

Abstract— A Multi-Agent based approach to Data Mining using a
Multi-Agent System (MADM) is described. The system comprises a
collection of agents cooperating to address given Data Mining (DM)
tasks. The exploration of the system is conducted by considering a
specific parallel/distributed Association Rule Mining (ARM)
scenario, namely data (vertical/horizontal) partitioning to achieve
parallel/distributed ARM. To facilitate the partitioning a compressed
set enumeration tree data structure (the T-tree) is used together with
an associated ARM algorithm (Apriori-T). The aim of the scenario is
to demonstrate that the MADM approach is capable of exploiting the
benefits of parallel computing; particularly parallel query processing
and parallel data accessing. Both of the data (vertical/horizontal)
partitioning techniques are evaluated and compared. Comparison of
the measures indicates that the data partitioning methods described
are extremely effective in limiting the maximal memory requirements
of the algorithms, while their execution time scale only slowly and
linearly with increasing data dimensions.

Keywords— Association Rule Mining, Multi-Agent Data

Mining, Meta Mining, Frequent Itemsets, T-tree.

I. INTRODUCTION
HE advantages offered by Multi-Agent Systems (MAS)
MADM can provide support to address a number of

general data mining issues, such as:
1) The size of the data sets to be mined: Ultimately data miners

wish to mine everything: text, images, video, multi-media
as well as simple tabular data. DM techniques to mine
tabular data sets are well established, however ever larger
data sets, more complex data (images, video), and more
sophisticated data formats (graphs, networks, trees, etc.)
are required to be mined. The resources to process these
data sets are significant; an MADM approach may
therefore provide a solution.

2) Data security and protection: The legal and commercial
issues associated with the security and protection of data
are becoming of increasing significance in the context of
data mining. The idea of sharing data for data mining by
first compiling it into a single data warehouse is often not
viable, or only viable if suitable preprocessing and
annoimization is first undertaken. MADM provides a
mechanism to support data protection.

K.A. Albashiri, is a university lecturer at Al-Ghabel Al-Gharbi University,
Gharin, Libya. He is with the Department of Data Analysis, Faculty of
Accounting, Maydan Aljazer, P.O.Box 1531, Tripoli, Libya.(e-mail:
elbashiri0@yahoo.com)

3) Appropriateness of DM Algorithms: An interesting
observation that can be drawn from the DM research
conducted to date is that for many DM tasks (for example
ARM) there is little evidence of a “best” algorithm suited
to all data. Even when considering relatively
straightforward tabular data, in the context of ARM, there
is no single algorithm that produces the best (most
representative) association rules in all cases. An agent-
based process of negotiation/interaction, to agree upon the
best result, seems desirable.

4) Resource intensive: Common feature of most DM tasks is
that they are resource intensive and operate on large sets
of data. Data sources measured in gigabytes or terabytes
are quite common in DM. This has called for fast DM
algorithms that can mine very large databases in a
reasonable amount of time. However, despite the many
algorithmic improvements proposed in many serial
algorithms, the large size and dimensionality of many
databases makes the DM of such databases too slow and
too big to be processed using a single process. There is
therefore a growing need to develop efficient parallel DM
algorithms that can run on distributed systems.

There are several ways in which data distribution can occur,
and these require different approaches to model construction,
including:
• Horizontal Data Distribution. The most straight forward
form of distribution is horizontal partitioning, in which
different records are collected at different sites, but each
record contains all of the attributes for the object it describes.
This is the most common and natural way in which data may
be distributed. For example, a multinational company deals
with customers in several countries, collecting data about
different customers in each country. It may want to understand
its customers worldwide in order to construct a global
advertising campaign.
• Vertical Data Distribution. The second form of distribution
is vertical partitioning, in which different attributes of the same
set of records are collected at different sites. Each site collects
the values of one or more attributes for each record and so, in
a sense, each site has a different view of the data. For example,
a credit-card company may collect data about transactions by
the same customer in different countries and may want to treat
the transactions in different countries as different aspects of
the customers total card usage. Vertically partitioned data is
still rare, but it is becoming more common and important [9].

This paper addresses a generic MADM scenario, that of
distributed/parallel DM. This scenario assumes an end user

Agent Based Data Distribution for Parallel
Association Rule Mining

Kamal Ali Albashiri

T

INTERNATIONAL JOURNAL OF COMPUTERS Volume 8, 2014

ISSN: 1998-4308 24

mailto:elbashiri0@yahoo.com

who owns a large data set and wishes to obtain DM results but
lacks the required resources (i.e. processors and memory). The
data set is partitioned into horizontal or vertical partitions that
can be distributed among a number of processors (agents) and
independently processed, to identify local itemsets, on each
process.

In the exploration of the applicability of MADM to
parallel/distributed ARM, the two data partitioning
approaches, based on the Apriori algorithm, are described and
their performance evaluated as indicated above. Recall that
DATA-HS (Horizontal Segmentation) makes use of a
horizontal partitioning of the data. The data is apportioned
amongst a number of data agents, typically by horizontally
segmenting the dataset into sets of records.

DATA-VP makes use of a vertical partitioning approach to
distributing the input dataset over the available number of DM
(worker) agents. To facilitate the vertical data partitioning the
tree data structure, described in [7], is again used together with
the Apriori-T ARM algorithm [6]. Using both approaches each
partition can be mined in isolation, while at the same time
taking into account the possibility of the existence of frequent
itemsets dispersed across two or more partitions. In the first
approach, DATA-HS, the scenario complements the meta
ARM scenario described in Albashiri et al. [3].
The rest of the paper is organized as follows. Section II
provides an overview of the field of MADM. Data partitioning
is introduced in Section III. Data partitioning may be achieved
in either a horizontal or vertical manner. A brief note on the
data structures used by the ARM algorithms is then presented
in Section IV. Before describing the data partitioning
approaches the Apriori-T algorithm is briefly described in
Section V. In Section VI a parallel/distributed task with Data
Horizontal Segmentation (DATA-HS) algorithm is described.
the nature of the agent communication protocols is given in
Section VII. The parallel/distributed task with Data Vertical
Partitioning (DATA-VP) algorithm (which is founded on
Apriori-T) is then described in Section VIII. The DATA-VP
MADM task architecture and network configuration is
presented in Section IX. Experimentation and Analysis,
comparing the operations of DATA-HS and DATA-VP, is
then presented in Section X. Discussion of how this scenario
addresses the goal of this paper is presented in Section XI.
Finally a conclusion is given in Section XII.

II. BACKGROUND AND RELATED WORK
This section briefly presents a review of the current research

relating to Multi-Agent Data Mining (MADM). It provides an
overview of the theoretical background of the research
discipline, identifying the approaches adopted, and discusses
the benefits and challenges posed.

During the last two decades, our ability to collect and store
data has significantly outpaced our ability to analyze,
summarize and extract “knowledge” from this data. The phrase
Knowledge Discovery in Databases (KDD) denotes the
complex process of identifying valid, novel, potentially useful
and ultimately understandable patterns in data [15]. DM refers
to a particular step in the KDD process. It consists of
particular algorithms that, under acceptable computational

efficiency limitations, produce a particular enumeration of
patterns (models) over the data.

A considerable number of algorithms have been developed
to perform DM tasks, from many fields of science [16].
Typical DM tasks are classification (the generation of
classifiers which can be used to assign each record of a
database to one of a predefined set of classes), clustering
(finding groups of database records that are similar according
to some user defined metrics) or ARM (determining
implication rules for a subset of database record attributes).

Agents and multi-agent systems are an emergent technology
that is expected to have a significant impact in realizing the
vision of a global and information rich services network to
support dynamic discovery and interaction of digital
enterprises. Significant work on multi-agent systems has
already been done for more than a decade since agents were
first claimed to be the next breakthrough in software
development, resulting in powerful multi-agent platforms and
innovative e-business applications.

Multi-agent Data Mining (MADM) is concerned with the
use of agent and MAS to perform DM activities. MAS has
some particular advantages to offer with respect to Knowledge
Discovery in Data (KDD), and particularly data mining, in the
context of sharing resources and expertise.

KDD has evolved to become a well established technology
that has many commercial applications. Research work in
these fields continues to develop ideas, generate new
algorithms and modify/extend existing algorithms. A diverse
body of work therefore exists. KDD research groups and
commercial enterprises, are prepared (at least to some extent)
to share their expertise. In addition, many KDD research
groups have made software freely available for download1.
This all serves to promote and enhance the current “state of the
art” in KDD. However, although the free availability of data
mining software is of a considerable benefit to the KDD
community, it still require users to have some programming
knowledge — this means that for many potential end users the
use of such free software is not a viable option. It is proposed
in this paper that this disadvantage can be addressed by using
the MAS mode of operation.

An additional advantages offered by MAS, in the context of
data mining, is that of privacy and (to an extent) security. By
its nature data mining is often applied to sensitive data. MAS
allows data to be mined remotely. Similarly, with respect to
data mining algorithms, MAS can make use of algorithms with
necessitating their transfer to users, thus contributing to the
preservation of intellectual property rights.

Several systems have been developed for MADM. These
systems can be categorized, according to their strategy of
learning, into three types:
1) Central-learning, when all the data can be gathered at a

central site and a single model built [18], [21].
2) Meta-learning, is the process of automatic induction of

correlations between tasks and solving strategies, based on
a domain characterization [19], [17], [23].

3) Hybrid-learning is a technique that combines local and
remote learning for model building [20], [22].

INTERNATIONAL JOURNAL OF COMPUTERS Volume 8, 2014

ISSN: 1998-4308 25

The most popular task of DM is to find patterns in data that
show associations between domain elements. This is generally
focused on transactional data, such as a database of purchases
at a store. This task is known as Association Rule Mining
(ARM), and was first introduced in Agrawal et al. [2].
Association Rules (ARs) identify collections of data attributes
that are statistically related in the underlying data.

III. SEGMENTATION AND PARTITIONING
 Notwithstanding the extensive work that has been done in the
field of ARM, there still remains a need for the development
of faster algorithms and alternative heuristics to increase their
computational efficiency. Because of the inherent intractability
of the fundamental problem, much research effort has been
directed at parallel ARM to decrease overall processing times
(see [8], [11], [12], [13]), and distributed ARM to support the
mining of datasets distributed over a network [4]. The main
challenges associated with parallel DM include:
• Minimizing I/O.
• Minimizing synchronization and communication.
• Effective load balancing.
• Effective data layout (horizontal vs. vertical).
• Good data decomposition.
• Minimizing/avoiding duplication of work.

To allow the data to be mined using a number of cooperating
agents the most obvious approach is to allocate different
subsets of the data to each agent. There are essentially two
fundamental approaches to partitioning/segmenting the data:
1) Horizontal segmentation where the data is divided

according to row number.
2) Vertical partitioning where the data is divided according to

column number.
Note that in this paper the term partitioning is used to

indicate vertical subdivision of data, and segmentation to
indicate horizontal subdivision of data.

Horizontal segmentation, is in general more
straightforward. Assuming a uniform/ homogeneous dataset it
is sufficient to divide the number of records by the number of
available agents and allocate each resulting segment
accordingly.

The most natural method to vertically partition a dataset is to
divide the number of columns by the number of available
agents so each is allocated an equal number of columns.

Many parallel DM algorithms have been developed based on
the Apriori algorithm or variations of the Apriori algorithm.
The most common parallel methods are [2], [8]:
• Count Distribution. This method follows a data-parallel
strategy and statically partitions the database into horizontal
partitions that are independently scanned for the local counts
of all candidate itemsets on each process. At the end of each
iteration, the local counts are summed across all processes to
form the global counts so that frequent itemsets can be
identified.
• Data Distribution. The Data Distribution method attempts to
utilize the aggregate main memory of parallel machines by
partitioning both the database and the candidate itemsets.
Since each candidate itemset is counted by only one process,
all processes have to exchange database partitions during each

iteration in order for each process to get the global counts of
the assigned candidate itemsets.
• Candidate Distribution. The Candidate Distribution method
also partitions candidate itemsets but selectively replicates,
instead of “partitioned-exchanging” the database transactions,
so that each process can proceed independently.

Experiments show that the Count Distribution method
exhibits better performance and scalability than the other two
methods [2]. The steps for the Count Distribution method may
be generalized as follows (for distributed-memory
multiprocessors):
1) Divide the database evenly into horizontal partitions

among all processes.
2) Each process scans its local database partition to collect the

local count of each item.
3) All processes exchange and sum up the local counts to get

the global counts of all items and find frequent 1-itemsets.
4) Set level k = 2.
5) All processes generate candidate k-itemsets from the mined

frequent (k-1)-itemsets.
6) Each process scans its local database partition to collect the

local count of each candidate k-itemset.
7) All processes exchange and sum up the local counts into

the global counts of all candidate k-itemsets and find
frequent k-itemsets among them.

8) Repeat (5) - (8) with k = k + 1 until no more frequent
itemsets are found.

In the following sections two MADM tasks, using both
vertical partitioning and horizontal segmentation, are
introduced. These tasks were implemented using a task
wrapper, so that they could be incorporated into the system as
task agents.

IV. NOTE ON P AND T TREES
The Meta ARM algorithms described here make use of two
data structures, namely P-trees and T-trees. The nature of these
structures is described in detail in [3]; however, for
completeness a brief overview is presented here.

The P-tree (Partial support tree) is a set enumeration tree
style structure with two important differences: (i) more than
one item may be stored at any individual node, and (ii) the tree
includes partial support counts. The structure is sued to store a
compressed version of the raw data set with partial support
counts obtained during the reading of the input data. The best
way of describing the P-tree is through an example such as that
given in Fig. 1.

In the figure the data set given on the left is stored in the P-
tree on the right. The advantages offered by the P-tree are of
particular benefit if the raw data set contains many common
leading sub-strings (prefixes). The number of such sub-strings
can be increased if the data is ordered according to the
frequency of the 1-itemsets contained in the raw data. The
likelihood of common leading sub-strings also increases with
the number of records in the raw data.

INTERNATIONAL JOURNAL OF COMPUTERS Volume 8, 2014

ISSN: 1998-4308 26

Fig. 1. P-tree example

The T-tree (Total support tree) is a “reverse” set enumeration
tree structure that inter-leaves node records with arrays. It is
used to store frequent item sets, in a compressed form,
identified by processing the P-tree. An example, generated
from the P-tree given Fig. 1, is presented in Fig. 2. From the
figure it can be seen that the top level comprises an array of
references to node structures that hold the support count and
reference to the next level (providing such a level exists).
Indexes equate to itemset numbers although for ease of
understanding in the figure letters have been used instead of
numbers.
The structure can be though of as a “reverse” set enumeration
tree because child nodes only contain itemsets that are
lexicographically before the parent itemsets. This offers the
advantage that less array storage is required (especially if the
data is ordered according to the frequency of individual items).

Fig. 2. T-tree example (support = 35%)

The T-tree is generated using an algorithm called Total From
Partial (TFP) which is also described in [7]. The TFP
algorithm is essentially an Apriori style algorithm that
proceeds in a level by level manner. At each level the P-tree is
processed to generate appropriate support counts. Note that on
completion of the TFP algorithm the T-tree contains details of
all the supported itemsets, in a manner that provides for fast
look up during AR generation, but no information about
unsupported sets (other than that they are not supported).
Referring to Fig. 2 unsupported sets are indicated by a null
reference.

V. THE APRIORI-T ALGORITHM
 The Apriori-T (Apriori Total) algorithm is an Association
Rule Mining (ARM) algorithm [7] that combines the classic
Apriori ARM algorithm with the T-tree data structure. As each

level is processed, candidates are added as a new level of the
T-tree, their support is counted, and those that do not reach the
required support threshold pruned. When the algorithm
terminates, the T-tree contains only frequent itemsets. The
Apriori-T algorithm was developed as part of the more
sophisticated ARM algorithm The Apriori-TFP. The Apriori
and Apriori-TFP algorithms are described in [7].

At each level, new candidate itemsets of size k are generated
from identified frequent k-1 itemsets, using the downward
closure property of itemsets, which in turn may necessitate the
inspection of neighboring branches in the T-tree to determine
if a particular k-1 subset is supported. This process is referred
to as X-checking. Note that X-checking adds a computational
overhead; offset against the additional effort required to
establish whether a candidate k itemset, all of whose k-1
itemsets may not necessarily be supported, is or is not a
frequent itemset.

The number of candidate nodes generated during the
construction of a T-tree, and consequently the computational
effort required, is very much dependent on the distribution of
columns within the input data. Best results are produced by
ordering the dataset, according to the support counts for the 1-
itemsets, so that the most frequent 1-itemsets occur first [5].

VI. THE PARALLEL/DISTRIBUTED TASK WITH HORIZONTAL
SEGMENTATION (DATA-HS) ALGORITHM

 The Data Horizontal Segmentation (DATA-HS) algorithm
uses horizontal segmentation, dividing the dataset into
segments each containing an equal number of records. ARM in
this case involves the generation of a number of T-trees,
holding frequent itemsets, one for each segment; and then
merging these T-trees to create one global T-tree.

The most significant issue when combining groups of
previously identified frequent sets is that wherever an itemset
is frequent in a data source A but not in a data source B a
check for any contribution from data source B is required (so
as to obtain a global support count). The challenge is thus to
combine the results from N different data sources in the most
computationally efficient manner. This in turn is influenced
predominantly by the magnitude (in terms of data size) of
returns to the source data that are required.

The term meta mining is defined, in this paper , as the
process of combining the individually obtained results of N
applications of a DM activity. The motivation behind the
scenario is that data relevant to a particular DM application
may be owned and maintained by different, geographically
dispersed, organizations. One approach to addressing the meta
mining problem is to adopt a distributed approach. The meta
mining scenario considered here is a meta Association Rule
Mining (meta ARM) scenario where the results of N ARM
operations, by N agents, are brought together.

A. Dynamic Behavior of System for Meta ARM operations

The meta ARM illustration described here was used to identify
the most efficient Meta ARM agent process given a number of
alternatives. The first algorithm was a bench mark algorithm,
against which other Meta ARM algorithms were compared.

INTERNATIONAL JOURNAL OF COMPUTERS Volume 8, 2014

ISSN: 1998-4308 27

Four comparison meta ARM algorithms were constructed
(Apriori, Brute Force, Hybrid 1 and Hybrid 2). Full details of
the algorithms can be found in [3]. In each case it was assumed
that each data source would produce a set of frequent sets,
using some ARM algorithm, with the results stored in a
common data structure. These data structures would then be
merged in some manner through a process of agent
collaboration. Each of the Meta ARM algorithms made use of
a Return To Data (RTD) lists, one per data set, to contain lists
of itemsets whose support was not included in the original
ARM operation and for which the count was to be obtained by
a return to the raw data held at a data agent. The RTD lists
comprised zero, one or more tuples of the form < I, sup >,
where I is an item set for which a count is required and sup is
the desired count. RTD lists are constructed as a meta ARM
algorithm progresses. During RTD list construction the sup
value will be 0, it is not until the RTD list is processed that
actual values are assigned to sup. The processing of RTD lists
may occur during, and/or at the end of, the meta ARM process
depending on the nature of the meta ARM algorithm used.

The meta ARM scenario comprises a set of N data agents
and N +1 DM agents: N ARM agents and one meta ARM
agent. Note that each ARM agent could have a different ARM
algorithm associated with it, however a common data structure
was assumed to facilitate data interchange. The common data
structure used was a T-tree, a set enumeration tree structure for
storing item sets.

Once generated the N local T-trees were passed to the Meta
ARM agent which created a global T-tree. During the global
T-tree generation process the Meta ARM agent interacted with
the various ARM agents in the form of the exchange of RTD
lists.

In this paper the the Apriori Meta ARM algorithm is used.
For the Apriori Meta ARM algorithm, it was assumed that
each data source would produce a set of frequent sets stored
in a T-tree. These T-trees would then be merged in some
manner.

Table 1: Apriori Meta ARM algorithm

The Apriori Meta ARM algorithm described briefly below

makes use of return to data (RTD) lists, one per data set, to
contain lists of itemsets whose support was not included in the
current T-tree and for which the count is to be obtained by a
return to the raw data. RTD lists comprise zero, one or more
tuples of the form < I, sup >, where I is an item set for which a
count is required and sup is the desired count. RTD lists are
constructed as the algorithm progresses. During RTD list

construction the sup value will be 0, it is not until the RTD list
is processed that actual values are assigned to sup. The
processing of RTD lists may occur during, and/or at the end
of, the Meta ARM process depending on the nature of the
algorithm. If the RTD lists are not processed until the end of
the merge phase. This means that many itemsets may be
included in the merged T-tree sofar and/or the RTD lists that
are in fact not supported.

The objective of the Aprori Meta ARM algorithm is to
identify such unsupported itemsets much earlier on in the
process. The algorithm proceeds in a similar manner to the
standard Apriori algorithm as shown in Table 1. Note that
items are added to the RTD list for data source n if a candidate
itemset is not included in T-tree n. At the end of the merge
phase the final merged T-tree is then pruned in phase three to
remove any unsupported frequent sets according to the user
supplied support threshold (expressed as a percentage of the
total number of records under consideration). Further details of
this Meta ARM process can be found in Albashiri et al. [3].

Assuming that a data agent representing the large dataset
has been launched by a user, the DATA-HS MADM algorithm
comprises the following steps:
1) User agent requests the task agent to horizontally segment

the dataset according to the total number of segments
required.

2) The task agent assigns and sends each data segment to an
interested data agent; if none exist then the task agent
launches new data agents.

3) Then a meta ARM task is called to obtain the Association
Rules (ARs) as described in [3].

VII. AGENT COMMUNICATION
Agents are identified by name; to communicate to one another,
an agent sender sends a message to another agent receiver by
specifying the message and receiver name. In JADE
applications, the agents communicate by sending messages
which are objects and identify each agent by a predefined
constant name and a variable instance local name. Any request
for container location is a REQUEST message and any result
to a REQUEST message is a INFORM message according to
ACL specifications. Notice that each message has an
associated Result, Query or Location object. JADE (Java
Agent Development Environment) [14] is a multi-agent
platform which this system is implemented in.

The system initially starts up with the two central JADE
agents. When a user wishes to make its data available for
possible data mining tasks, the user starts a data agent which in
turn publish its name and description with the DF agent. In the
context of ARM generation task, each DM agent could apply a
different data mining algorithm to the data to produce its local
T-tree. The frequent itemsets from each DM agent is collected
by the task agent. Then the task agent merge the T-trees to
generate one global T-tree. Once the T-tree is, association
rules are generated and shown to the user through the user
interface agent.

K = 1
Generate candidate K-itemsets
Start Loop
if (K-itemsets == null break)
Add supports for level K from N T-trees or add to
RTD list
Prune K-itemsets according to support threshold
K = K+1
Generate K-itemsets
End Loop

INTERNATIONAL JOURNAL OF COMPUTERS Volume 8, 2014

ISSN: 1998-4308 28

VIII. THE PARALLEL/DISTRIBUTED TASK WITH VERTICAL
PARTITIONING (DATA-VP) ALGORITHM

The second algorithm considered in the exploration of the
applicability of MADM to parallel/distributed ARM is the
Data Vertical Partitioning (DATA-VP). The DATA-VP
algorithm commences by distributing the input dataset over the
available number of workers (DM agents) using a vertical
partitioning strategy. Initially the set of single attributes
(columns) is split equally between the available workers so
that an allocationItemSet (a sequence of single attributes) is
defined for each DM agent in terms of a startColNum and
endColNum:

allocationItemSet = {n|startColNum < n endColNum}

Each DM agent will have its own allocationItemSet which is
then used to determine the subset of the input dataset to be
considered by the DM agent.

Using its allocationItemSet the task agent will partition the
data among workers (DM agents) as follows:
1) Remove all records in the input dataset that do not intersect

with the allocationItemSet.
2) From the remaining records remove those attributes whose

column number is greater than endColNum. Attributes
whose identifiers are less than startColNum cannot be
removed because these may still need to be included in the
subtree counted by the DM agent.

3) Send the allocated data partition to the corresponding DM
agent.

The input dataset distribution procedure, given an
allocationItemSet, can be summarized as follows:

ᵾ records ᵾ input data
if (record ∩
allocationItemSet ≡ true)
record = {n|n ᵾ
n ≤ endColNum} else
delete record

Table 2: Dataset Example

As an example, the ordered data set in Table 2 has items with

6 attributes, a, b, c, d, e and f. Assuming three worker agents
are participating, the above partitioning process will result in
three dataset partitions, with allocationItemSets {a, b}, {c, d}
and {e, f}. Application of the above algorithm will create
partitions as follows (but note that the empty sets, here shown
for clarity, will in fact not be included in the partitions):
Partition 1 (a to b): {{a}, {b}, {a}, {b}, {a}, {a, b}, {}, {a,
b}, {}, {a, b}}

Partition 2 (c to d): {{a, c}, {}, {a, c}, {b, d}, {}, {a, b, c},
{d}, {}, {c},{a, b, d}}
Partition 3 (e to f): {{a, c, f}, {}, {a, c, e}, {}, {a, e}, {}, {},
{}, {}}

Once partitioning is complete each partition can be mined,
using the Apriori-T algorithm, in isolation while at the same
time taking into account the possibility of the existence of
frequent itemsets dispersed across two or more partitions.

Fig. 3 shows the resulting sub T-trees assuming all
combinations represented by each partition are supported.
Note that because the input dataset is ordered according to the
frequency of 1-itemsets the size of the individual partitioned
sets does not necessarily increase as the endColNum
approaches N (the number of columns in the input dataset); in
the later partitions, the lower frequency leads to more records
being eliminated. Thus the computational effort required to
process each partition is roughly balanced.

Fig. 3: Vertical Partitioning of a T-tree Example [6]

The DATA-VP MADM task can thus be summarized as
follows:
1) A task agent starts a number of workers (DM agents); these

will be referred to as workers.
2) The task agent determines the division of allocationItemSet

according to the total number of available workers
(agents) and transmits this information to them.

3) The task agent transmits the allocated partition of the data
(calculated as described above) to each worker.

4) Each worker then generates a T-tree for its allocated
partition (a sub T-tree of the final T-tree).

5) On completion each DM (worker) agent transmits its
partition of the T-tree to the task agent which are then
merged into a single global T-tree (the final T-tree ready
for the next stage in the ARM process, rule generation).

The local T-tree generation process begins with a top-level
“tree” comprising only those 1-itemsets included in each
worker (DM agent) allocationItemSet.

The DM agent will then generate the candidate 2-itemsets
that belong in its sub (local) T-tree. These will comprise all the
possible pairings between each element in the
allocationItemSet and the lexicographically preceding
attributes of those elements (see Fig. 3). The support values for
the candidate 2-itemsets are then determined and the sets
pruned to leave only frequent 2-itemsets. Candidate sets for
the third level are then generated.
 Again, no attributes from succeeding allocationItemSet are
considered, but the possible candidates will, in general, have
subsets which are contained in preceding allocationItemSet
and which, therefore, are being counted by some other DM
agents. To avoid the overhead involved in the X-checking

TID ItemSet
1 acf
2 b
3 ace
4 ad
5 ae
6 abc
7 d
8 ab
9 c
10 abd

INTERNATIONAL JOURNAL OF COMPUTERS Volume 8, 2014

ISSN: 1998-4308 29

process, described in Section 4, which in this case would
require message-passing between the DM agents concerned,
X-checking does not take place. Instead, the DM agent will
generate its candidates assuming, where necessary, that any
subsets outside its local T-tree are frequent.

IX. DATA-VP TASK ARCHITECTURE AND NETWORK
CONFIGURATION

 The DATA-VP task architecture shown in Fig. 4 assumes
the availability of at least one worker (DM agent), preferably
more. Fig. 4 shows the assumed distribution of agents and
shared data across the network. The figure also shows the
house-keeping JADE agents (AMS and DF) through which
agents find each other.

A. Messaging
Parallel/distributed ARM tends to entail much exchange of

data messaging as the task proceeds. Messaging represents a
significant computational overhead, in some cases outweighing
any other advantage gained. Usually the number of messages
sent and the size of the content of the message are significant
factors affecting performance. It is therefore expedient, in the
context of the techniques described here, to minimize the
number of messages that are required to be sent as well as their
size.

The technique described here is One-to-Many approach,
where only the task agent can send/receive messages to/from
DM agents. This involves fewer operations, although, the
significance of this advantage decreases as the number of
agents used increases.

Fig. 4: Parallel/Distributed ARM Model for DATA-VP Task

Architecture

X. EXPERIMENTATION AND ANALYSIS
To evaluate the two approaches, in the context of the

MADM vision, a number of experiments were conducted.
These are described and analyzed in this section.

The experiments presented here used up to six data
partitions and two artificial datasets:

 (i) T20.D100K.N250.num, and (ii) T20.D500K.N500.num
where T = 20 (average number of items per transactions), D =
100K or D = 500K (Number of transactions), and N = 500 or
N = 250 (Number of items) are used. The datasets were

generated using the IBM Quest generator used in Agrawal and
Srikant [1].

As noted above the most significant overhead of any
parallel/distributed system is the number and size of messages
sent and received between agents. For the DATA-VP
approach, the number of messages sent is independent of the
number of levels in the T-tree; communication takes place only
at the end of the tree construction. DATA-VP passes entire
pruned sub (local) T-tree branches. Therefore, DATA-VP has
a clear advantage in terms of the number of messages sent.

(a) Number of Data Partitions (b) Support Threshold

Fig. 5: Average of Execution Time for Dataset
T20.D100K.N250.num

(a) Number of Data Partitions (b) Support Threshold

Fig. 6: Average of Execution Time for Dataset
T20.D500K.N500.num

Fig. 5 and Fig. 6 show the effect of increasing the number of

data partitions with respect to a range of support thresholds.
As shown in Fig. 5 the DATA-VP algorithm shows better
performance compared to the DATA-HS algorithm. This is
largely due to the smaller size of the dataset and the T-tree
data structure which: (i) facilitates vertical distribution of the
input dataset, and (ii) readily lends itself to
parallelization/distribution. However, when the data size is
increased as in the second experiment, and further DM
(worker) agents are added (increasing the number of data
partitions), the results shown in Fig. 6, show that the increasing
overhead of messaging size outweighs any gain from using
additional agents, so that parallelization/distribution becomes
counter productive. Therefore DATA-HS showed better
performance from the addition of further data agents compared
to the DATA-VP approach.

XI. DISCUSSION
MADM can be viewed as an effective distributed and

parallel environment where the constituent agents function
autonomously and (occasionally) exchange information with
each other. The MADM system is designed with

INTERNATIONAL JOURNAL OF COMPUTERS Volume 8, 2014

ISSN: 1998-4308 30

asynchronous, distributed communication protocols that
enable the participating agents to operate independently and
collaborate with other peer agents as necessary, thus
eliminating centralized control and synchronization barriers.

Distributed and parallel DM can improve both efficiency and
scalability first by executing the DM processes in parallel
improving the run-time efficiency and second, by applying the
DM processes on smaller subsets of data that are properly
partitioned and distributed to fit in main memory (a data
reduction technique).

The scenario, described in this paper, demonstrated that
MADM provides suitable mechanisms for exploiting the
benefits of parallel computing; particularly parallel data
processing. The scenario also demonstrated that MADM is
suitable for re-usability and illustrated how it is supported by
re-employing the meta ARM task agent, described in the
previous paper, with the DATA-HS task.

XII. CONCLUSION
In this paper a MADM method for parallel/distributed ARM

has been described so as to explore the MADM issues of
scalability and re-usability. Scalability is explored by parallel
processing of the data and re-usability is explored by
reemploying the meta ARM task agent with the DATA-HS
task.

The solution to the scenario considered in this paper made
use of a vertical data partitioning or a horizontal data
segmentation technique to distribute the input data amongst a
number of agents. In the horizontal data segmentation (DATA-
HS) method, the dataset was simply divided into segments
each comprising an equal number of records. Each segment
was then assigned to a data agent that allowed for using the
meta ARM task when employed on a MADM system. Each
DM agent then used its local data agent to generate a complete
local T-tree for its allocated segment. Finally, the local T-trees
were collated into a single tree which contained the overall
frequent itemsets.

The proposed vertical partitioning (DATA-VP) was
facilitated by the T-tree data structure, and an associated
mining algorithm (Apriori-T), that allowed for computationally
effective parallel/distributed ARM when employed on the
MADM system.

The reported experimental results showed that the data
partitioning methods described are extremely effective in
limiting the maximal memory requirements of the algorithm,
while their execution time scale only slowly and linearly with
increasing data dimensions. Their overall performance, both in
execution time and especially in memory requirements has
brought significant improvement.

REFERENCES
[1] R. Agrawal, M. Mehta, J. Shafer, R. Srikant, A. Arning, and T.

Bollinger. The Quest Data Mining System. In Proceedings of the 2nd
International Conference Knowledge Discovery and Data Mining,
(KDD), 1996.

[2] R. Agrawal and J. Shafer. Parallel mining of association rules. In
Proceedings of the IEEE Transactions on Knowledge and Data
Engineering 8(6), pages (962-969), 1996.

[3] K. A. Albashiri, F. Coenen, and P. Leng. EMADS: An Extendible
Multi-Agent Data Miner, volume XXIII, pages (263-276). Research and
Development in Intelligent Systems, AI, Springer, London, England,
2008.

[4] D. Cheung and Y. Xiao. Effect of Data Distribution in Parallel Mining
of Associations. In Proceedings of the Data Mining and Knowledge
Discovery 3(3), pages (291-314), 1999.

[5] F. Coenen and P. Leng. Optimising Association Rule Algorithms Using
Itemset Ordering. In Proceedings of the AI Conference, Research and
Development in Intelligent Systems XVIII, Springer, pages (53-66),
2001.

[6] F. Coenen, P. Leng, and S. Ahmed. T-Trees, Vertical Partitioning, and
Distributed Association Rule Mining. In Proceedings of the IEEE
International Conference on Data Mining (ICDM), Florida, eds. X Wu,
A Tuzhilin and J Shavlik: IEEE Press, pages (513-516), 2003.

[7] F. Coenen, P. Leng, and G. Goulbourne. Tree Structures for Mining
Association Rules, volume 8(1), pages (25-51). In the Journal of Data
Mining and Knowledge Discovery, 2004.

[8] E. Han, G. Karypis, and V. Kumar. Scalable Parallel Data Mining for
Association Rules. In Proceedings of the ACM(Association for
Computer Machinery)- Special Interest Group on Management of Data
(SIGMOD), International Conference on Management of Data, ACM
Press, pages (277-288), 1997.

[9] S. McConnell and D. Skillicorn. Building predictors from vertically
distributed data. In Proceedings of the 2004 conference of the Centre for
Advanced Studies conference on Collaborative research 04-07.
Markham, Ontario, Canada, pages (150-162), 2004.

[10] D. Michie, D. Spiegel halter, and C. Taylor. Machine Learning, Neural
and Statical Classification. In Ellis Horwood Series in Artificial
Intelligence, New York, 1994.

[11] S. Parthasarathy, M. Zaki, and W. Li. Memory Placement Techniques
for Parallel Association Mining. In Proceedings of the 4th International
Conference on Knowledge Discovery in Databases (KDD), AAAI Press,
pages (304-308), 1998.

[12] T. Shintani and M. Kitsuregawa. Hash Based Parallel Algorithms for
Mining Association Rules. In Proceedings of the 4th International
Conference on Parallel and Distributed Information Systems, (PIDS),
IEEE Computer Society Press, pages (19-30), 1996.

[13] M. Tamura and M. Kitsuregawa. Dynamic Load Balancing for Parallel
Association Rule Mining on Heterogeneous PC Cluster Systems. In
Proceedings of the 25th Very Large Data Bases (VLDB) Conference,
Morgan Kaufman, pages (162-173), 1999.

[14] A. Poggi, F. Bellifemine and G. Rimassi. JADE: A FIPA-Compliant
agent framework. In Proceedings the Practical Applications of
Intelligent Agents and Multi-Agents, pages (97-108), 1999.
http://www.jade.tilab.com.

[15] G. Piatetsky-Shapiro, U. Fayyad, P. Smyth, and R. Uthurusamy.
Advances in Knowledge Discovery and Data Mining. the Association
for the Advancement of Artificial Intelligence (AAAI) Press/MIT Press,
1996.

[16] Xindong Wu, Vipin Kumar, J. Ross Quinlan, Joydeep Ghosh, Qiang
Yang, Hiroshi Motoda, Geoffrey J. McLachlan, Angus Ng, Bing Liu,
Philip S. Yu, Zhi-Hua Zhou, Michael Steinbach, David J. Hand, and
Dan Steinberg. Top 10 Algorithms in Data Mining, Knowledge and
Information Systems, volume 14, pages (1-37). Springer-Verlag,
London Limited, 2008.

[17] S. Volman, P. Skobelev, I. Minakov, and G. Rzevski. Dynamic Pattern
Discovery using Multi-Agent Technology Proceedings of the 6th
WSEAS Int. Conference on TELECOMMUNICATIONS and
INFORMATICS, Dallas, Texas, USA, March 22-24, 2007.

[18] H. Xargupta, I. Hamzaoglu, and B. Stafford. Scalable, Distributed Data
Mining Using an Agent Based Architecture. Proceedings of Knowledge
Discovery and Data Mining, AAAI Press, pages (211-214), 1997.

[19] J. A. Yota, A. F. Gmez-Skarmeta, M. Valds, and A. Padilla. Metala. A
meta-learning architecture. Fuzzy Days, pages (688-698), 2001.

[20] A. Zurinsky and R. Grossman. A framework for finding distributed data
mining strategies that are intermediate between centralized strategies
and in-place strategies. In KDD Workshop on Distributed Data Mining,
2000.

[21] Ning Zhou, Kun Gao, Meiqun Liu, Kexiong Chen, and Jiaxun Chen.
Sampling-Based Tasks Scheduling in Dynamic Grid Environment.

INTERNATIONAL JOURNAL OF COMPUTERS Volume 8, 2014

ISSN: 1998-4308 31

http://www.jade.tilab.com/

Proceedings of The 5th WSEAS Int. Conf. On Simulation, Modeling
And Optimization, Corfu, Greece, August 17-19, 2005 (Pp25-30).

[22] M. Pejic Zach, N. Vlahovic, B. Knezevic. Public Data Retrieval with
Software Agents for Business Intelligence. Proceedings of the 5th
WSEAS Int. Conf. on Applied Informatics and Communications, Malta,
September 15-17, 2005 (pp215-220).

[23] Y. Chang Zu, T. Yi Lu, R. Fang. An Adaptive E-Learning System Based
on Intelligent Agents. Proceedings of the 6th WSEAS International
Conference on Applied Computer Science, Hangzhou, China, April 15-
17, 2007.

INTERNATIONAL JOURNAL OF COMPUTERS Volume 8, 2014

ISSN: 1998-4308 32

