
Hebah ElGibreen, Mehmet Sabih Aksoy

King Saud University

Abstract—In information system, researchers are usually

concerned with understanding the systems. However, due to

the excessive growth of computer technologies, handling of

large data became a challenge. Thus, simple prediction

algorithms can be more helpful than the difficult statistical

approaches. Specifically, Inductive Learning can be used to

accomplish difficult problem using simple rules or trees. In

this field of Machine Learning, methods have been divided

into two types: Decision Tree and Covering Algorithms.

However, current researchers are starting to focus more on

Covering Algorithm due to its outstanding properties and

the simplicity of its results. Specifically, one family called

RULES was found to be very interesting and its properties

seemed appealing. It was found that RULES is one of the

most flexible and simplest families and it has high learning

rate. Nevertheless, even though RULES is actively

improved but it was surprisingly neglected in the conducted

surveys, especially with numerical datasets. Yet, complex

and real-life problems always contain numerical features.

Thus, the purpose of this paper is to extend the Inductive

Learning literature and investigate the problem of

continuous attributes in RULES and other Inductive

Learning families. A theoretical analysis will be conducted

to show the effect of numerical values and how it is still an

open research area. In addition, an empirical evaluation will

also be conducted to show how RULES family can be used

as the base of further improvement. Accordingly, this paper

can be used as a reference by recent researchers to know

what research area is still not covered and need further

refinement in Inductive Learning, especially in complex

problems that contain numerical values.

Keywords—Inductive Learning, RULES family, Continuous

value, Covering Algorithms, Decision Tree

I. INTRODUCTION

N the past few years, Machine Learning (ML) gained a lot

of attention from societies of artificial intelligent. This

domain was developed to create autonomous agents who

can make the machine act similarly to humans. ML

encountered different learning methods depending on the

problems that are needed to be solved. One area of ML,

where the agent can learn how to train itself in order to

make future prediction, is called “Inductive Learning” (IL).

Inductive machine learning has been defined in [1] as “ the

ability of an agent (like an algorithm) to improve its own

performance based on past experience.” In this type of

learning the agent is usually provided by previous

knowledge as input in order to gain some descriptive

knowledge based on the given historical data. Hence, it is a

supervised learning paradigm which works as a data

analysis tool that uses the knowledge gained through

training to produce general conclusion and identify new

objects using the produced classifier.

In general, current IL algorithms have been divided into

two types: Decision tree (DT) and Covering Algorithm (CA)

[2]. Each type of these algorithms has its own purpose,

strength, and weakness. DT algorithms are IL methods that

discover rules using decision tree. This tree can be used later

to represent the rules [3]. On the other hand, CA directly

induce rules from the training set based on the concept of

separate and conquer. DT attracted a lot of attention in the

past few years because of the powerful tree structure.

However, researchers started to shift to CA because of the

strength of direct rule representation. Thus, several families

have been born under the umbrella of CA.

One important family, that is considered as one of the

simplest and most flexible CA, is called RULe Extraction

System (RULES) [4]. RULES family was born in 1995 by

Pham and Aksoy [5] to directly induce good rules in a

simple manner. It discovers inconsistent rules to allow the

coverage of some negative examples, in order to handle

noisy data, reduce over-fitting, and increase the flexibility of

rule induction. In contrast to the other CA, RULES does not

remove covered example but, instead, it marks it as covered.

This way, repeating the discovery of the same rule is

prevented while coverage accuracy and generality of new

rules are preserved. Consequently, this property solves

fragmentation and small combination problems; i.e. RULES

will avoid data reduction during the learning process and

covering small training examples with high error rate.

Nevertheless, it was found that RULES family is

surprisingly neglected. Even though researchers have been

interested in CA and conducted surveys and empirical

studies but RULES was always forgotten. Thus, in [6] a

theoretical analysis and empirical study were conducted to

compare RULES with other conventional IL methods. The

properties of RULES were compared to DT to find that

direct induction of rules is more appealing than the use of

trees, especially in large and complex data. Moreover, the

characteristics of CA families were analyzed and compared

to find that RULES can be considered as one of the most

flexible families. Hence, it was concluded that RULES is an

interesting family, and more research should be done to

improve its performance. However, all the test and

comparison were only conducted over discrete datasets

while numerical values were neglected. Nevertheless, in

practical and real-life applications, the collected data usually

contain continuous features (attributes). Thus, it is important

to extend the study to measure the performance of RULES

Continuous Features in Inductive Learning and

the Effect of RULES Family

I

Hebah ElGibreen is with IT Department, College of Computer and

Information Sciences, King Saud University, hjibreen@ksu.edu.sa

Mehmet Sabih Aksoy is with 2IS Department, College of Computer and
Information Sciences, King Saud University, msaksoy@ksu.edu.sa

INTERNATIONAL JOURNAL OF COMPUTERS Volume 8, 2014

ISSN: 1998-4308 66

mailto:hjibreen@ksu.edu.sa
mailto:msaksoy@ksu.edu.sa

and other conventional IL methods with numerical values.

Accordingly, the contribution of this paper is to extend

the preceding paper conducted in [6] by comparing RULES

with other conventional IL methods in numerical datasets.

This paper will show the effect of datasets with continuous

features in IL, in order to emphasize on what is still missing

in this domain. A practical study will also be conducted to

analysis and compare the performance of RULES with other

classical DT and CA, in order to show how RULES can be

used as the base of further improvement and how it

surpasses the other families. Based on the theoretical

analysis and the empirical study it will be possible to prove

the importance of numerical features' problem in CA, and

what part of this problem is still an open research area.

Hence, this paper can be used as a reference by recent

researchers to know what area is still not covered in IL,

especially with complex data.

This paper is organized as follows. First, RULES family

will be explained and the related work will be discussed to

prove the novelty of this paper. After that, continuous

features' problem will be theoretically analyzed. Following

that, an empirical test will be conducted to test RULES with

other DT and CA over numerical values to show its strength

and weakness and emphasize the open research questions in

the targeted problem. Finally, the paper will be concluded

and future work is suggested.

II. RULES FAMILY

RULES family is a CA family that directly induces one

rule at a time based on a seed example. It usually applies

specialization process to find the best rule. The rule that

covers the most positive examples and the least negative

examples are chosen as the best rule. Hence, RULES family

does not require finding of completely consistent rule. It

allows the best rule to cover some negative examples in

order to handle noisy data, reduce over-fitting problem, and

increase the flexibility of rule induction. Following that, the

examples that are positively covered by the discovered rules

are marked as covered; however, it is not removed from the

training set. This way, repeating the discovery of the same

rule is prevented while coverage accuracy and generality of

new rules are preserved. At the end, the algorithm is

repeated until all examples are covered. Moreover, several

versions have been proposed in this family, as follows.

RULES-1 [5]: It is the original RULES algorithm. In this

version, not all examples are kept in the memory, and it

stored unclassified examples in an array. Thus, its speed was

low and badly affected by datasets with a large number of

attributes. Moreover, its learning rate was low, where it

resulted in a high number of rules.

RULES-2 [7]: It is an improvement of RULES-1, where

not all examples are studied together. Instead, it works on

one seed example at a time to induce the best rules.

Moreover, it allows the user to specify the desired number

of rules. Thus, it reduces the resulting rules and it is faster

than its predecessor. Finally, additional features were also

added to handle missing and numeric values.

RULES-3 [8]: This version contained all the properties of

RULES-2 with additional features. It generates more general

rules than its predecessor and allows the user to specify the

desired level of rule precession.

RULES-3Plus [9]: It is a RULES-3 algorithm with two

additional functionality. It searches for the best rule by

applying specialization and beam search instead of the

exhaustive search. Additionally, it introduced a sorting

metric for better selection of candidate rules; where conflict

is solved based on the rule generality and accuracy.

RULES-4 [10]: This version is the first incremental

version of RULES family. It is a simple algorithm that uses

partial memory, where only a portion of the data is stored to

induce the new rules. It discovers the rules using RULES-3

Plus and stores it in a Long-Term memory, while rules of

the new examples are stored in the Short-Term memory.

RULES-5 [11]: It is the first version that handles

continuous attributes without discretization. It defines the

interval of each attribute during the rule construction based

on the examples' distribution. In particular, with each seed,

an attribute interval is chosen to exclude the value of the

most similar negative example. This version was also

extended in [12] to represent RULES-5+, which improve the

performance using a new rule space representation scheme.

RULES-6 [13]: It is a scalable version of RULES family,

that is an extension of RULES-3 plus. This version had the

advantages of RULES-3 plus in addition to high speed and

noise resistant. It scales to large dataset and constrains the

search space by employing a beam search and pre-pruning.

RULES-F [14]: It is an extension of RULES-5, where

not only continuous attributes are handled but also

continuous classes. Fuzzy set theory is applied to handle

continuous classes and reduce the overlapping between the

rules. It transforms all the attributes into a membership

degree to create fuzzy rule set instead of intervals.

Moreover, a new rule space representation scheme [12] was

also integrated in an a new version called RULES-F+.

RULES-SRI [15]: This version is another scalable

RULES algorithm. It selects the best w rules for further

search to reduce the search space and make it scalable to a

large number of rules. Moreover, rules were pruned based

on the hypothesis of general-to-specific partial ordering to

further reduce search space.

RULES-IS [16]: It is a new incremental algorithm that

was inspired by immune systems. It calls every example an

antigen and creates an antibody for each one. The antibody-

antigens pairs are stored in Short-Term memory and the size

of this partial memory is decided based on the concept of

immune system. Thus, every time the algorithm runs

incrementally, 5% of the oldest antibody-antigens pairs are

removed from the memory.

RULES3-EXT [17]: It is an extension of RULES-3 with

four additional features. RULES3-EXT eliminated repeated

examples and reduced the number of input file needed to

execute the algorithm. Moreover, users were given the

ability to change the attribute order when inducing the best

rules; and, finally, the algorithm partially discharged rules

that cannot fully cover unseen examples.

RULES-7 [18]: It is an extended version of RULES-6,

where it does not specialize all the parent rules of the current

rule. Instead, it only considers the rules that have greater

coverage than a pre-specified value. Moreover, this version

applied different control structure to improve its

performance, and it removed the duplicate rules during the

induction to reduce the algorithm time.

INTERNATIONAL JOURNAL OF COMPUTERS Volume 8, 2014

ISSN: 1998-4308 67

RULES-8[19]: It is an improved version to deal with

continuous attribute. RULES-8 discretized the continuous

attributes online during the learning process. It re-sorts the

dataset by the example class to decide on the split point

based on the seed attribute-value pair.

RULES-TL [20, 21]: It is one of the latest versions of

RULES family, where incomplete and large datasets are

considered. RULES-TL applies Transfer learning to reduce

the induction time and handle incomplete data. It was

scalable over large and incomplete data.

Ultimately, even though each version has its own

properties but most of these versions have some common

characteristics. In [6], these characteristics were discussed to

find that RULES is very appealing when compared with

conventional CA and DT algorithms. However, the case

where datasets contains continuous features was not

covered. Thus, after the literature review, this type of data

will be theoretically and empirically analyzed.

III. RELATED WORK

In the field of CA, several surveys and empirical studies

have been conducted through the years. In [22], different

CA methods have been tested over several pruning

techniques in order to show the effect of pre and post

pruning techniques. After that, another survey was

conducted in [23], to analyze the characteristics of CA

methods. This survey was very interesting and covered a

wide range of CA to compare the algorithms based on three

biases, namely: language, search, and pruning. However,

RULES was neglected, and no empirical test was conducted.

Moreover, in [24], another study was conducted to

explain and test different classification techniques. In this

work, different ML techniques have been explained

separately and then compared together in an empirical study.

Alternatively, in [1], a study was conducted to compare DT

algorithms with CA and hybrid IL algorithms. Nevertheless,

it only tested DataSqueezer with C5 and CLIP4 empirically

without any theoretical comparison. In addition, in [25], an

experimental evaluation of different CA have been

conducted to test its simplicity. However, these methods

were explained separately, properties and characteristics

were not compared, and RULES family was not considered.

Alternatively, however, Aksoy [4] focused in his study on

RULES family and conduct a survey that explained its

versions. Nevertheless, this survey was only concerned with

RULES family and theoretically explained version one to

five only. Hence, no empirical study was conducted and

other families of CA were not considered. In [26], different

supervised learning techniques were used to test the

performance of its algorithm with different discretization

techniques. This work was conducted as discretization

techniques survey to identify its taxonomy and empirically

analyze its performance. However, RULES family was not

included in the study. Finally, the preceding version of this

paper was conducted in [6], which test RULES family with

other conventional families of IL. This study showed the

importance of RULES and how it can surpass the other

families. However, only discrete datasets was considered

while the effect of numerical values was not covered.

Accordingly, it can be noticed from all the studies

discussed previously that conventional algorithms of CA

and DT have not been studied with RULES and the surveys

were either focused on the theoretical or empirical part of

the study. Even though the preceding study showed the

effect of RULES and other IL families but the data

considered was discrete only. Hence, an extended version is

needed to consider RULES and compare it with other IL

methods in datasets with continuous features. Thus, this

paper will theoretically analyze RULES and other IL

methods over numerical values, and they will be empirically

tested over datasets with continuous features.

IV. THEORETICAL STUDY: CONTINUOUS FEATURES PROBLEM

IN INDUCTIVE LEARNING

In rule induction, the dataset can include two types of

value: discrete and continuous. The discrete value contains

categorical data and has a finite number of values, such as

“High, Low, Medium”. The continuous value, however,

contain a numerical value with an infinite or very large

space, such as “1, 2, 3.4, 5.3.” Handling of continues values,

in general, is a problem and this domain is an active area of

research. Consequently, it was suggested to transform

continuous attributes into discrete ones. However, deciding

what discrete value to assign, the interval length of

continuous values for each corresponding discrete value,

and the number of intervals is still a problem. Hence, it

cannot be said that a perfect method has been found.

Moreover, when it comes to IL algorithms, in specific,

they were basically designed to handle discrete values, while

continues ones were neglected. Hence, as states in [27], rule

induction algorithms perform poorly with continuous values.

However, real-life problems mostly contain continuous data

rather than discrete. Therefore, different improvements are

needed to automatically handle continuous attributes. In IL,

the improvements done to deal with continuous features

were divided based on the concept of discretization.

Specifically, it was possible to divide IL methods that

consider continuous features into three types, as follows.

A. Offline Discretization

Offline discretization is a pre-processing step that

converts continuous attributes to discrete before induction.

The main idea is to apply any discretization technique, such

as EqualWidth, ChiMerge, or CAIM [26], over the data

before applying the rule induction. These discretization

methods basically split the values range of the continuous

attributes into a fixed number of intervals. Different

discretization techniques were applied over CAs; as in SIA

[28], ESIA [29], covering and evolutionary algorithms [27],

RULES-3+ [30], Prism [31], PrismTCS [32], and supervised

dynamic discretization [33]. Nevertheless, it was found that

although offline discretization reduces the time, but it can

seriously affect the rules' quality resulting from the CA [11].

In specific, there is a great tradeoff between the number of

intervals and the consistency of the rule. Such that, choosing

small split points would increase the interval size and,

hence, reduce consistency; while increasing the split points

reduces the interval size and overspecializes the rules.

As a result, there were some attempts to create

overlapping intervals, as in EDISC [18]. Nevertheless, it

was found that the accuracy result is not efficient enough,

and the time complexity of this algorithm is high in some

INTERNATIONAL JOURNAL OF COMPUTERS Volume 8, 2014

ISSN: 1998-4308 68

cases. Hence, creating overlapping intervals using offline

discretization might cause more problems. Thus, another

method was introduced into rule induction to increase its

flexibility. This method was developed based on the fuzzy

set theory [34], where the continuous value may belong to

multiple intervals, and degree of belonging to a certain

interval is measured by a membership function. Different

methods have been developed based this concept, as in C4.5

[35] and FR3 [36]. However, it was found that even though

fuzzy discretization can improve the accuracy of the rule

induction, but it tremendously increases the complexity, and

it is usually difficult to understand and apply.

B. Online Discretization

Online discretizations assign a fixed number of intervals

for the continuous attributes during the learning process.

This method tries to solve the problem of offline

discretization by increasing flexibility. Online discretization

was basically designed for DT algorithms, such as C4.5[37]

and CART [38, 39], but at every node it must re-discretize

all continuous attributes. Thus, it wastes a lot of time and

increases the computational complexity. Consequently, DT

algorithms run very slowly with continuous attributes.

As a result, recently online discretization started to occur

in CAs. In REP-based family, as Slipper [40] and Ripper

[41], an online discretization method was introduced.

However, even though they had a good performance, but it

needs an intensive computation with every attribute. It

encompasses a lot of sorting and needs at least three tables

for every attribute. These tables are processed and re-sorted

in every loop. Thus, in addition to the computation

complexity, this approach might increase the course of

dimensionality problem. Additionally, a new family of CA,

called Ant-Miner, was developed in [42] to perform a global

search over the dataset. It usually uses offline discretization

but several improvements have been made to deal with

continuous attributes in an online manner; either partially, as

in [43], or fully, as in [44, 45]. However, these methods can

only deal with dataset that have only continuous attributes.

They also need to represent the attributes in a tree before

extracting the rules. Moreover, several computations must

be conducted and stored to optimize the result. Thus, such

method is difficult to understand, highly complex, and might

need large memory during the learning process.

Moreover, in [46], online discretization was integrated

into RULES-SRI. Instead of examining all the values of an

individual, it only examines the boundaries of each attribute

during the learning process. Nevertheless, the execution

time and re-computation of boundaries with each rule have

tremendously increased, regardless of the accuracy

improvement. Furthermore, this method does not consider

the attributes interdependency and only considered the

relationship of the classes. Additionally, RULES was further

improved when dealing with continuous attributes through

RULES-8. This algorithm increased the computation

complexity due to its re-sorting, which might also affect the

execution time. Thus, even though it managed to handle

noise, but it had the same problems as REP-based family.

C. None-Discretization

None-discretization is a new research area that recently

started to grow, where intervals are not fixed. It deals with

continuous and discrete values in similar manner and tries to

discover the best discrete value for an attribute depending on

its relationship with other examples and classes. Several

attempts have been made to handle continuous attribute in

CAs without discretization. A modified version of AQ,

called CAQ, was developed in [47] to prove that dealing

with continuous attributes as a real number instead of

forcing it into discrete representation would lead to more

efficient results. However, CAQ did not obtain appropriate

ranges because it is affected only by the current example

without considering the overall data.

Moreover, RULES family was also improved to directly

handle continuous attributes, as in RULE-5. This version

defines the interval of each attribute during the rule

construction based on the examples' distribution. It was also

improved in RULES-5+ to reduce the role of statistical

measures by applying a new knowledge representation.

However, it was found that the number of rules discovered

is too large and caused the problem of overspecialization,

and, thus, it became sensitive to noise. In addition, RULES-

IS also included a procedure that handled continuous values

during the learning process without discretization. During

the generation of antibodies, numerical ranges were created

with every continuous attribute to cover the positive

examples. As a result of the empirical test, it was found that

the performance of this method is worse than its

predecessor, RULES-3+ and C5.0, over some training data

but might be better on future classification. Nevertheless,

this algorithm would need a lot of time and computation to

match every antigen with all different antibodies.

In [48], however, a system called Brute used a measure of

variance to decide on the continuous values' boundaries. It

reduced the number of rules by applying rule induction

repeatedly over different and overlapping examples using

bootstrapping ensemble learning. After that, another version

has been developed in [49], which introduce the similarity

measure between rules to visualize rule similarity.

Nevertheless, this system increased the computational cost

due to the reproduction of rules. Moreover, it is questionable

if the system can produce stable rules from small data.

Additionally, in [50], a new rule based algorithm called

uRule was developed to handle uncertain continuous

attributes. It is built based on REP-based family and used

new heuristics to optimize and prune resulting rules, identify

the optimal thresholds, and handle uncertain values. In [51],

the empirical result that tested this algorithm was discussed

to find that it can handle uncertainty in continuous and

discrete attributes. However, it was found that it consumes a

lot of time because of the complexity of rule pruning step.

D. Discussion

From all above, it can be concluded that even though the

preceding study conducted in [6] proved that RULES family

has better characteristics than the conventional IL families,

and can be empirically better learner but this conclusion was

based on discrete data. Moreover, after investigating how

continuous features are currently handled, it was found that

both RULES and other method in CA and DT is still

lacking. In this problem, the methods have some common

deficiencies, which can be summarized as follows.

INTERNATIONAL JOURNAL OF COMPUTERS Volume 8, 2014

ISSN: 1998-4308 69

1) Offline Discretization: It Does not consider future cases

and fixes the intervals in advance. It can cause a major

problem in the future, where it is possible that the values

of unseen data do not remain in the same distribution. In

addition, the update of discretized values can cause

another problem with incremental rule induction. It will

be difficult to update the interval of older rules and,

hence, can reduce the accuracy of the algorithm.

2) Online Discretization: It is more accurate than offline

discretization. The result of the interval depends on the

information gathered during the learning process. Hence,

it is context-dependant and can consider the data bias.

However, its computational cost is usually very high.

3) None-Discretization: It is an area of research that has a

bright future, but it has its flaws. The speed of handling

continuous attribute is a major problem that could affect

its accuracy. It causes overspecialization and makes the

results affected by the noise. Moreover, the simplicity of

updating the resulting quantization is also an issue;

incremental rule induction was not considered.

V. EMPIRICAL STUDY: CONTINUOUS FEATURES

EVALUATION

In the previous section, the significant of continuous

features’ problem was verified and its gaps were

emphasized. However, it is also important to know how

RULES family can add in comparison to the other

conventional families of IL. Thus, this section will show the

result of comparing different versions of RULES family

with other IL algorithms in continuous features’ problem.

The experiments were conducted on a PC with

Intel®Core™ i7 CPU, 2.67 GHz processes, and 6GB RAM.

In addition, KEEL tool [52, 53] was used to build the

experiments. Moreover, several dataset with different

properties are gathered from KEEL repository [53], as

illustrated in Table I, and the algorithms are validated using

10-fold cross-validation [54]. Note that the preceding paper

discretized all datasets in advance to test the algorithms'

performance over discrete datasets. However, in this

experiment, the datasets are not processed and it contains

continuous features.

Table I: Continuous attributes dataset

Dataset #Examples #Attributes #Labels

bupa 345 6 2

cleveland 303 13 5

ecoli 336 7 8

glass 214 9 7

haberman 306 3 2

iris 150 4 3

new-thyroid 215 5 3

pima 768 8 2

vehicle 846 18 4

wisconsin 683 9 2

tic-tac-toe 958 9 2

yeast 1484 8 2

Moreover, four different version of RULES, three DT,

and five CA algorithms were included in the experiment.

Each algorithm dealt with the continuous features using a

different technique, as follows.

 RULES-5+: The latest versions of RULES-5, where it

deals with continuous features using none-discretization

technique.

 RULES-6: One of the latest versions of RULES, which is

developed to scale over large datasets. This algorithm

handle continuous features offline by applying Fayyad and

Irani [55] discretization.

 RULES-SRI: One of the latest versions of RULES, which

is proposed to improve the scalability. It also handles

continuous features offline by applying Fayyad and Irani

discretization.

 DataSqueezer [56]: One of the latest versions of

DataSqueezer family that is fast, supervised, greedy, and

simple algorithm, but it required the existence of all class

labels. Fayyad and Irani offline discretization technique is

applied to handles continuous features.

 Ripper: A REP-based family algorithm that produced

error reduction. This algorithm handles continuous

features using online discretization, where it tests all

values of an attribute online and choosing the most

appropriate one.

 AQ15 [57]: The mostly known and used version of AQ to

handle noisy and overlapping data. Fayyad and Irani

offline discretization technique is applied to handles

continuous features.

 CN2 [58]: The original version of CN2 that is mostly

known and used in CA; it is an algorithm that combines

the good properties of AQ and ID3 family. To handle

continuous features, Fayyad and Irani offline discretization

technique is applied.

 PRISM: The original version of PRISM family that is

usually used as the base of any other versions of PRISM

and was developed as a competitor to ID3 algorithm. To

handle continuous features, Fayyad and Irani offline

discretization technique is applied.

 C4.5: A DT algorithm that is usually used to benchmark

the other classification methods. It deals with continuous

features online, where it re-discretize all continuous

features at every node.

 PUBLIC [59]: A DT algorithm that integrates pruning

technique during tree construction in order to handle the

over-fitting problem. It deals with continuous features

online by splitting the nodes while building the tree.

 CART [38]: A DT algorithm that integrates regression in

addition to classification in order to deal with continuous

values without the need for pre-discretization, i.e. it

applies online discretization similarly to C4.5.

In addition, after conducting the experiment, and to

visualize the result, different statistical analysis measures

were recorded. Specifically, to determine the performance of

the tested algorithms, the following measures are recorded.

 Error Rate: This measure records the error rate of

applying the resulting model over the test set; where less

error indicates better performance. Hence, it shows if the

algorithm is applicable over the test partition.

 Time Test: This measure records the time interval,

between generating the result of the first and last partition

of the dataset. Hence, it indicates the time taken by the

algorithm to process the whole dataset.

INTERNATIONAL JOURNAL OF COMPUTERS Volume 8, 2014

ISSN: 1998-4308 70

 Learning Rate: This measure records the learning rate of

the algorithms by collecting the rule set size at the end of

the algorithm. A small rule set size indicates that the result

is not overspecialized and, hence, it will be possible to

learn new knowledge rather than remembering the data.

Therefore, a smaller rule set size indicates better learning

rate and better performance.

Based on these measurements, datasets, and algorithms it

is possible to assess the performance of RULES in

continuous features' problem. Nevertheless, it was noticed

that the performance of every algorithm is different

depending on the dataset property. Moreover, RULES3-Ext

could not handle datasets with a large number of attributes.

It took a week to execute the algorithm without finishing.

Hence, RULES3Ext is not applicable to datasets with a large

number of attributes and, thus, it was excluded in this case.

Starting from the error rate, as shown in Table II, it can be

seen that RULES in Bupa, Cleveland, Iris, Tic-Tac-Toe, and

Vehicle datasets has the lowest error rate and, accordingly,

result in the most accurate model. Specifically, in the first

four datasets mentioned before RULES5+ has the best error

rate while in Vehicle RULES-6 has the lowest error rate.

Moreover, in Ecoli, Glass, New-Thyroid, Pima, and

Wisconsin datasets, RULES family was not far away from

the best error rate. Specifically, in Ecoli RULES-5+ has

20% error rate while the least error rate resulted from CN2

is 19%. In Glass dataset, RULES-5+ resulted in 31% error

rate while the least error rate resulted from C4.5 is equal to

30%. In New-Thyroid, RULES has 0.06 while the best error

rate in CART is 0.05. In addition, in Pima, RULES-5+ has

27% error rate while the least error rate resulted from

PRISIM and C4.5 is equal to 25%. Finally, in Wisconsin,

RULES-5+ has 4% error rate while the least error rate

resulted from PRISM is 2% and also Ripper gave equal

error rate to RULES in this dataset.

Nevertheless, when it comes to the rest of the datasets

including Haberman and Yeast, RULES is worse than most

of the algorithms. For some reason, all versions of RULES

family gave worse error rate than some of the other families.

Specifically, in Haberman dataset Datasqueezer, CN2,

PRISIM, PUBLIC, CART and C4.5 are better than all

versions of RULES family. Moreover, in Yeast dataset CN2,

Datasqueezer, and PRISIM exceeded RULES accuracy.

Thus, it can be concluded that RULES family can have

better performance than DT and other conventional families

in CA. When considering the average mean of all datasets,

presented in the last row of Table II, it can be noticed that

RULES-5+ has the least error rate. Moreover, from the

versions presented in the table, it can be concluded that

using none-discretization techniques to deal with continuous

attributes (as in RULES-5+) can be better than online and

offline discretization techniques. Specifically, it can be

noted that RULES-5+ exceeded the performance of

RULES-6, SRI, and 3EXT (which uses offline

discretization) in most datasets. In addition, in Ripper, C4.5,

CART and PUBLIC (which use online discretization)

RULES-5+ has also better error rate in most datasets.

Nevertheless, having a good accuracy is not enough to

measure the total performance. The generality of the

resulting rules is also important to know if the learning rate

is good enough for future changes and noise in the data.

Therefore, the number of rules resulted from each algorithm

is also recorded, as in Table III. In general, it can be seen

that Datasqueezer has the best learning rate in all datasets. It

resulted in only five rules on average, which is relatively

low when compared to the other algorithms. This is

probably because this family uses only hill climbing and

hybrid pruning. Moreover, when considering the average

performance of the algorithms over all datasets, it can be

noticed that CA usually have better learning rate than DT,

except for PUBLIC. However, even though RULES-5+

resulted in the best error rate but its learning rate is badly

affected. Thus, it can be concluded that even though the use

of none-discretization technique can improve the accuracy

of the algorithm, but it can badly affect its learning rate.

In addition to the learning rate, time is also important.

Therefore, the time spent in each dataset set was recorded

for every algorithm, as illustrated in Fig. 1. Note that CART

is not shown in the graph due to its lack of speed. It took it

from several minutes to several hours to finish its execution.

Thus, its representation affected the clarity of the graph.

However, it can be concluded that CART algorithm is a time

consuming DT algorithm.

On the other hand, from Fig. 1, it can be noticed that,

regardless of the dataset properties, all versions of RULES

in addition to PRISIM, AQ, and Datasequeezer have a

relatively low execution time. Hence, CA can finish its

induction faster than DT algorithms. Only CN2 and Ripper

are noticeably affected by the datasets. In CN2, the speed is

similar to the other CA in all datasets except of Wisconsin,

where it surprisingly has an increase in time. However, in

Ripper, the execution time is worse than the other DT and

CA in almost all datasets. On average, its execution time is

high in all datasets and it further increases on datasets with a

larger number of examples or attributes. Finally, even

though RULES-5+ has similar speed as the other methods

with offline discretization technique, but it actually is

slightly slower in total. Specifically, datasets that has a

relatively large number of attributes and examples, as in

Pima, Vehicle and Yeast, slightly affected its speed. Thus,

none-discretization might affect the methods' speed when

compared with offline discretization. However, it is still

better than the time spent by methods with online

discretization techniques.

Nevertheless, when considering DT algorithms it can be

noticed that their speed is worse than CA algorithms. In

C4.5, the execution time is affected by the type of datasets.

Even though the speed is high in some cases, but it becomes

slower in Buba, Glass, Pima, Vehicle, and Yeast datasets.

Moreover, in PUBLIC, the execution time is relatively high

in all datasets except for Bupa, Glass, Iris, and Tic-Tac-Toc.

It even got worse with datasets that have a large number of

attributes or examples, as in Vehicle and Yeast datasets.

Additionally, as stated before, CART algorithm resulted in

the worst speed of all algorithms presented. The reason of

such behavior is because of the excessive splitting in DT.

Thus, it can be said that DT methods' speed is more affected

by the datasets properties than CAs.

INTERNATIONAL JOURNAL OF COMPUTERS Volume 8, 2014

ISSN: 1998-4308 71

Table II: Average error rate

Datasets C45 CART PUBLIC PRISM CN2 AQ Ripper DataSqueezer Rules-6 RULES-SRI RULES-3Ext RULES5+

bupa 0.33 0.34 0.35 0.41 0.41 0.58 0.36 0.42 0.62 0.67 0.42 0.30

cleveland 0.48 0.49 0.45 0.45 0.45 0.43 0.54 0.46 0.47 0.45 --- 0.41

ecoli 0.21 0.23 0.22 0.22 0.19 0.24 0.27 0.47 0.51 0.37 0.27 0.20

glass 0.30 0.34 0.36 0.31 0.33 0.43 0.38 0.64 0.65 0.60 0.58 0.31

haberman 0.27 0.28 0.29 0.28 0.28 0.74 0.49 0.26 0.31 0.74 0.46 0.31

iris 0.05 0.05 0.06 0.08 0.07 0.15 0.06 0.09 0.19 0.17 0.16 0.03

new-thyroid 0.07 0.05 0.09 0.09 0.08 0.10 0.06 0.13 0.15 0.11 0.08 0.06

pima 0.25 0.31 0.26 0.25 0.28 0.32 0.29 0.35 0.58 0.35 0.48 0.27

vehicle 0.27 0.39 0.29 0.30 0.40 0.35 0.30 0.58 0.32 0.30 0.20 0.24

wisconsin 0.06 0.05 0.05 0.02 0.07 0.06 0.04 0.29 0.34 0.47 --- 0.04

tic-tac-toe 0.15 0.26 0.07 0.02 0.30 0.05 0.33 0.43 0.12 0.18 0.08 0.00

yeast 0.42 0.55 0.43 0.25 0.25 0.59 0.50 0.29 0.51 0.71 0.37 0.41

Average 0.24 0.28 0.24 0.22 0.26 0.34 0.30 0.37 0.40 0.43 -- 0.21

Table III: Average number of rules

Datasets C45 CART PUBLIC PRISM CN2 AQ Ripper DataSqueezer Rules-6 RULES-SRI RULES-3Ext RULES5+

bupa 29 58.8 2 2 2 2 22 2 2 3 3 45

cleveland 42 51.5 11 71 13 79 41 5 30 20 --- 48

ecoli 20 26.9 14 46 18 46 36 8 29 27 69 36

glass 24 12.5 11 40 15 31 22 6 29 21 55 27

haberman 3 90 2 2 2 3 19 2 2 4 4 63

iris 5 14.2 7 8 6 9 6 3 7 7 11 8

new-thyroid 8 23.7 8 16 7 12 6 3 11 11 20 8

pima 24 74.9 5 76 23 66 26 2 23 18 126 80

vehicle 66 76 27 258 45 205 48 4 29 19 240.8 72

wisconsin 13 41.5 10 14 8 10 9 3 101 66 --- 17

tic-tac-toe 85 94 25 49 8 61 68 15 27 20 62 23

yeast 161 90 37 45 20 45 140 2 19 15 76 267

Average 40 54.5 13 52 14 47 37 5 26 19 -- 58

INTERNATIONAL JOURNAL OF COMPUTERS Volume 8, 2014

ISSN: 1998-4308 72

Fig. 1: Average time with continuous attributes in minutes

Ultimately, from all above, it can be said that RULES

family is one of the most flexible families in CA. It was

previously proven that this family is very promising to be

used with discrete datasets. However, when it comes to data

with numeric features, the performance is different. From

the empirical study conducted in this paper, it was found

that CA need further improvement when the dataset contain

numerical values. Specifically, when the dataset contain

continuous features the following points can be summarized.

1) CA can result in better accuracy, learning rate, and

speed comparing to DT, regardless whether the

technique used is discretization or none-discretization.

2) When it comes to the error rate, algorithms with none-

discretization technique had better accuracy than most

methods with offline discretization, especially in the

same family. However, its accuracy was similar to the

methods that used online discretization techniques.

3) When it comes to the learning rate, it was found that

none-discretization techniques could badly affect the

learning rate of the algorithm. The number of rules

resulted from RULES-5+ was much higher than most

algorithms with either online or offline discretization.

4) When it comes to the speed, even though RULES-5+

implementation was not optimized but its execution

time was still better than the methods that used online

discretization. However, its performance was affected

by the datasets properties, where the speed was lower

than the methods with offline discretization. Hence, it

can be said that none-discretization techniques can be

faster than online discretization but it still needs further

improvement to surpass the offline discretization speed.

5) RULES-3Ext was not scalable to datasets with a large

number of attributes but newer versions such as

RULES-5+, 6, and SRI solved this problem.

Accordingly, it can be noticed that the empirical result

emphasizes the conclusion discussed in the theoretical

analysis, presented in the previous section. Thus, IL needs

further improvement when dealing with continuous features.

Moreover, because of RULES family properties, discovered

in the preceding paper, it would be a good idea to make such

improvement using this family. The none-discretization

technique developed in RULES family can be further

generalized to fill the gaps of continuous features.

VI. CONCLUSION

Due to the growth of interest in CA, different families

have been developed. Based on these families, different

surveys were also conducted. However, RULES family was

found to be neglected; even though a preceding study was

conducted to find the importance of RULES family but

discrete dataset was only considered. Hence, in addition to

the neglect, the effect of numeric values over difference IL

families was also missing. Hence, the contribution of this

paper was to extended the preceding version to show the

effect of RULES over datasets with numeric values and be

used as a reference by recent researchers to know what

research area is still not covered and need further refinement

in IL. From the theoretical analysis, it was found that even

though RULES family showed better properties and

characteristics than the other conventional families of IL but

it is lacking when applied over datasets with continuous

features. Moreover, as a result of the empirical evaluation it

was concluded that RULES family can have better

performance than the other families in IL due to the use of

none-discretization technique. None-discretization is a good

option to deal with continuous features, but its speed and

generality need further improvement. Thus, continuous

features' problem is still an open research area in CA, and

RULES can be used as the base of further improvement.

ACKNOWLEDGEMENT

This research project was supported by a grant from the

"Research Center of the Female Scientific and Medical

Colleges", Deanship of Scientific Research, King Saud

University. We also thank Dr. Samuel Bigot for his great

cooperation in providing us with RULES-5+.

REFERENCE

[1] K. J. Cios, R. W. Swiniarski, W. Pedrycz, L. A. Kurgan, K.

Cios, R. Swiniarski, and L. Kurgan, "Supervised Learning:

Decision Trees, Rule Algorithms, and Their Hybrids " in

Data Mining, ed: Springer US, 2007, pp. 381-417.

0

5

10

15

20

25

30

35

40

45
C45

PUBLIC

PRISM

CN2

AQ

Ripper

DataSqueezer

Rules-6

RULES-SRI

RULES5+

INTERNATIONAL JOURNAL OF COMPUTERS Volume 8, 2014

ISSN: 1998-4308 73

[2] D. Pham and A. Afify, "Machine-learning techniques and

their applications in manufacturing," Proceedings of the I

MECH E Part B Journal of Engineering Manufacture, vol.

219, pp. 395-412, 2005.

[3] F. Stahl and M. Bramer, "Computationally efficient induction

of classification rules with the PMCRI and J-PMCRI

frameworks," Knowledge-Based Systems, 2012.

[4] M. S. Aksoy, "A review of rules family of algorithms,"

Mathematical and Computational Applications, vol. 13, pp.

51-60, 2008.

[5] D. T. Pham and M. S. Aksoy, "RULES: A simple rule

extraction system," Expert Systems with Applications, vol. 8,

pp. 59-65, 1995.

[6] H. ElGibreen and M. S. Aksoy, "RULES Family: Where

does it stand in Inductive Learning?," in 8th International

Conference on Computer Engineering and Applications,

Tenerife, Spain, 2014.

[7] D. T. Pham and M. S. Aksoy, "An algorithm for automatic

rule induction," Artificial Intelligence in Engineering, vol. 8,

pp. 277-282, 1993.

[8] D. T. Pham and M. S. Aksoy, "A new algorithm for inductive

learning," Journal of Systems Engenering, vol. 5, pp. 115-

122, 1995.

[9] D. T. Pham and S. S. Dimov, "The RULES-3 Plus inductive

learning algorithm," in In Proceedings of the Third World

Congress on Expert Systems, Seoul, Korea, 1996, pp. 917–

924.

[10] D. T. Pham and S. S. Dimov, "An algorithm for incremental

inductive learning," Journal of Engineering Manufacture,

vol. 211, pp. 239-249, 1997.

[11] D. Pham, S. Bigot, and S. Dimov, "RULES-5: a rule

induction algorithm for classification problems involving

continuous attributes," in Institution of Mechanical

Engineers, 2003, pp. 1273-1286.

[12] S. Bigot, "A new rule space representation scheme for rule

induction in classification and control applications,"

Proceedings of the Institution of Mechanical Engineers, Part

I: Journal of Systems and Control Engineering, 2011.

[13] D. T. Pham and A. A. Afify, "RULES-6: A Simple Rule

Induction Algorithm for Supporting Decision Making,"

presented at the 31st Annual Conference of IEEE Industrial

Electronics Society (IECON '05), 2005.

[14] D. T. Pham, S. Bigot, and S. S. Dimov, "RULES-F: A fuzzy

inductive learning algorithm," Proceedings of the Institution

of Mechanical Engineers, Part C: Journal of Mechanical

Engineering Science, vol. 220, pp. 1433-1447, 2006.

[15] A. A. Afify and D. T. Pham, "SRI: A Scalable Rule

Induction Algorithm," Proceedings of the Institution of

Mechanical Engineers, Part C: Journal of Mechanical

Engineering Science, vol. 220, pp. 537-552, 2006.

[16] D. T. Pham and A. J. Soroka, "An Immune-network inspired

rule generation algorithm (RULES-IS)," in Third Virtual

International Conference on Innovative Production

Machines and Systems, WhittlesDunbeath, 2007.

[17] H. I. Mathkour, "RULES3-EXT Improvement on RULES-3

Induction Algorithm," Mathematical and Computational

Applications, Vol. 15, No. 3, pp. , 2010, vol. 15, pp. 318-324,

2010.

[18] K. Shehzad, "EDISC: A Class-tailored Discretization

Technique for Rule-based Classification," IEEE Transactions

on Knowledge and Data Engineering, vol. 24, pp. 1435-

1447, 2012.

[19] D. Pham, "A novel rule induction algorithm with improved

handling of continuous valued attributes," Doctor of

Philosophy, School of Engineering, Cardiff University,

Cardiff, 2012.

[20] H. ElGibreen and M. S. Aksoy, "RULES – TL: A simple and

Improved RULES Algorithm for Incomplete and Large

Data," Journal of Theoretical and Applied Information

Technology, vol. 47, 2013.

[21] H. ElGibreen and M. S. Aksoy, "Multi Model Transfer

Learning with RULES Family," in International Conference

on Machine Learning and Data Mining MLDM´2013, New

York, 2013.

[22] J. Fürnkranz, "Pruning Algorithms for Rule Learning,"

Machine Learning, vol. 27, pp. 139-172, 1997/05/01 1997.

[23] J. Fürnkranz, "Separate-and-Conquer Rule Learning,"

Artificial Intelligence Review, vol. 13, pp. 3-54, 1999/02/01

1999.

[24] S. B. Kotsiantis, "Supervised Machine Learning: A Review

of Classification Techniques," presented at the Proceedings

of the 2007 conference on Emerging Artificial Intelligence

Applications in Computer Engineering: Real Word AI

Systems with Applications in eHealth, HCI, Information

Retrieval and Pervasive Technologies, 2007.

[25] U. Ruckert and L. Deraedt, "An experimental evaluation of

simplicity in rule learning," Artificial Intelligence, vol. 172,

pp. 19-28, 2008.

[26] S. Garcıa, J. Luengo, J. A. Saez, V. Lopez, and F. Herrera,

"A Survey of Discretization Techniques: Taxonomy and

Empirical Analysis in Supervised Learning," IEEE

Transactions on Knowledge and Data Engineering, 2012.

[27] C. Chiu and N. S. Chiu, "An adapted covering algorithm

approach for modeling airplanes landing gravities," Expert

Systems with Applications, vol. 26, pp. 443-450, 2004.

[28] S. W. Wilson, "Classifier systems and the animat problem,"

Machine Learning, vol. 2, pp. 199-228, 1987.

[29] J. J. Liu and J. T.-Y. Kwok, "An Extended Genetic Rule

Induction Algorithm," in Proceedings of the 2000 Congress

on Evolutionary Computation La Jolla, CA, 2000, pp. 458-

463.

[30] T. Pham and S. S. Dimov, "An efficient algorithm for

automatic knowledge acquisition," Pattern Recognition, vol.

30, pp. 1137–1143, 1996.

[31] J. Cendrowska, "PRISM: An algorithm for inducing modular

rules," International Journal of Man-Machine Studies, vol.

27, pp. 349-370, 1987.

[32] F. Stahl, M. Bramer, and M. Adda, "PMCRI: A Parallel

Modular Classification Rule Induction Framework," in

Machine Learning and Data Mining in Pattern Recognition.

vol. 5632, P. Perner, Ed., ed: Springer Berlin / Heidelberg,

2009, pp. 148-162.

[33] F. Min, Q. Liu, H. Cai, and Z. Bai, "Dynamic Discretization:

A Combination Approach," presented at the International

Conference on Machine Learning and Cybernetics, Hong

Kong, 2007.

[34] L. Zadeh, "Fuzzy sets," Information and Control, vol. 8, pp.

338–353, 1965.

[35] M. E. Cintra, M. C. Monard, and H. de Arruda Camargo,

"An Evaluation of Rule-Based Classification Models Induced

by a Fuzzy Method and Two Classic Learning Algorithms,"

pp. 188-193, 2010.

[36] J. C. Huhn and E. Hullermeier, "FR3: a fuzzy rule learner for

inducing reliable classifiers," Trans. Fuz Sys., vol. 17, pp.

138-149, 2009.

[37] J. R. Quinlan, C4.5: Programs for Machine Learning:

Morgan Kaufmann, 1993.

[38] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone,

Classification and Regression Trees: Chapman and Hall

(Wadsworth, Inc.), 1984.

[39] D. Steinberg, "CART: Classification and Regression Trees,"

in The Top Ten Algorithms in Data Mining, X. Wu and V.

Kumar, Eds., ed: Taylor & Francis Group, LLC, 2010, pp.

179-201.

[40] W. W. Cohen and Y. Singer, "A simple, fast, and effective

rule learner," in Sixteenth National Conference on Artificial

Intelligence, 1999, pp. 335-342.

[41] E. Frank and I. H. Witten, "Generating Accurate Rule Sets

Without Global Optimization," presented at the Fifteenth

International Conference on Machine Learning, 1998.

INTERNATIONAL JOURNAL OF COMPUTERS Volume 8, 2014

ISSN: 1998-4308 74

[42] R. S. Parpinelli, H. S. Lopes, and A. A. Freitas, "An ant

colony algorithm for classification rule discovery," Data

Mining: A Heuristic Approach, vol. 208, 2002.

[43] S. Swaminathan, "Rule induction using ant colony

optimization for mixed variable attributes," Master,

Computer Science, Texas Tech University, Texas 2006.

[44] F. E. Otero, A. A. Freitas, and C. G. Johnson, "cAnt-Miner:

An Ant Colony Classification Algorithm to Cope with

Continuous Attributes," presented at the Proceedings of the

6th international conference on Ant Colony Optimization and

Swarm Intelligence, Brussels, Belgium, 2008.

[45] K. M. Salama, A. M. Abdelbar, F. E. B. Otero, and A. A.

Freitas, "Utilizing multiple pheromones in an ant-based

algorithm for continuous-attribute classification rule

discovery," Applied Soft Computing, vol. 13, pp. 667-675,

2013.

[46] D. T. Pham and A. A. Afify, "Online Discretization of

Continuous-Valued Attributes in Rule Induction,"

Proceedings of the Institution of Mechanical Engineers, Part

C: Journal of Mechanical Engineering Science, vol. 219, pp.

829-842, 2005.

[47] B. L. Whitehall, S. C. Y. Lu, and R. E. Stepp, "CAQ: A

machine learning tool for engineering," Artificial Intelligent

Engineering, vol. 5, pp. 189–198, 1990.

[48] L. R. Waitman, D. H. Fisher, and P. H.King, "Bootstrapping

Rule Induction," in Third IEEE International Conference on

Data Mining (ICDM’03), 2003, pp. 677- 680.

[49] L. Waitman, D. Fisher, and P. King, "Bootstrapping rule

induction to achieve rule stability and reduction," Journal of

Intelligent Information Systems, vol. 27, pp. 49-77, 2006.

[50] B. Qin, Y. Xia, R. Sathyesh, S. Prabhakar, and Y. Tu,

"uRule: A Rule-based Classification System for Uncertain

Data," presented at the IEEE International Conference on

Data Mining Workshops (ICDMW), Sydney, NSW, 2010.

[51] B. Qin, Y. Xia, and S. Prabhakar, "Rule induction for

uncertain data," Knowledge and Information Systems, vol.

29, pp. 103-130, 2010.

[52] J. Alcalá-Fdez, L. Sánchez, S. García, M. J. d. Jesus, S.

Ventura, J. M. Garrell, J. Otero, C. Romero, J. Bacardit, V.

M. Rivas, J. C. Fernández, and F. Herrera, "KEEL: A

Software Tool to Assess Evolutionary Algorithms to Data

Mining Problems," Soft Computing, vol. 13, pp. 307-318,

2009.

[53] J. Alcalá-Fdez, A. Fernandez, J. Luengo, J. Derrac, S. García,

L. Sánchez, and F. Herrera, "KEEL Data-Mining Software

Tool: Data Set Repository, Integration of Algorithms and

Experimental Analysis Framework," Journal of Multiple-

Valued Logic and Soft Computing vol. 17, pp. 255-287,

2011.

[54] B. Efron and R. Tibshirani, An Introduction to the Bootstrap.

USA: Chapman & Hall, 1993.

[55] U. M. Fayyad and K. B. Irani, "Multi-interval discretization

of continuousvalued attributes for classification learning,"

presented at the 13th International Joint Conference of

Artificial Intelligence, 1993.

[56] L. A. Kurgan, K. J. Cios, and S. Dick, "Highly Scalable and

Robust Rule Learner: Performance Evaluation and

Comparison," IEEE SYSTEMS, MAN, AND

CYBERNETICS—PART B: CYBERNETICS, vol. 36, pp. 32-

53, 2006.

[57] R. S. Michalski, I. Mozetic, J. Hong, and N. Lavrac, "The

Multi-Purpose Incremental Learning System AQ15 and its

Testing Application to Three Medical Domains," in Fifth

National Conference on Artificial Intelligence, Philadelphia,

1986, pp. 1041-1045.

[58] P. Clark and T. Niblett, "The CN2 induction algorithm,"

Machine Learning, vol. 3, pp. 261-283, 1989.

[59] R. Rastogi and K. Shim, "PUBLIC: A Decision Tree

Classifier that Integrates Building and Pruning," Data Mining

and Knowledge Discovery, vol. 4, pp. 315-344, 2000.

INTERNATIONAL JOURNAL OF COMPUTERS Volume 8, 2014

ISSN: 1998-4308 75

