
 
Abstract—An automatic system which classifies coins is 

presented and discussed. The system is flexible, being able to identify 
coins with various appearances and photographed in different light 
conditions. For this purpose, a set of robust techniques for 
thresholding, edge detection and frequency transform were employed 
in order to generate a fingerprint as significant as possible and as 
invariant as possible for every coin class. 
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I. INTRODUCTION 
 system for automatic coin classification can be used by 
institutions working with historical coins, thus helping 

historians in their work. It can also be a useful tool for private 
coin collectors and other enthusiasts. In this sense, a free 
online service for coin classification and recognition can be 
put to work for the community. Another possible application 
field is the sorting and classification of the large amounts of 
European coins that were collected after the introduction of the 
euro. 

II. RELATED WORK 
Several coin recognition approaches are mentioned in the 

literature. 
Fukumi et al [1] describe a system based on a rotation-

invariant neural network that is capable of distinguishing 
Japanese coins (a 500 yen and a 500 won piece). Rotational 
invariance is achieved by explicitly generating the rotational 
group for a coarse model of the coin in a preprocessing step 
and feeding the results into a neural network. One drawback of 
the neural network approach is that it is not apparently clear 
how rejection of coins should be expressed. It is essential to be 
able to reject coins as it is impossible to know in advance 
which types of coins will be feed to the system. 

Davidsson et al [2], [3] compare several strategies, namely 
induction of decision trees [4], neural networks and Bayesian 
classifiers. They derive a variant of the decision tree algorithm 
that will reject coins if their defining attributes are outside an 
acceptance margin. However, it is difficult to extend the 
approach to images. 

Adameck et al [5] presented an interesting method for a coin 
recognition system based on color images. Translational 
invariance is achieved through segmentation, whereas 
rotational invariance is a result of a polar coordinate 
representation and correlation. 

III. FEATURE EXTRACTION 
Coin classification performances (accuracy in similar coins 

identification) depend on the features extracted from coin 
images. There are three main properties (features) related to 
coin images [6]: 

- the picture on the coin (stamp) 
- the texture on the coin 
- the text on the coin 
The current approach focuses on the first two properties, as 

described in the following. 

A. Stamp (picture) representation 
This is the most important part of a coin’s fingerprint, based 

on the statistical distribution of the edges on the coin’s surface. 
Edge feature extraction is a process consisting of three steps: 

- edge detection 
- edge distance distributions 
- edge angle distribution 
A similar approach describing the edge distance 

distributions and edge angle distributions is presented in [7]. 
 

1 Edge detection 
Based on Rangarajan’s presentation of a number of different 

edge detection algorithms [8] and on our practical tryouts, the 
conclusion is that the most suitable one for the current project 
is Canny’s edge detection algorithm. Experiments were also 
carried with the Sobel kernel edge detection, Prewitt’s 
operator, Robert’s cross operator and some another method 
based on an authors idea which turned out to produce results 
similar with the Sobel kernel approach at the same time being 
more computational intensive. There are however other 
potential algorithms, aimed at filtering and improving general 

edge detectors, that could improve this edge detection [9]. 
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Fig. 1 Discrete approximation to Gaussian function with σ=1.4 
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Canny’s edge detection algorithm consists in the following six 
steps [10]: 

Step 1. Filter out any noise in the original image. The aim is 
to prevent detection of false edges. This is done by applying a 
Gaussian filter or other filters for specific purposes [11]. The 
Gaussian used in the implementation is presented in Fig. 1. 

Step 2. Determine the edge strength by computing the 
gradient of the image. This is done by first applying the Sobel 
operator on the image to compute a 2-D spatial gradient on 
both axes, and then approximating the absolute gradient 
magnitude (edge strength) for each point. The magnitude is 
approximated using the following formula: 

 

yx GGG +=  (1) 

 
where xG  and yG are axis oriented gradients obtained by 

applying two 3x3 convolution masks: 
 

Step 3. The direction of the edge is computed using the 

gradient in the X and Y directions: 
 

)/arctan( xy GG=θ  (2) 

 
Step 4. With the edge direction computed, the next step is to 

relate the edge to a direction that can be traced in an image. 
Given a 5x5 image as the one described in Fig. 3, it can be 
seen, by analyzing pixel "P", that there are only four possible 
directions when describing the surrounding pixels - 0 degrees 
(for the horizontal direction), 45 degrees (along the main 
diagonal), 90 degrees (for the vertical direction), or 135 
degrees (along the secondary diagonal). 

 
Step 5. Having estimated the edge directions, non-maximum 

suppression is applied along the edge and removes any border 
pixel, resulting in a thin line in the output image. 

Step 6. Finally, a hysteresis processing is employing as a 
means of eliminating potential streaking. This outcome, which 

is the breaking of an edge contour, might occur due to the 
operator output fluctuating above and below the threshold. 
Hysteresis uses a high and a low threshold instead of a single 
one. A pixel whose value is greater than high threshold T1 is 
presumed to be an edge pixel, and is marked as such 
immediately. Any pixel connected to this edge pixel whose 
value is greater than the lower threshold T2 is also selected as 
an edge pixel. Following an edge can therefore be expressed as 
finding a gradient of at least T1 and continuing as long as the 
value does not fall below T2. The method can be improved 
like in [12]. 

Otsu’s method [13] is a widely used binarization algorithm, 
which has spawned numerous variants and adaptations [14], 
[15], due to its robustness and high speed. It is a threshold 
based global binarization algorithm that aims to maximize the 
inter-class variance (or minimize the intra-class variance). The 
inter-class variance 2

bσ  is defined as follows: 
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where )(txω  represents the class probability and )(txµ  
represents the class mean. These two are given by the 
following formulas: 
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with )(ic representing the number of pixels in the image 
whose value is i . Intuitively the equation tries to separate the 
means of the cluster, while also keeping each cluster with a 
high probability of occurrence. 

The aim of Otsu’s method is to find the threshold *t  such 
that: 
 

).(maxarg 2* tt b
t
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An exhaustive search is employed. For multiple optimal 
thresholds the value taken into consideration is the mean value 
[16]. This is very important for the quality of the binarization 
after the post-processing thresholds stage. 

Canny’s edge detector uses two thresholds in its final step. 
For a given image one can experimentally determine the best 
values for those two thresholds but this approach is not to be 
considered in our case as we need a method for setting these 
values automatically. 

The solution to this problem is determining the Otsu’s 
threshold for a given coin image and derive our thresholds (T1 
and T2) based on this value. It was experimentally deducted 
T1 being equal to 50% of Otsu’s threshold and T2 with 30% 
of Otsu’s threshold. 

In the performed experiments the following problem 
regarding medieval and older coins classification occurred: 
those kind of coins usually have an unregulated, bigger stamp 
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Fig. 3 Finding Possible directions 

 

 
Fig. 2 xG and yG  
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height opposed to modern coins which tend to be flattened. 
Depending on the light conditions and how the shadows are 
formed when taking the coin’s picture, it’s possible to have 
different pictures of the same coin with totally different results 
regarding the edges detected by Canny’s edge detector. 

The presented work of coin classification and identification 
considers photographs of coins taken in an uncontrolled 
environment, so it is necessary to also overcome the 
illumination problem. A method that is proposed is based on 
transforming the image from the RGB space to LUV space 
[17]. In Fig. 4 is presented a modern coin image and a 
medieval one transformed in LUV space and its three 
composing parts: The L, U and V image components were 
obtained by scaling the LUV values to 0-255. 

 

 
By applying the Canny’s edge detector on the image L-

component we obtained significantly better results than using 
the gray scale representation of the image (Fig. 5.). 
 

2 Edge distance distribution 
Edge distance distributions measure the distribution of the 

distances between the pixels on the edges and the center of the 
coin. The distribution is estimated by dividing the coins in 
circular concentric parts, as illustrated in Fig. 6. The number 
of edge pixels in each part is accumulated, and the resulting 
histogram is normalized in order to provide an estimation of 
the edge distance distribution. Edge distance distributions are 
rotation invariant by definition. Edge distance distributions are 
used in a multiscale approach, by measuring the histograms for 
various numbers of bins (for 2, 4, 8, 16, and 32 bins). 

 
3 Edge angle distribution 

Although edge distance distributions seem to be strong 
instruments in coin classification, they do not incorporate all 
the information. In edge distance distributions, the relative 
angular distribution of the edge pixels is not represented. The 
relative angular distribution of edge pixels can be described 
using edge angle distributions. Edge angle distributions are 
measured by dividing the coin in pie-shaped parts, as is 
illustrated in Fig 7. The number of edge pixels in the parts is 
accumulated, and the resulting histogram is normalized in 
order to provide an estimation of the relative angular 
distribution of the coin edge pixels. 

In contrary to edge distance distributions, edge angle 
distributions are not rotation invariant by definition. Rotation 
invariance of the edge angle feature can be obtained by 
computing the magnitude of the Fourier transform of the 
obtained histogram. This step makes the histogram invariant 
under circular shifts (which correspond to rotations of the 
coin). In this respect, a large number of bins in the histogram 
are required, since a rotation of the coin should imply a 
circular shift on the histogram, instead of a change in the 
histogram accumulators. 

In the current implementation the edge angle histogram is 
measured in scales of 240 bins compressing a spatial signal by 
transforming it to the frequency domain and dropping high-
order values and keeping low-order ones. 

 

 
Fig. 4 A modern (upper row) and medieval (lower row) coin picture 

a) original picture; b) L-component; c) U-component; d) V-
component 

 

 
Fig. 5 Grayscale image and corresponding Canny’s edges (A1, A2) 

Image’s L-component and associated Canny’s edges (B1, B2) 
 

 

 
Fig. 6 Distance distribution 
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B. Texture of the coin 
The texture component of the fingerprint is based on two 

DCT (Discrete Cosine Transform) parts of the LUV 
representation of the coin image inspired by Menon et al. [18]. 

The discrete cosine transform helps separate the image into 
parts (or spectral sub-bands) of differing importance (with 
respect to the image's visual quality). The DCT transforms a 
signal from the spatial domain into the frequency domain. The 
order of values obtained by applying the DCT is coincidentally 
from the lowest to highest frequency. This feature and the 
psychological observation that the human eye is less sensitive 
to recognizing the higher-order frequencies leads to the 
possibility of compressing a spatial signal by transforming it to 
the frequency domain and dropping high-order values and 
keeping low-order ones. 

A 2D-DCT is calculated [19] over the L-channel 
(Luminosity) of the image. The first coefficient stands for the 
DC value, or average luminosity of the image. The next 
coefficients represent the higher order values with increasing 
frequency. A number of these coefficients (the first 10 
coefficients) are taken and normalized for the grayscale 
fingerprint part. This part of the fingerprints represents the 
basic composition of the image. 

Then a 2D-DCT of the two color components are calculated 
and used for the color part of the fingerprint. Here only the 
first three of each are considered, since the human eye is much 
more sensitive to luminosity than to color. This part of the 
fingerprint represents the color composition of the image, with 
reduced spatial resolution compared to the gray scale part. 

The 2D DCT is given by the formula: 
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IV. CLASSIFICATION AND IDENTIFICATION 
The following two subsections each deal with one of the 

topics of classification and identification. 

A. Classification 
In the previous section, we presented a number of coin-

specific features which can be used to label a coin image. This 
section describes how the features are used in order to decide 
reliable upon the class of the coin. 

The fingerprint of an image is composed of: 
- five distance distribution vectors (for 2, 4, 8, 16 and 32 

bins) 
- a Fourier transformation magnitude vector over the angle 

distribution for 240 bins 
- first 8 components of the DCT over the L-channel 
- first 4 DCT components for the U-channel 
- first 4 DCT components for the V-channel. 
Checking the similarity is done by calculating the nearness 

between the images by calculating a distance value. For this 
purpose it’s logical to use the Euclidian distance between two 
points in a n-space, given by the formula: 

 

( ) ( ) .,
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i
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B. Identification 
The identification consists of two phases: 
- Firstly, the DCT method for fingerprinting is used to 

preselect a group of images with similar texture. 
- Secondly, the distance and angle distribution method is 

used to identify the best three matches from the group 
obtained in the previous step. 

V. RESULTS 
The experiments were performed on a Core2DUO machine 

with 2GB of RAM, running 64bit Windows 7. 
The test set consisted of 100 different coin pictures, freely 

offered on the Internet. As so, the coin photos come from 
different people using different methods for capturing them (in 
regards of rotation and illumination), as well as varying sizes 
and dpi. 

Determining the features of a coin is a relatively fast 
process, taking and average of 13.8 milliseconds; however, as 
mentioned earlier, due to the heterogeneity of the input 
material, this could go as low as 9 milliseconds, or even as 
high as 35 milliseconds. 

 

 
Fig. 7 Angle distribution 
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The features of these reference coins were stored in a 
database, and then used to match against completely different 
set of test coins. Due to the relatively modest coin collection 
available, the bulk of the processing was allocated to feature 
extraction of the target coin as opposed to matching against 
reference coins. For a real coin catalogue, it is expected that 
most of the effort would be put into comparing the coin against 
every single entity in the database, which could be easily 
parallelizable. 

The tests performed on modern coins were quite promising 
with really good results in respects of accuracy. The incorrect 
classifications were due only to poor image quality (e.g., a 
very dark picture). 

As expected, tests having as subject medieval or older coins 
were not as convincing as those having modern ones, but it has 
to be taken into consideration the fact that there are some 
problems associated with pre-modern coins [20]: they are not 
fabricated in a factorial process, the variety in the stamps of 
medieval coins is inferior to the variety in stamps of modern 
coins and they are often strongly eroded due to frequent use 
and passing of time. 

VI. CONCLUSIONS 
The current paper presented a method for automatic 

classification of coin pictures using two effective feature types, 
a method which performs very well on modern coins. 
Classification of medieval coins proved not to be as good as 
for modern coins. Furthermore, our work showed an approach 
for dealing with photo capture inconsistencies (e.g. 
illumination problems). 

In the Appendix are presented sample of coins that are 
usually correctly handled (identified and classified) by the 
system as well as a set of coins that are frequently 
misclassified. It can be observed that most of the problems are 
caused by the advanced state of deterioration of the coins. 

VII. FUTURE WORK 
The future work should be aimed at solving the known 

misbehaviors of the system but it is fair to mention that a much 
bigger input database will reduce the current percentage of 
correct identification and classification. 

More specifically, future work will focus on improvements 
for the case of medieval coins classification. In this respect 
there will be evaluated a system that uses images of coins and 
constructs a pyramid of different sizes of the original image. 

Each of the system components has a package (a set of 
unique up-sampling – down-sampling filters) that is used to 
recursively construct a pyramid. 

Generating a new level involves the following operations: 
- the image of the current level is down-sampled, obtaining 

an image half its length and half its width 
- the down-sampled image is afterwards up-sampled, 

obtaining an approximation of the original image 
- a residual image is obtained by extracting the differences 

between the original image and the up-sampled one 

- the residual image is used in fingerprinting and 
classification alongside some of the current fingerprints 

Fig. 8 represents an example of the resulting pyramid. At the 
end of each cycle, the down-sampled image becomes a new 
layer in the pyramid. The processing continues, generating 
more levels until a small enough image is obtained. The limit 
is a linear image, with either only one row or only one column 
of pixels. 

It is possible that this system of pyramidal coding [21] 
offers better signatures and faster classification (candidates can 
be rejected from lower pyramidal levels where signatures are 
easier to compute and to compare one against an entire 
dataset). Another advantage is that lower levels will be less 
sensitive to noise, illumination problems and coin degradation. 

 
Also, because the direction of looking and position of the 
source of light is not a factor that should influence which parts 
of the coins are more visible, a specular removal phase could 
aid in normalizing the photographic conditions. 

When light hits an object, some of the rays will be 
immediately be reflected by the outer surface, while others will 
penetrate the object. The rays that managed to get through the 
surface will either pass through the material (transmitted or 
absorbed) or will to be reflected out of the object again, but 
scattered by the material's particles. The immediately reflected 
rays are called specular reflections and the ones that penetrated 
the object and were reflected back are called diffuse 
reflections. Thus, the specular light is highly oriented and not 
influenced by the material's properties, because it promptly 
bounced; while the diffuse is scattered by the random particles 
inside the object and is strongly influenced by them. 

In order to be able to separate them more accurately, a good 
difference between them must be described: 

 - The reflections have different degrees of polarization 
(DOP). Specular reflection is generally more polarized than 
diffuse reflection [22].  

- The intensity distribution of diffuse reflections can be well 
approximated by the Lambert’s Law [23]. The intensity 
distribution of specular reflections follows the Torrance-
Sparrow reflection model [24]. By isolating the diffuse 
component, powerful Lambertian-based tools can be applied to 
real world scenes, for recognition and reconstruction. 

 

 
Fig. 8 Constructing a pyramid of different image resolutions 
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- The color of specular reflection is determined by the 
object’s surface spectral reflectance, which is mostly constant 
throughout the visible spectrum. This causes the color of 
specular reflections to be similar to the light's source, while the 
color of diffuse reflection to be determined by the object’s 
body spectral reflectance. 

We started working on this approach following [25]. 
Because the specular component resembles the illumination's 
characteristics, the algorithm starts by normalizing the 
illumination color using a known or estimated illumination 
chromaticity (hue and saturation). This will generate an image 
heaving strictly white specular components. Continuing from 
this image, an iterative phase shifts the intensity and maximum 
chromaticity but keeps the hue constant. From this phase 
results a specular free image, but with altered surface colors. 
The stop condition is given by a logarithmic differentiation on 
both the normalized and specular free images, estimating the 
number of specular pixels left. This process needs only two 
neighboring pixels, making it local, so segmentation is not 
needed.  

Even though the original authors mention running times of 6 
minutes on an Pentium III Computer, first test results for GPU 
processing, using DirectX 11 and a slightly less precise 
approach, but with similar results, yield real-time results. 
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APPENDIX A. COLLECTION OF INPUT COINS 

(USUALLY CORRECTLY IDENTIFIED AND CLASSIFIED) 
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APPENDIX B. COLLECTION OF INPUT COINS 

(SOMETIMES MISIDENTIFIED AND/OR MISCLASSIFIED) 
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