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Abstract—In information system, researchers are usually 

concerned with understanding the systems. However, due to 

the excessive growth of computer technologies, handling of 

large data became a challenge. Thus, simple prediction 

algorithms can be more helpful than the difficult statistical 

approaches. Specifically, Inductive Learning can be used to 

accomplish difficult problem using simple rules or trees. In 

this field of Machine Learning, methods have been divided 

into two types: Decision Tree and Covering Algorithms. 

However, current researchers are starting to focus more on 

Covering Algorithm due to its outstanding properties and 

the simplicity of its results. Specifically, one family called 

RULES was found to be very interesting and its properties 

seemed appealing. It was found that RULES is one of the 

most flexible and simplest families and it has high learning 

rate. Nevertheless, even though RULES is actively 

improved but it was surprisingly neglected in the conducted 

surveys, especially with numerical datasets. Yet, complex 

and real-life problems always contain numerical features. 

Thus, the purpose of this paper is to extend the Inductive 

Learning literature and investigate the problem of 

continuous attributes in RULES and other Inductive 

Learning families. A theoretical analysis will be conducted 

to show the effect of numerical values and how it is still an 

open research area. In addition, an empirical evaluation will 

also be conducted to show how RULES family can be used 

as the base of further improvement. Accordingly, this paper 

can be used as a reference by recent researchers to know 

what research area is still not covered and need further 

refinement in Inductive Learning, especially in complex 

problems that contain numerical values.  
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I. INTRODUCTION 

N the past few years, Machine Learning (ML) gained a lot 

of attention from societies of artificial intelligent. This 

domain was developed to create autonomous agents who 

can make the machine act similarly to humans. ML 

encountered different learning methods depending on the 

problems that are needed to be solved. One area of ML, 

where the agent can learn how to train itself in order to 

make future prediction, is called “Inductive Learning” (IL). 

Inductive machine learning has been defined in [1] as “ the 

ability of an agent (like an algorithm) to improve its own 

performance based on past experience.” In this type of 

learning the agent is usually provided by previous 

knowledge as input in order to gain some descriptive 

knowledge based on the given historical data. Hence, it is a 

supervised learning paradigm which works as a data 

analysis tool that uses the knowledge gained through 

training to produce general conclusion and identify new 

objects using the produced classifier. 

In general, current IL algorithms have been divided into 

two types: Decision tree (DT) and Covering Algorithm (CA) 

[2]. Each type of these algorithms has its own purpose, 

strength, and weakness. DT algorithms are IL methods that 

discover rules using decision tree. This tree can be used later 

to represent the rules [3]. On the other hand, CA directly 

induce rules from the training set based on the concept of 

separate and conquer. DT attracted a lot of attention in the 

past few years because of the powerful tree structure. 

However, researchers started to shift to CA because of the 

strength of direct rule representation. Thus, several families 

have been born under the umbrella of CA.  

One important family, that is considered as one of the 

simplest and most flexible CA, is called RULe Extraction 

System (RULES) [4]. RULES family was born in 1995 by 

Pham and Aksoy [5] to directly induce good rules in a 

simple manner. It discovers inconsistent rules to allow the 

coverage of some negative examples, in order to handle 

noisy data, reduce over-fitting, and increase the flexibility of 

rule induction. In contrast to the other CA, RULES does not 

remove covered example but, instead, it marks it as covered. 

This way, repeating the discovery of the same rule is 

prevented while coverage accuracy and generality of new 

rules are preserved. Consequently, this property solves 

fragmentation and small combination problems; i.e. RULES 

will avoid data reduction during the learning process and 

covering small training examples with high error rate.     

Nevertheless, it was found that RULES family is 

surprisingly neglected. Even though researchers have been 

interested in CA and conducted surveys and empirical 

studies but RULES was always forgotten. Thus, in [6] a 

theoretical analysis and empirical study were conducted to 

compare RULES with other conventional IL methods. The 

properties of RULES were compared to DT to find that 

direct induction of rules is more appealing than the use of 

trees, especially in large and complex data. Moreover, the 

characteristics of CA families were analyzed and compared 

to find that RULES can be considered as one of the most 

flexible families. Hence, it was concluded that RULES is an 

interesting family, and more research should be done to 

improve its performance. However, all the test and 

comparison were only conducted over discrete datasets 

while numerical values were neglected. Nevertheless, in 

practical and real-life applications, the collected data usually 

contain continuous features (attributes). Thus, it is important 

to extend the study to measure the performance of RULES 
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and other conventional IL methods with numerical values.   

Accordingly, the contribution of this paper is to extend 

the preceding paper conducted in [6] by comparing RULES 

with other conventional IL methods in numerical datasets. 

This paper will show the effect of datasets with continuous 

features in IL, in order to emphasize on what is still missing 

in this domain. A practical study will also be conducted to 

analysis and compare the performance of RULES with other 

classical DT and CA, in order to show how RULES can be 

used as the base of further improvement and how it 

surpasses the other families. Based on the theoretical 

analysis and the empirical study it will be possible to prove 

the importance of numerical features' problem in CA, and 

what part of this problem is still an open research area. 

Hence, this paper can be used as a reference by recent 

researchers to know what area is still not covered in IL, 

especially with complex data.  

This paper is organized as follows. First, RULES family 

will be explained and the related work will be discussed to 

prove the novelty of this paper. After that, continuous 

features' problem will be theoretically analyzed. Following 

that, an empirical test will be conducted to test RULES with 

other DT and CA over numerical values to show its strength 

and weakness and emphasize the open research questions in 

the targeted problem. Finally, the paper will be concluded 

and future work is suggested.  

II. RULES FAMILY  

RULES family is a CA family that directly induces one 

rule at a time based on a seed example. It usually applies 

specialization process to find the best rule. The rule that 

covers the most positive examples and the least negative 

examples are chosen as the best rule. Hence, RULES family 

does not require finding of completely consistent rule. It 

allows the best rule to cover some negative examples in 

order to handle noisy data, reduce over-fitting problem, and 

increase the flexibility of rule induction. Following that, the 

examples that are positively covered by the discovered rules 

are marked as covered; however, it is not removed from the 

training set. This way, repeating the discovery of the same 

rule is prevented while coverage accuracy and generality of 

new rules are preserved. At the end, the algorithm is 

repeated until all examples are covered. Moreover, several 

versions have been proposed in this family, as follows. 

RULES-1 [5]: It is the original RULES algorithm. In this 

version, not all examples are kept in the memory, and it 

stored unclassified examples in an array. Thus, its speed was 

low and badly affected by datasets with a large number of 

attributes. Moreover, its learning rate was low, where it 

resulted in a high number of rules. 

RULES-2 [7]: It is an improvement of RULES-1, where 

not all examples are studied together. Instead, it works on 

one seed example at a time to induce the best rules. 

Moreover, it allows the user to specify the desired number 

of rules. Thus, it reduces the resulting rules and it is faster 

than its predecessor. Finally, additional features were also 

added to handle missing and numeric values.  

RULES-3 [8]: This version contained all the properties of 

RULES-2 with additional features. It generates more general 

rules than its predecessor and allows the user to specify the 

desired level of rule precession.  

RULES-3Plus [9]: It is a RULES-3 algorithm with two 

additional functionality. It searches for the best rule by 

applying specialization and beam search instead of the 

exhaustive search. Additionally, it introduced a sorting 

metric for better selection of candidate rules; where conflict 

is solved based on the rule generality and accuracy.  

RULES-4 [10]: This version is the first incremental 

version of RULES family. It is a simple algorithm that uses 

partial memory, where only a portion of the data is stored to 

induce the new rules. It discovers the rules using RULES-3 

Plus and stores it in a Long-Term memory, while rules of 

the new examples are stored in the Short-Term memory.  

RULES-5 [11]: It is the first version that handles 

continuous attributes without discretization. It defines the 

interval of each attribute during the rule construction based 

on the examples' distribution. In particular, with each seed, 

an attribute interval is chosen to exclude the value of the 

most similar negative example. This version was also 

extended in [12] to represent RULES-5+, which improve the 

performance using a new rule space representation scheme. 

RULES-6 [13]: It is a scalable version of RULES family, 

that is an extension of RULES-3 plus. This version had the 

advantages of RULES-3 plus in addition to high speed and 

noise resistant. It scales to large dataset and constrains the 

search space by employing a beam search and pre-pruning. 

RULES-F [14]: It is an extension of RULES-5, where 

not only continuous attributes are handled but also 

continuous classes. Fuzzy set theory is applied to handle 

continuous classes and reduce the overlapping between the 

rules. It transforms all the attributes into a membership 

degree to create fuzzy rule set instead of intervals. 

Moreover, a new rule space representation scheme [12] was 

also integrated in an a new version called RULES-F+. 

RULES-SRI [15]: This version is another scalable 

RULES algorithm. It selects the best w rules for further 

search to reduce the search space and make it scalable to a 

large number of rules. Moreover, rules were pruned based 

on the hypothesis of general-to-specific partial ordering to 

further reduce search space.     

RULES-IS [16]: It is a new incremental algorithm that 

was inspired by immune systems. It calls every example an 

antigen and creates an antibody for each one. The antibody-

antigens pairs are stored in Short-Term memory and the size 

of this partial memory is decided based on the concept of 

immune system. Thus, every time the algorithm runs 

incrementally, 5% of the oldest antibody-antigens pairs are 

removed from the memory.  

RULES3-EXT [17]: It is an extension of RULES-3 with 

four additional features. RULES3-EXT eliminated repeated 

examples and reduced the number of input file needed to 

execute the algorithm. Moreover, users were given the 

ability to change the attribute order when inducing the best 

rules; and, finally, the algorithm partially discharged rules 

that cannot fully cover unseen examples.  

RULES-7 [18]: It is an extended version of RULES-6, 

where it does not specialize all the parent rules of the current 

rule. Instead, it only considers the rules that have greater 

coverage than a pre-specified value. Moreover, this version 

applied different control structure to improve its 

performance, and it removed the duplicate rules during the 

induction to reduce the algorithm time.  

INTERNATIONAL JOURNAL OF COMPUTERS Volume 8, 2014

ISSN: 1998-4308 67



RULES-8[19]: It is an improved version to deal with 

continuous attribute. RULES-8 discretized the continuous 

attributes online during the learning process. It re-sorts the 

dataset by the example class to decide on the split point 

based on the seed attribute-value pair.  

RULES-TL [20, 21]: It is one of the latest versions of 

RULES family, where incomplete and large datasets are 

considered. RULES-TL applies Transfer learning to reduce 

the induction time and handle incomplete data. It was 

scalable over large and incomplete data. 

Ultimately, even though each version has its own 

properties but most of these versions have some common 

characteristics. In [6], these characteristics were discussed to 

find that RULES is very appealing when compared with 

conventional CA and DT algorithms. However, the case 

where datasets contains continuous features was not 

covered. Thus, after the literature review, this type of data 

will be theoretically and empirically analyzed. 

III. RELATED WORK 

In the field of CA, several surveys and empirical studies 

have been conducted through the years. In [22], different 

CA methods have been tested over several pruning 

techniques in order to show the effect of pre and post 

pruning techniques. After that, another survey was 

conducted in [23], to analyze the characteristics of CA 

methods. This survey was very interesting and covered a 

wide range of CA to compare the algorithms based on three 

biases, namely: language, search, and pruning. However, 

RULES was neglected, and no empirical test was conducted.  

Moreover, in [24], another study was conducted to 

explain and test different classification techniques. In this 

work, different ML techniques have been explained 

separately and then compared together in an empirical study. 

Alternatively, in [1], a study was conducted to compare DT 

algorithms with CA and hybrid IL algorithms. Nevertheless, 

it only tested DataSqueezer with C5 and CLIP4 empirically 

without any theoretical comparison. In addition, in [25], an 

experimental evaluation of different CA have been 

conducted to test its simplicity. However, these methods 

were explained separately, properties and characteristics 

were not compared, and RULES family was not considered.  

Alternatively, however, Aksoy [4] focused in his study on 

RULES family and conduct a survey that explained its 

versions. Nevertheless, this survey was only concerned with 

RULES family and theoretically explained version one to 

five only. Hence, no empirical study was conducted and 

other families of CA were not considered. In [26], different 

supervised learning techniques were used to test the 

performance of its algorithm with different discretization 

techniques. This work was conducted as discretization 

techniques survey to identify its taxonomy and empirically 

analyze its performance. However, RULES family was not 

included in the study. Finally, the preceding version of this 

paper was conducted in [6], which test RULES family with 

other conventional families of IL. This study showed the 

importance of RULES and how it can surpass the other 

families. However, only discrete datasets was considered 

while the effect of numerical values was not covered.  

Accordingly, it can be noticed from all the studies 

discussed previously that conventional algorithms of CA 

and DT have not been studied with RULES and the surveys 

were either focused on the theoretical or empirical part of 

the study.  Even though the preceding study showed the 

effect of RULES and other IL families but the data 

considered was discrete only. Hence, an extended version is 

needed to consider RULES and compare it with other IL 

methods in datasets with continuous features. Thus, this 

paper will theoretically analyze RULES and other IL 

methods over numerical values, and they will be empirically 

tested over datasets with continuous features.   

IV. THEORETICAL STUDY: CONTINUOUS FEATURES PROBLEM 

IN INDUCTIVE LEARNING  

In rule induction, the dataset can include two types of 

value: discrete and continuous. The discrete value contains 

categorical data and has a finite number of values, such as 

“High, Low, Medium”. The continuous value, however, 

contain a numerical value with an infinite or very large 

space, such as “1, 2, 3.4, 5.3.” Handling of continues values, 

in general, is a problem and this domain is an active area of 

research. Consequently, it was suggested to transform 

continuous attributes into discrete ones. However, deciding 

what discrete value to assign, the interval length of 

continuous values for each corresponding discrete value, 

and the number of intervals is still a problem. Hence, it 

cannot be said that a perfect method has been found.  

Moreover, when it comes to IL algorithms, in specific, 

they were basically designed to handle discrete values, while 

continues ones were neglected. Hence, as states in [27], rule 

induction algorithms perform poorly with continuous values. 

However, real-life problems mostly contain continuous data 

rather than discrete. Therefore, different improvements are 

needed to automatically handle continuous attributes. In IL, 

the improvements done to deal with continuous features 

were divided based on the concept of discretization. 

Specifically, it was possible to divide IL methods that 

consider continuous features into three types, as follows. 

A. Offline Discretization 

Offline discretization is a pre-processing step that 

converts continuous attributes to discrete before induction. 

The main idea is to apply any discretization technique, such 

as EqualWidth, ChiMerge, or CAIM [26], over the data 

before applying the rule induction. These discretization 

methods basically split the values range of the continuous 

attributes into a fixed number of intervals. Different 

discretization techniques were applied over CAs; as in SIA 

[28], ESIA [29], covering and evolutionary algorithms [27], 

RULES-3+ [30], Prism [31], PrismTCS [32], and supervised 

dynamic discretization [33]. Nevertheless, it was found that 

although offline discretization reduces the time, but it can 

seriously affect the rules' quality resulting from the CA [11]. 

In specific, there is a great tradeoff between the number of 

intervals and the consistency of the rule. Such that, choosing 

small split points would increase the interval size and, 

hence, reduce consistency; while increasing the split points 

reduces the interval size and overspecializes the rules.  

As a result, there were some attempts to create 

overlapping intervals, as in EDISC [18]. Nevertheless, it 

was found that the accuracy result is not efficient enough, 

and the time complexity of this algorithm is high in some 
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cases. Hence, creating overlapping intervals using offline 

discretization might cause more problems. Thus, another 

method was introduced into rule induction to increase its 

flexibility. This method was developed based on the fuzzy 

set theory [34], where the continuous value may belong to 

multiple intervals, and degree of belonging to a certain 

interval is measured by a membership function. Different 

methods have been developed based this concept, as in C4.5 

[35] and FR3 [36]. However, it was found that even though 

fuzzy discretization can improve the accuracy of the rule 

induction, but it tremendously increases the complexity, and 

it is usually difficult to understand and apply.  

B. Online Discretization  

Online discretizations assign a fixed number of intervals 

for the continuous attributes during the learning process. 

This method tries to solve the problem of offline 

discretization by increasing flexibility. Online discretization 

was basically designed for DT algorithms, such as C4.5[37] 

and CART [38, 39], but at every node it must re-discretize 

all continuous attributes. Thus, it wastes a lot of time and 

increases the computational complexity. Consequently, DT 

algorithms run very slowly with continuous attributes.  

As a result, recently online discretization started to occur 

in CAs. In REP-based family, as Slipper [40] and Ripper 

[41], an online discretization method was introduced. 

However, even though they had a good performance, but it 

needs an intensive computation with every attribute. It 

encompasses a lot of sorting and needs at least three tables 

for every attribute. These tables are processed and re-sorted 

in every loop. Thus, in addition to the computation 

complexity, this approach might increase the course of 

dimensionality problem. Additionally, a new family of CA, 

called Ant-Miner, was developed in [42] to perform a global 

search over the dataset. It usually uses offline discretization 

but several improvements have been made to deal with 

continuous attributes in an online manner; either partially, as 

in [43], or fully, as in [44, 45]. However, these methods can 

only deal with dataset that have only continuous attributes. 

They also need to represent the attributes in a tree before 

extracting the rules. Moreover, several computations must 

be conducted and stored to optimize the result. Thus, such 

method is difficult to understand, highly complex, and might 

need large memory during the learning process. 

Moreover, in [46], online discretization was integrated 

into RULES-SRI. Instead of examining all the values of an 

individual, it only examines the boundaries of each attribute 

during the learning process. Nevertheless, the execution 

time and re-computation of boundaries with each rule have 

tremendously increased, regardless of the accuracy 

improvement. Furthermore, this method does not consider 

the attributes interdependency and only considered the 

relationship of the classes. Additionally, RULES was further 

improved when dealing with continuous attributes through 

RULES-8. This algorithm increased the computation 

complexity due to its re-sorting, which might also affect the 

execution time. Thus, even though it managed to handle 

noise, but it had the same problems as REP-based family. 

C. None-Discretization  

None-discretization is a new research area that recently 

started to grow, where intervals are not fixed. It deals with 

continuous and discrete values in similar manner and tries to 

discover the best discrete value for an attribute depending on 

its relationship with other examples and classes. Several 

attempts have been made to handle continuous attribute in 

CAs without discretization. A modified version of AQ, 

called CAQ, was developed in [47] to prove that dealing 

with continuous attributes as a real number instead of 

forcing it into discrete representation would lead to more 

efficient results. However, CAQ did not obtain appropriate 

ranges because it is affected only by the current example 

without considering the overall data. 

Moreover, RULES family was also improved to directly 

handle continuous attributes, as in RULE-5. This version 

defines the interval of each attribute during the rule 

construction based on the examples' distribution. It was also 

improved in RULES-5+ to reduce the role of statistical 

measures by applying a new knowledge representation. 

However, it was found that the number of rules discovered 

is too large and caused the problem of overspecialization, 

and, thus, it became sensitive to noise. In addition, RULES-

IS also included a procedure that handled continuous values 

during the learning process without discretization. During 

the generation of antibodies, numerical ranges were created 

with every continuous attribute to cover the positive 

examples. As a result of the empirical test, it was found that 

the performance of this method is worse than its 

predecessor, RULES-3+ and C5.0, over some training data 

but might be better on future classification. Nevertheless, 

this algorithm would need a lot of time and computation to 

match every antigen with all different antibodies. 

In [48], however, a system called Brute used a measure of 

variance to decide on the continuous values' boundaries. It 

reduced the number of rules by applying rule induction 

repeatedly over different and overlapping examples using 

bootstrapping ensemble learning. After that, another version 

has been developed in [49], which introduce the similarity 

measure between rules to visualize rule similarity. 

Nevertheless, this system increased the computational cost 

due to the reproduction of rules. Moreover, it is questionable 

if the system can produce stable rules from small data. 

Additionally, in [50], a new rule based algorithm called 

uRule was developed to handle uncertain continuous 

attributes. It is built based on REP-based family and used 

new heuristics to optimize and prune resulting rules, identify 

the optimal thresholds, and handle uncertain values. In [51], 

the empirical result that tested this algorithm was discussed 

to find that it can handle uncertainty in continuous and 

discrete attributes. However, it was found that it consumes a 

lot of time because of the complexity of rule pruning step. 

D. Discussion  

From all above, it can be concluded that even though the 

preceding study conducted in [6] proved that RULES family 

has better characteristics than the conventional IL families, 

and can be empirically better learner but this conclusion was 

based on discrete data. Moreover, after investigating how 

continuous features are currently handled, it was found that 

both RULES and other method in CA and DT is still 

lacking. In this problem, the methods have some common 

deficiencies, which can be summarized as follows. 
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1) Offline Discretization: It Does not consider future cases 

and fixes the intervals in advance. It can cause a major 

problem in the future, where it is possible that the values 

of unseen data do not remain in the same distribution. In 

addition, the update of discretized values can cause 

another problem with incremental rule induction. It will 

be difficult to update the interval of older rules and, 

hence, can reduce the accuracy of the algorithm.  

2) Online Discretization: It is more accurate than offline 

discretization. The result of the interval depends on the 

information gathered during the learning process. Hence, 

it is context-dependant and can consider the data bias. 

However, its computational cost is usually very high.  

3) None-Discretization: It is an area of research that has a 

bright future, but it has its flaws. The speed of handling 

continuous attribute is a major problem that could affect 

its accuracy. It causes overspecialization and makes the 

results affected by the noise. Moreover, the simplicity of 

updating the resulting quantization is also an issue; 

incremental rule induction was not considered.   

V. EMPIRICAL STUDY: CONTINUOUS FEATURES 

EVALUATION 

In the previous section, the significant of continuous 

features’ problem was verified and its gaps were 

emphasized. However, it is also important to know how 

RULES family can add in comparison to the other 

conventional families of IL. Thus, this section will show the 

result of comparing different versions of RULES family 

with other IL algorithms in continuous features’ problem.  

The experiments were conducted on a PC with 

Intel®Core™ i7 CPU, 2.67 GHz processes, and 6GB RAM. 

In addition, KEEL tool [52, 53] was used to build the 

experiments. Moreover, several dataset with different 

properties are gathered from KEEL repository [53], as 

illustrated in Table I, and the algorithms are validated using 

10-fold cross-validation [54]. Note that the preceding paper 

discretized all datasets in advance to test the algorithms' 

performance over discrete datasets. However, in this 

experiment, the datasets are not processed and it contains 

continuous features.  

Table I: Continuous attributes dataset 

Dataset #Examples #Attributes #Labels 

bupa 345 6 2 

cleveland 303 13 5 

ecoli 336 7 8 

glass 214 9 7 

haberman 306 3 2 

iris 150 4 3 

new-thyroid 215 5 3 

pima 768 8 2 

vehicle 846 18 4 

wisconsin 683 9 2 

tic-tac-toe 958 9 2 

yeast 1484 8 2 

 

Moreover, four different version of RULES, three DT, 

and five CA algorithms were included in the experiment. 

Each algorithm dealt with the continuous features using a 

different technique, as follows.  

 RULES-5+: The latest versions of RULES-5, where it 

deals with continuous features using none-discretization 

technique. 

 RULES-6: One of the latest versions of RULES, which is 

developed to scale over large datasets. This algorithm 

handle continuous features offline by applying Fayyad and 

Irani [55] discretization.  

 RULES-SRI: One of the latest versions of RULES, which 

is proposed to improve the scalability. It also handles 

continuous features offline by applying Fayyad and Irani 

discretization.  

 DataSqueezer [56]: One of the latest versions of 

DataSqueezer family that is fast, supervised, greedy, and 

simple algorithm, but it required the existence of all class 

labels.  Fayyad and Irani offline discretization technique is 

applied to handles continuous features.  

 Ripper: A REP-based family algorithm that produced 

error reduction. This algorithm handles continuous 

features using online discretization, where it tests all 

values of an attribute online and choosing the most 

appropriate one.  

 AQ15 [57]: The mostly known and used version of AQ to 

handle noisy and overlapping data. Fayyad and Irani 

offline discretization technique is applied to handles 

continuous features.  

 CN2 [58]: The original version of CN2 that is mostly 

known and used in CA; it is an algorithm that combines 

the good properties of AQ and ID3 family. To handle 

continuous features, Fayyad and Irani offline discretization 

technique is applied. 

 PRISM: The original version of PRISM family that is 

usually used as the base of any other versions of PRISM 

and was developed as a competitor to ID3 algorithm. To 

handle continuous features, Fayyad and Irani offline 

discretization technique is applied. 

 C4.5: A DT algorithm that is usually used to benchmark 

the other classification methods. It deals with continuous 

features online, where it re-discretize all continuous 

features at every node. 

 PUBLIC [59]: A DT algorithm that integrates pruning 

technique during tree construction in order to handle the 

over-fitting problem. It deals with continuous features 

online by splitting the nodes while building the tree.  

 CART [38]: A DT algorithm that integrates regression in 

addition to classification in order to deal with continuous 

values without the need for pre-discretization, i.e. it 

applies online discretization similarly to C4.5.  

In addition, after conducting the experiment, and to 

visualize the result, different statistical analysis measures 

were recorded. Specifically, to determine the performance of 

the tested algorithms, the following measures are recorded.  

 Error Rate: This measure records the error rate of 

applying the resulting model over the test set; where less 

error indicates better performance. Hence, it shows if the 

algorithm is applicable over the test partition. 

 Time Test: This measure records the time interval, 

between generating the result of the first and last partition 

of the dataset. Hence, it indicates the time taken by the 

algorithm to process the whole dataset. 
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 Learning Rate: This measure records the learning rate of 

the algorithms by collecting the rule set size at the end of 

the algorithm. A small rule set size indicates that the result 

is not overspecialized and, hence, it will be possible to 

learn new knowledge rather than remembering the data. 

Therefore, a smaller rule set size indicates better learning 

rate and better performance.   

Based on these measurements, datasets, and algorithms it 

is possible to assess the performance of RULES in 

continuous features' problem. Nevertheless, it was noticed 

that the performance of every algorithm is different 

depending on the dataset property. Moreover, RULES3-Ext 

could not handle datasets with a large number of attributes. 

It took a week to execute the algorithm without finishing. 

Hence, RULES3Ext is not applicable to datasets with a large 

number of attributes and, thus, it was excluded in this case. 

Starting from the error rate, as shown in Table II, it can be 

seen that RULES in Bupa, Cleveland, Iris, Tic-Tac-Toe, and 

Vehicle datasets has the lowest error rate and, accordingly, 

result in the most accurate model. Specifically, in the first 

four datasets mentioned before RULES5+ has the best error 

rate while in Vehicle RULES-6 has the lowest error rate.  

Moreover, in Ecoli, Glass, New-Thyroid, Pima, and 

Wisconsin datasets, RULES family was not far away from 

the best error rate. Specifically, in Ecoli RULES-5+ has 

20% error rate while the least error rate resulted from CN2 

is 19%. In Glass dataset, RULES-5+ resulted in 31% error 

rate while the least error rate resulted from C4.5 is equal to 

30%. In New-Thyroid, RULES has 0.06 while the best error 

rate in CART is 0.05. In addition, in Pima, RULES-5+ has 

27% error rate while the least error rate resulted from 

PRISIM and C4.5 is equal to 25%. Finally, in Wisconsin, 

RULES-5+ has 4% error rate while the least error rate 

resulted from PRISM is 2% and also Ripper gave equal 

error rate to RULES in this dataset.  

Nevertheless, when it comes to the rest of the datasets 

including Haberman and Yeast, RULES is worse than most 

of the algorithms. For some reason, all versions of RULES 

family gave worse error rate than some of the other families. 

Specifically, in Haberman dataset Datasqueezer, CN2, 

PRISIM, PUBLIC, CART and C4.5 are better than all 

versions of RULES family. Moreover, in Yeast dataset CN2, 

Datasqueezer, and PRISIM exceeded RULES accuracy.  

Thus, it can be concluded that RULES family can have 

better performance than DT and other conventional families 

in CA. When considering the average mean of all datasets, 

presented in the last row of Table II, it can be noticed that 

RULES-5+ has the least error rate. Moreover, from the 

versions presented in the table, it can be concluded that 

using none-discretization techniques to deal with continuous 

attributes (as in RULES-5+) can be better than online and 

offline discretization techniques. Specifically, it can be 

noted that RULES-5+ exceeded the performance of 

RULES-6, SRI, and 3EXT (which uses offline 

discretization) in most datasets. In addition, in Ripper, C4.5, 

CART and PUBLIC (which use online discretization) 

RULES-5+ has also better error rate in most datasets.  

Nevertheless, having a good accuracy is not enough to 

measure the total performance. The generality of the 

resulting rules is also important to know if the learning rate 

is  good enough for future changes and noise in the data. 

Therefore, the number of rules resulted from each algorithm 

is also recorded, as in Table III. In general, it can be seen 

that Datasqueezer has the best learning rate in all datasets. It 

resulted in only five rules on average, which is relatively 

low when compared to the other algorithms. This is 

probably because this family uses only hill climbing and 

hybrid pruning. Moreover, when considering the average 

performance of the algorithms over all datasets, it can be 

noticed that CA usually have better learning rate than DT, 

except for PUBLIC. However, even though RULES-5+ 

resulted in the best error rate but its learning rate is badly 

affected. Thus, it can be concluded that even though the use 

of none-discretization technique can improve the accuracy 

of the algorithm, but it can badly affect its learning rate. 

In addition to the learning rate, time is also important. 

Therefore, the time spent in each dataset set was recorded 

for every algorithm, as illustrated in Fig. 1. Note that CART 

is not shown in the graph due to its lack of speed. It took it 

from several minutes to several hours to finish its execution. 

Thus, its representation affected the clarity of the graph. 

However, it can be concluded that CART algorithm is a time 

consuming DT algorithm.  

On the other hand, from Fig. 1, it can be noticed that, 

regardless of the dataset properties, all versions of RULES 

in addition to PRISIM, AQ, and Datasequeezer have a 

relatively low execution time. Hence, CA can finish its 

induction faster than DT algorithms. Only CN2 and Ripper 

are noticeably affected by the datasets. In CN2, the speed is 

similar to the other CA in all datasets except of Wisconsin, 

where it surprisingly has an increase in time. However, in 

Ripper, the execution time is worse than the other DT and 

CA in almost all datasets. On average, its execution time is 

high in all datasets and it further increases on datasets with a 

larger number of examples or attributes. Finally, even 

though RULES-5+ has similar speed as the other methods 

with offline discretization technique, but it actually is 

slightly slower in total. Specifically, datasets that has a 

relatively large number of attributes and examples, as in 

Pima, Vehicle and Yeast, slightly affected its speed. Thus, 

none-discretization might affect the methods' speed when 

compared with offline discretization. However, it is still 

better than the time spent by methods with online 

discretization techniques.  

Nevertheless, when considering DT algorithms it can be 

noticed that their speed is worse than CA algorithms. In 

C4.5, the execution time is affected by the type of datasets. 

Even though the speed is high in some cases, but it becomes 

slower in Buba, Glass, Pima, Vehicle, and Yeast datasets. 

Moreover, in PUBLIC, the execution time is relatively high 

in all datasets except for Bupa, Glass, Iris, and Tic-Tac-Toc. 

It even got worse with datasets that have a large number of 

attributes or examples, as in Vehicle and Yeast datasets. 

Additionally, as stated before, CART algorithm resulted in 

the worst speed of all algorithms presented. The reason of 

such behavior is because of the excessive splitting in DT. 

Thus, it can be said that DT methods' speed is more affected 

by the datasets properties than CAs. 
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Table II: Average error rate 

Datasets C45 CART PUBLIC PRISM CN2 AQ Ripper DataSqueezer Rules-6 RULES-SRI RULES-3Ext RULES5+ 

bupa 0.33 0.34 0.35 0.41 0.41 0.58 0.36 0.42 0.62 0.67 0.42 0.30 

cleveland 0.48 0.49 0.45 0.45 0.45 0.43 0.54 0.46 0.47 0.45 --- 0.41 

ecoli 0.21 0.23 0.22 0.22 0.19 0.24 0.27 0.47 0.51 0.37 0.27 0.20 

glass 0.30 0.34 0.36 0.31 0.33 0.43 0.38 0.64 0.65 0.60 0.58 0.31 

haberman 0.27 0.28 0.29 0.28 0.28 0.74 0.49 0.26 0.31 0.74 0.46 0.31 

iris 0.05 0.05 0.06 0.08 0.07 0.15 0.06 0.09 0.19 0.17 0.16 0.03 

new-thyroid 0.07 0.05 0.09 0.09 0.08 0.10 0.06 0.13 0.15 0.11 0.08 0.06 

pima 0.25 0.31 0.26 0.25 0.28 0.32 0.29 0.35 0.58 0.35 0.48 0.27 

vehicle 0.27 0.39 0.29 0.30 0.40 0.35 0.30 0.58 0.32 0.30 0.20 0.24 

wisconsin 0.06 0.05 0.05 0.02 0.07 0.06 0.04 0.29 0.34 0.47 --- 0.04 

tic-tac-toe 0.15 0.26 0.07 0.02 0.30 0.05 0.33 0.43 0.12 0.18 0.08 0.00 

yeast 0.42 0.55 0.43 0.25 0.25 0.59 0.50 0.29 0.51 0.71 0.37 0.41 

Average 0.24 0.28 0.24 0.22 0.26 0.34 0.30 0.37 0.40 0.43 -- 0.21 

 
Table III: Average number of rules 

Datasets  C45 CART PUBLIC PRISM CN2 AQ Ripper DataSqueezer Rules-6 RULES-SRI RULES-3Ext RULES5+ 

bupa 29 58.8 2 2 2 2 22 2 2 3 3 45 

cleveland 42 51.5 11 71 13 79 41 5 30 20 --- 48 

ecoli 20 26.9 14 46 18 46 36 8 29 27 69 36 

glass 24 12.5 11 40 15 31 22 6 29 21 55 27 

haberman 3 90 2 2 2 3 19 2 2 4 4 63 

iris 5 14.2 7 8 6 9 6 3 7 7 11 8 

new-thyroid 8 23.7 8 16 7 12 6 3 11 11 20 8 

pima 24 74.9 5 76 23 66 26 2 23 18 126 80 

vehicle 66 76 27 258 45 205 48 4 29 19 240.8 72 

wisconsin 13 41.5 10 14 8 10 9 3 101 66 --- 17 

tic-tac-toe 85 94 25 49 8 61 68 15 27 20 62 23 

yeast 161 90 37 45 20 45 140 2 19 15 76 267 

Average 40 54.5 13 52 14 47 37 5 26 19 -- 58 
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Fig. 1: Average time with continuous attributes in minutes 

Ultimately, from all above, it can be said that RULES 

family is one of the most flexible families in CA. It was 

previously proven that this family is very promising to be 

used with discrete datasets. However, when it comes to data 

with numeric features, the performance is different. From 

the empirical study conducted in this paper, it was found 

that CA need further improvement when the dataset contain 

numerical values. Specifically, when the dataset contain 

continuous features the following points can be summarized. 

1) CA can result in better accuracy, learning rate, and 

speed comparing to DT, regardless whether the 

technique used is discretization or none-discretization.  

2) When it comes to the error rate, algorithms with none-

discretization technique had better accuracy than most 

methods with offline discretization, especially in the 

same family. However, its accuracy was similar to the 

methods that used online discretization techniques. 

3) When it comes to the learning rate, it was found that 

none-discretization techniques could badly affect the 

learning rate of the algorithm. The number of rules 

resulted from RULES-5+ was much higher than most 

algorithms with either online or offline discretization.  

4) When it comes to the speed, even though RULES-5+ 

implementation was not optimized but its execution 

time was still better than the methods that used online 

discretization. However, its performance was affected 

by the datasets properties, where the speed was lower 

than the methods with offline discretization. Hence, it 

can be said that none-discretization techniques can be 

faster than online discretization but it still needs further 

improvement to surpass the offline discretization speed.  

5) RULES-3Ext was not scalable to datasets with a large 

number of attributes but newer versions such as 

RULES-5+, 6, and SRI solved this problem.   

Accordingly, it can be noticed that the empirical result 

emphasizes the conclusion discussed in the theoretical 

analysis, presented in the previous section. Thus, IL needs 

further improvement when dealing with continuous features. 

Moreover, because of RULES family properties, discovered 

in the preceding paper, it would be a good idea to make such 

improvement using this family. The none-discretization 

technique developed in RULES family can be further 

generalized to fill the gaps of continuous features.   

VI. CONCLUSION 

Due to the growth of interest in CA, different families 

have been developed. Based on these families, different 

surveys were also conducted. However, RULES family was 

found to be neglected; even though a preceding study was 

conducted to find the importance of RULES family but 

discrete dataset was only considered. Hence, in addition to 

the neglect, the effect of numeric values over difference IL 

families was also missing. Hence, the contribution of this 

paper was to extended the preceding version to show the 

effect of RULES over datasets with numeric values and be 

used as a reference by recent researchers to know what 

research area is still not covered and need further refinement 

in IL. From the theoretical analysis, it was found that even 

though RULES family showed better properties and 

characteristics than the other conventional families of IL but 

it is lacking when applied over datasets with continuous 

features. Moreover, as a result of the empirical evaluation it 

was concluded that RULES family can have better 

performance than the other families in IL due to the use of 

none-discretization technique. None-discretization is a good 

option to deal with continuous features, but its speed and 

generality need further improvement. Thus, continuous 

features' problem is still an open research area in CA, and 

RULES can be used as the base of further improvement.  
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