 
task. 

The solution to the scenario considered in this paper made 
use of a vertical data partitioning or a horizontal data 
segmentation technique to distribute the input data amongst a 
number of agents. In the horizontal data segmentation (DATA-
HS) method, the dataset was simply divided into segments 
each comprising an equal number of records. Each segment 
was then assigned to a data agent that allowed for using the 
meta ARM task when employed on a MADM system. Each 
DM agent then used its local data agent to generate a complete 
local T-tree for its allocated segment. Finally, the local T-trees 
were collated into a single tree which contained the overall 
frequent itemsets.  

The proposed vertical partitioning (DATA-VP) was 
facilitated by the T-tree data structure, and an associated 
mining algorithm (Apriori-T), that allowed for computationally 
effective parallel/distributed ARM when employed on the 
MADM system. 

The reported experimental results showed that the data 
partitioning methods described are extremely effective in 
limiting the maximal memory requirements of the algorithm, 
while their execution time scale only slowly and linearly with 
increasing data dimensions. Their overall performance, both in 
execution time and especially in memory requirements has 
brought significant improvement. 
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