

Abstract—Current Internet standards provide us many options for

processing and manipulation with spatial data but difficulties occur

when temporal data are needed to be applied. Traditional relational

databases widely used on the Internet are not designed to store

temporal data and this fact limits us in developing more enhanced

geographic models. This article is comparing several data models and

approaches for managing temporal data, their suitability especially for

practical usage, e.g. performing difficult queries, analyzing managed

data as well as supporting construction of specific data formats needed

by different web applications.

Keywords— Spatio-temporal databases, temporal data modelling,

time stamping data, web GIS

I. INTRODUCTION

N current world most information and data we collect,

analyze and use are in some way connected in time and

space. In last few years spatial and temporal analysis and

prediction became much more desired, needed, developed and

used. Databases and data models that store and allow us to use

temporal and spatiotemporal data have to gone through many

changes and transformations, that allow us to better handle

temporal data – use advanced queries and perform more

complex data analysis with ease. At least that is true for

advanced databases tailored for specific software.

Many of applications and solutions, which had been used by

specialized departments and users, recently moved closer to the

wide public usage thanks to the Internet. A special term was

settled down for GIS applications provided via Internet –

WebGIS. It allows the end-users to take advantage of

availability of such a system practically anywhere without

purchasing and installing specialised GIS software in order to

get or manage spatial information [1], [2].

The operating and supporting parts of GIS have to be

adapted for the web constraints. Basically there isn’t any

problem with storing stable data of described objects. For this

purpose are used SQL databases which are easily applicable by

standard web services. SQL represents standard relational data

model which is able to illustrate a single state of the modelled

world, called a snapshot. If a database is updated from

previous state to the new one means to lose the previous state.

There exist many applications which need to have access also

to the past and sometimes to the future states of the modelled

world. This definitely holds for the most geographic

information systems which use spatial data changing in time

very often [3].

If we want to implement a WebGIS and present

spatiotemporal data on the Internet we have to have an access

to specialized application on private servers or we have to

revert to using traditional relation databases with SQL queries

and with all good and bad that comes with it. This article tries

to make best of current data models and trends of temporal

data storage within borders set by current Internet standards.

II. MANAGING TEMPORAL DATA

A. Different dimensions of time

While working with temporal databases we can come across

different representations, resp. dimensions of time. We can see

so called “valid time” present in most temporal databases –

valid time is time that sets validity of stored data in our

modelled space, resp. space modelled by stored data. Typically

we come across valid time set in past or present, but it can also

be set in feature. In temporal database we typically use valid

time in form of interval or set of intervals (most usually a date

when information became valid and date when it expired), but

depending on use we can only use single time point.

Tab. I shows an example where are two attributes – the

beginning (“valid_from” attribute) of an event and its end

(“valid_to” attribute) – setting the event’s duration.

Following GIS, suitable example of specific usage of such an

expression of time is real duration of a road construction.

Practically in mentioned example would be stored time

intervals related to past events but generally it can be used even

for future (planned) events of course.

The other type of valid time is when our stored information

is valid for whole single time unit. We can without problem use

only single valid time value (unit) – for example day, year or

month. The attribute with the same meaning as in the Tab. I

can be stored using single time point (beginning of an event)

and time unit expressing a period of validity (Tab. II).

Spatiotemporal Data Model for Web GIS

J. Konopásek, O. Gojda, D. Klimešová

I

event_ID valid_from valid_to

001 2011-05-15 13:00:00 2011-05-17 13:00:00

002 2011-07-22 07:15:00 2011-07-28 07:15:00

003 2013-02-14 07:08:00 2013-04-02 07:08:00

004 2010-12-22 07:10:00 2011-01-13 07:10:00

005 2011-02-10 07:09:00 2011-02-12 07:09:00

006 2012-08-21 07:18:00 2012-08-25 07:18:00

...

Tab. I: Table with event beginning and end explicitly set. [Author]

INTERNATIONAL JOURNAL OF COMPUTERS Volume 8, 2014

ISSN: 1998-4308 76

Following the example of road construction, the expression

of time using the whole single time unit is more used for

planning this type of events (for future), usually in project

management branch. Knowing the complexity of planned task

and available resources, the duration of each task can be

calculated precisely (e.g. amount of days). In real world the

tasks can be accomplished sooner or later than was planned

and in such a case is more suitable to use the expression of

time as in Tab. I as a report of past event duration.

Second time dimension we very often come across in

temporal databases is “transaction time”. Transaction time tells

us not when change occurred to our described objects, but

when change occurred for the database management system.

That means when insert, delete or update query was

performed, changing associated data [4].

Depending on database type of our stored data and type of

usage temporal database doesn’t have to necessarily have

transaction time, but in most databases we at least find

timestamp of when the database entry was made.

Last type we can come across is “user-defined time” – this

temporal information is basically any other information about

described object that is relevant and is expressed by some time

value. With exception that its value doesn’t influence validity

of object or its attributes in time for the database system – that

means is not “valid time” or “transaction time” [5].

B. Different types of spatiotemporal databases and their

use

Based on whether database contains transaction or valid

time, we can differentiate between several basic types of

temporal databases.

Snapshot databases contain only user-defined time. They

represent only one view, snapshot of a modelled world. Valid

time database includes only valid time – that means history of

database updates is not kept. Transaction-time databases

(rollback databases) keep only transaction time. In practice, we

usually use bitemporal databases [5]. Bitemporal databases use

both transaction and valid time. Valid time is usually important

for analysis of modelled world and even though we may not

need transaction time, we include it for ability to search for

possible tampering with data – so we can see by whom and

when the information about modelled object was altered [6],

[7].

The transaction time is mostly stored in separate table in a

database. Following example Tab. III shows transaction time

for previous one Tab. II. The attribute “modified” records the

exact time where the tuple was created or modified. Mostly

there is joined a second attribute (“user”) storing information

about the user who made the modification.

C. Tuple and attribute time stamping

There are three main different approaches for storing

temporal data using relation tables. They differ by on which

level they integrate factor of time into the database.

First approach integrates factor of time on level of whole

relation. It means that with each change in our modelled world

we have in a database a whole new instance of the modelled

world. Respectively we create whole new snapshot of a table

that stores our temporal data. This is the state we usually get

our information on the modelled world before any processing.

For example from questionnaire or other type of information

gathering being repeated two or more times after a period of

time [7].

We have all data, concerning time we are interested in, in

one place. This gives us ability to easily access information

about our modelled situation in different points of time. We

can easily view, model and analyze spatial and other attributes

of all objects from the same time snapshot.

Problem comes when we want to ask queries on our

temporal database that concerns more than one point in time.

With SQL there is no easy way to get history of changes of a

single object. And depending on data we gather, we can get an

enormous amount of redundant data [7], [8].

Second approach integrates factor of time on level of tuples.

That means that every row in a temporal database has its own

time attribute, be it a valid time or a transaction time or both.

This greatly reduces redundancy of data that was a big problem

with previous approach. When one object in our database

changes, we can simply create new row with new data, instead

of creating whole table like we would have to do when

integrating factor of time on relation level.

If each row has interval of valid time we can still easily with

one query create snapshot – view of desired objects in desired

time. By simply asking for data that have valid time interval set

so that it encompasses our desired time.

SELECT * FROM temporal_table WHERE valid_time_from <

"desired_date" and (valid_time_to > "desired_date" or

valid_time_to IS NULL)

event_ID time_point time_unit[days]

001 2011-05-15 13:00:00 2

002 2011-07-22 07:15:00 6

003 2013-02-14 07:08:00 47

004 2010-12-22 07:10:00 22

005 2011-02-10 07:09:00 2

006 2012-08-21 07:18:00 4

...

Tab. II: Table with time point and time unit validity. [Author]

event_ID modified user

001 2011-05-10 07:13:20 user0516

002 2011-06-01 12:53:34 user2114

003 2011-07-20 09:25:11 admin066

004 2011-06-29 16:41:09 user6889

005 2011-07-19 18:35:47 admin066

006 2011-07-21 13:18:28 user0006

...

Tab. III: Table of transaction time of event modification. [Author]

INTERNATIONAL JOURNAL OF COMPUTERS Volume 8, 2014

ISSN: 1998-4308 77

But dependent on a change of our data, it may still be a

problem to easily get data we want to. If we have information

on two different attributes of object in one table and one of

them changes we create new row so we can document the

change. That means that if we have those two attributes in one

relation we have created redundancy for the second attribute

that hasn’t changed [9].

And of course it becomes harder to get history of changes to

that attribute. If on the other hand we know that in every new

tuple/row our desired attribute of object has changed we can

easily get changes in time by selecting all the rows with the id

of said object.

We can remedy this in different ways. First usual approach is

to add new attributes dependent on groups of changing

attribute. These new attributes gain value when group of

attributes they are associated with changes. That helps us more

easily build queries, because we have information on what

attributes changed in each new tuple.

Tab. IV has two groups of attributes that always changes

together. First group is “Attribute 1”, second group is

“Attribute 2” and “Attribute 3”. Thanks to columns

documenting change, we can easily get years when every

attribute changed in one simple query.

Second variant to help with multiple attributes changing in

different time is to split them into different relations. This

eliminates redundancy completely, but it adds greatly to

complexity of select queries, because we have to join multiple

tables in single query even when we only want to gather

information about single object in single time [4].

It is clear that, if we are gathering data on objects that we

know will change all of its relevant attributes, or we know we

won’t be interested in working with history of attributes that

do not change every time – transforming temporal data into

form where changes are logged by time stamping at tuple level

is ideal way to manage those data.

In such a case it creates no or minimal redundancy and is

able to provide easy way to access temporal data, be it

information about history of an object or attributes of multiple

objects in time [7].

Third approach integrates factor of time at attribute level.

This means, we timestamp new attribute value of an object

with its own time parameter and store it as a part of the

attribute. This enables us to completely erase data redundancy,

because when attribute of an object changes, we only modify

existing attribute – add new information with timestamp. But

this approach doesn’t conform to relation table’s standard of

normalization.

For storing multiple values resp. multiple tuples of values as

one attribute we need to use tool that can work with nested

relational model and non-first normal form. Which means it is

not possible to normally use it in classic relation database –

some more advanced database management systems have the

ability to work with nested tables but the more simple

databases that are used for website use do not. Instead when

are making database that should be usable by web services and

we want to minimize redundancy, we have to use tuple based

approach and we create different relation for each attribute that

can change separately [7], [10].

Most commonly used temporal data models are summarized

in the Tab. V [3]. Each of them is categorized by their basic

type - attribute or tuple time stamped; by their adherence to

normal forms - 1NF (first normal form) or N1NF (non-first

normal form) and by their support of valid time and transaction

time. List of models in the table is not by any means complete.

Aside from these models there are of course multiple models

Id

O
b
ject ID

V
alid

 tim
e

A
ttrib

u
te 1

G
ro

u
p
 1

 ch
an

g
e

A
ttrib

u
te 2

A
ttrib

u
te 3

G
ro

u
p
 2

 ch
an

g
e

1001 1 2003 A 1 J X 1

1002 1 2004 A 0 K Y 1

1003 1 2005 B 1 K Y 0

Tab. IV: Temporal object description. [Author]

Temporal Model NF Time
Stamping

Time Features /
Query
Language

Tansel’s Model NINF Attribute VT Non
homogeneous

Clifford & Croker's
Model

NINF Attribute VT HDBM
Inhomogeneous

McKenzie’s Model NINF Attribute VT & TT Extension of
Snapshot algebra
Historical algebra

Gadia’s model NINF Attribute VT Homogeneous
HRQUEL

Ben-Zvi's Model Tuple VT & TT Time Relational
model, Extension
of snapshot
algebra

Snodgrass’s Model NINF Tuple VT & TT TQUEL

Lorentzos’s Model 1NF Attribute VT Interval Relational
Model (IRM),
Extended
Relational Model
(XRM)

Jensen &
Snodgrass’s Model

1NF Tuple VT & TT Bi-temporal
Conceptual
Model
(BCDM)

Ariav's model 1NF Tuple VT & TT Time stamps are
based on time
points

Gadia & Yeung's
Model

 Attribute VT & TT Heterogeneous
model

TSQL2 1NF Tuple VT, TT
& User
Defined
Time

Homogeneous
model

Tab. V: Most commonly used temporal data models. [3]

INTERNATIONAL JOURNAL OF COMPUTERS Volume 8, 2014

ISSN: 1998-4308 78

not scientifically described or models that are only slight

variations of the models we described in the table.

III. SPATIOTEMPORAL DATA MANAGEMENT

When working with spatiotemporal data we typically want

to do three types of things. Sort, manage and store those data

– for that we are typically using a Database Management

System. Next we want to analyze those data, refine them and

transform them to our specified need – for that we typically use

script or program with functions or ability to create algorithms

specialized for problem solution we want to perform.

And finally we want to view desired parts of data and of

course results to the analysis of those data as needed for end

user presentation.

For work with spatial data there are several programs that

do all of these things. One of the most used GIS software is

ArcGIS Desktop from ESRI [11].

A. ArcGIS database system

ArcGIS includes its own database system, analytic tools and

is able to visualize both vector and raster maps in many

different ways and prepare them for printing or is able to

export them into various formats. Whereas these programs are

ideal for analysis of classic GIS data, they usually somewhat

lack in ability to manage temporal data.

More complex ability to view temporal data was added to

ArcGIS Desktop only in the last version (ArcGIS 10) [12].

These complex programs also usually do not have ability to

generate complex customizable web based applications with

interactive views of the data. If they do allow some sort of web

publication it is most of the time dependent on specialized GIS

server – like for example ArcGIS Server (that is separate

application to Arcgis Desktop).

If we want to create a complex web application, that can be

connected to other databases and systems containing temporal

GIS data and we do not want to be dependent on specific GIS

server, we have to use separate tools we can modify to store

temporal GIS data, to enable easy with those data and to make

possible their visualization and publication on web site.

There are several approaches and applications that do so.

Many of them are end result of scientific research into temporal

databases, GIS data display etc. These applications of course

use different DBMS and different tools to create final website

view for end-user.

B. Dynamic web application

Most common relational database management system for

use with web sites and web site scripting languages are

MySQL and Oracle. They both conform to basic relational

standards and they both have many functions for working with

data, including several spatial functions including testing of

spatial relations [13].

To work with database we need server-side scripting

language that would allow us to create dynamic web

applications. Most popular such language is currently PHP. It

has extensive set of functions to communicate with MySQL,

Oracle or other relation database and there are many premade

web applications enabling us to work with databases and tables

through graphic interface (for example PHPMyAdmin) [14].

Scripting language enables us to create dynamic queries on

data in our database and generate desired output – be it parts

of data we want to export to ArcGIS for analysis or data we

want to display to end-user on the websites. For effective

interactive display of data at client side, there is basically only

one main language used to do so and that is java-script [15],

[16].

IV. CREATING WEB APPLICATION USING DATA FROM

TEMPORAL DATABASE

To create a website to view spatio-temporal data, we first

need to transform those data into data model that enables us to

easily update them and place queries that we are interested in.

The most basic approach is to create table that integrates factor

of time on tuple level and depending on how data change in

time allow some sort of redundancy or split the table into more

tables with groups of attributes that always change together.

As a part of our research we are currently trying different

data models while working with data in our case study. We

want to perform testing on speed of different data models. We

are also comparing their ability to accommodate queries and

ability to easily manage data for use with GIS application that

visualize those data for end user.

From preliminary research we compared various web based

GIS applications and we found out that most applications

process spatiotemporal data in form of one table with each row

time stamped with valid time. Most of those applications then

allow user to display objects on the basemap in selected

Fig. 1: Time slider in ArcGIS 10. [Author]

INTERNATIONAL JOURNAL OF COMPUTERS Volume 8, 2014

ISSN: 1998-4308 79

moment in time. Usually allowing user to turn on and off

various layers and adjust viewed time by some form of slider.

We can see use of time slider as used for working with

temporal data in ArcGIS 10 in Fig. 1.

More advanced applications allow user to specify timeframe

and show all objects that have valid time in that timeframe. As

for specific format of data that these applications use, it varies

from application to application. Most open source applications

use Keyhole Markup Language (KML) which is notation of

XML that is specifically designed for expressing geographic

information.

Other formats include GeoRSS, Google spreadsheets,

GeoJSON or some other formats designed for that specific

application like ArcGIS shapefiles. Each of those formats has

different complexity which allows different usage of additional

data. Some offer scheme only for basic spatial coordinates with

date, name and descriptions whereas some are much more

advanced. Some applications require all temporal data in one

file and table while others require them in multiple parts

differentiated by layer or time factor.

That allows for different queries to be made at temporal

database when creating data for different end user applications.

This also requires different level of complexity of server side

script that transforms data from temporal database into those

formats.

In our case study we are using script written in PHP to get

required data from MySQL database. Then we transform those

using templates into most common formats used by client side

applications and other local GIS programs. Finally we want to

compare time that takes to process different queries on

different data models as well as time it takes to process results

from those queries into different formats as well as take note of

different possibilities of combining different data formats used

by end-user applications and different data models used for

storing data in relational databases.

We are currently converting our case study data to different

data models that we modified and used for our case study. For

now all of them are based on storing time attribute at tuple

level, but we created different levels of data redundancy in data

models. Our tests include test of how much has limited amount

of data redundancy impact on speed of more complex queries

and their ability to allow easy access to important data. Later

we want to add and compare more different data models. In

preliminary tests with just sample of our case study data (about

150 rows) we got overall good results for data model with

bigger redundancy. At such a small number of rows big

redundancy allowed, as expected, best speed for simple queries

and speeds didn't noticeably slow down even for tasks that

needed additional transformations from scripting language or

that needed to be separated into several subqueries. We are

expecting when performing these tasks, that in data model with

lot of redundancy depends on help from scripting language,

will probably slow down a lot in tables with lots of data. We

hope that it will be interesting to compare performance of data

model with big redundancy and data models that conforms to

data normalization. We are still at the first phase of our

research and we plan to expand both amount of data used and

amount of different data models. For comparing results we

want to use multiple-criteria decision analysis and compare

results with different amount of data, different amount of data

redundancy and needs for different types of queries.

V. NAVIGATION APPLICATION

Based on described research in the field of temporal data

modelling for web usage we want to apply gained knowledge

to develop a web platform combining map, navigation tools

and school Information System of Czech University of Life

Sciences Prague. This WebGIS will be mainly helpful for new

incoming students (1
st
 years) by providing simple, smart and

comfortable orientation across the whole university campus.

The main idea was to create an interactive map of the area,

especially indoor maps of all the university buildings including

relevant data from the integrated school Information System

which are related with navigation processes, e.g. classroom

schedules, consultation hours of teachers etc. All the

mentioned data are available in the Information System but

problem is that are changed at least once per semester when

classroom schedules switches. This is the dynamic component

of planned WebGIS and it was necessary to find a way of

transferring data from the Information System’s databases to

the web based map application.

The core of the developed WebGIS consists of two basic

components. First one is the temporal database and the second

one is a detailed vector map of the university campus including

indoor building plans. The temporal database will be the output

of the research described in this article.

The map component will be created combining several

methods. As a base map will be used open-source platform

OpenLayers. Since the area of our university campus is not

perfectly recorded in the map, it will be needed to fix all the

inaccuracies manually using portable GPS module.

The indoor plans were already provided to us by the

Technical Support Department in form of CAD technical

drawings. From those files the relevant layers were extracted

and implemented into the basemap. This process is performed

in ArcGIS 10 and the resulting layers are exported to KML as

a supported format of OpenLayers platform.

There is currently available a pilot version of the map

component of the WebGIS including one floor of the Faculty

of Economics and Management. All the polygons (classrooms,

offices and corridors) were traced over manually but hereafter

this process will be done automatically. There are several

options of the automation but the most effective one is

automatic image classification in ArcGIS.

VI. CONCLUSIONS

We are currently in stage of running case study to test

different data models. We have created and are using script in

PHP that uses custom templates to process results from SQL

queries. This allows us to test speed needed to make queries on

INTERNATIONAL JOURNAL OF COMPUTERS Volume 8, 2014

ISSN: 1998-4308 80

different temporal data models and create different formats of

temporal GIS data files. We would like our end result to be

methodology for choosing and implementing optimal data

model for web based temporal GIS based on specific user

requirements. Hereafter we plan to develop a WebGIS

following the designed methodology.

ACKNOWLEDGMENT

The paper was supported by the grant project of the Czech

University of Live Sciences: Methodology for Designing

Relational Database and Web Interface for Dynamic GIS, no.

20131027. This support is very gratefully acknowledged.

REFERENCES

[1] H. Kopáčková, H. Jonášová, I. Mikešová a J. Hejlová, „Gathering of

Requirements on WebGIS Development - the Example of Bikeway

Mapping Application,“ in Recent Researches in Circuits, Systems,

Communications and Computers: Proceedings of the 2nd European

Conference of Computer Science (ECCS'11), Stevens Point, WSEAS

Press, 2011, pp. 290-295.

[2] J. Komárková, P. Sedlák, M. Novák, A. Musilová a V. Slavíková,

„Problems in Usability of Web-Based GIS,“ in Proceedings of the

International Conference on Applied Computer Science (ACS), Athens,

WSEAS Press, 2010.

[3] A. Burney, N. Mahmood a K. Ahsan, „TempR-PDM: a conceptual

temporal relational model for managing patient data,“ in AIKED'10

Proceedings of the 9th WSEAS international conference on Artificial

intelligence, knowledge engineering and data bases, Stevens Point,

WSEAS Press, 2010, pp. 237-243.

[4] T. Ott and F. Swiaczny, Time-Integrative Geographic Information

Systems, Berlin: Springer Verlag, 2001.

[5] C. Combi, E. Karavnou-Papiliou and Y. Shahar, “Temporal Databases,”

in Temporal information systems in medicine, New York, Springer US,

2010, pp. 45-85.

[6] Y. Tang, X. Ye and N. Tang, Temporal Information Processing

Technology, New York: Springer Heidelberg, 2010.

[7] C. E. Atay, “A Comparison of Attribute and Tuple Time Stamped

Bitemporal Relational Data Models,” in Proceedings of the International

Conference on Applied Computer Science, Las Vegas, 2010.

[8] P. Revesz, “Temporal Databases,” in Introduction to Databases, London,

Springer-Verlag, 2010, pp. 67-79.

[9] J. R. R. Viqueira and N. A. Lorentzos, “SQL extension for spatio-

temporal data,” in The VLDB Journal, vol. 16(2), p. 179–200, 4 2007.

[10] I. A. Goralwalla, A. U. Tansel and M. T. Özsu, “Experimenting with

Temporal Relational Databases,” in Proceedings of the 1995 ACM

CIKM International Conference On Information And Knowledge

Management, New York, 1995.

[11] MyTopDozen.com, “MyTopDozen,” MyTopDozen.com, 2011. [Online].

Available:http://www.mytopdozen.com/Best_GIS_Software.html.

[Accessed 2013].

[12] Esri, “What's new for temporal data in ArcGIS 10”, Esri, 2010. [Online].

Available:http://help.arcgis.com/en%20/arcgisdesktop/10.0/help/index.ht

ml#//00qp00000018000000.htm. [Accessed 2013].

[13] solid IT, “DB-Engines Ranking of Relational DBMS,” solid IT, 2013.

[Online]. Available: http://db-engines.com/en/ranking/relational+dbms.

[Accessed 2013].

[14] E. Pultar, T. J. Cova, M. Yuan and M. F. Goodchild, “EDGIS: a dynamic

GIS based on space time points,” in International Journal of

Geographical Information Science, vol. 24:3, pp. 329-346, 3 2010.

[15] E. Pultar, M. Raubal, T. J. Cova and M. F. Goodchild, “Dynamic GIS

Case Studies: Wildfire Evacuation and Volunteered Geographic,” in

Transactions in GIS, vol. 13(s1), p. 85–104, 6 2009.

[16] X. Ye, Z. Peng and H. Guo, “Spatio-Temporal Data Model and Spatio-

Temporal Databases,” in Temporal Information Processing Technology

and Its Application, Berlin, Springer Berlin Heidelberg, 2010, pp. 91-

112.

INTERNATIONAL JOURNAL OF COMPUTERS Volume 8, 2014

ISSN: 1998-4308 81

