

Abstract — The development of large software system

frequently involves team participants with varying number and
different level of competence. The understanding of the system
structure and functionalities depends not only on the preliminary
knowledge for the data, but also on its representation. The following
paper presents UniVis - software visualization tool aiming to
facilitate the processes of orientation and comprehension of complex
software systems. By using natural and familiar metaphors, UniVis
ensures the understandability of the visualized software system. The
integrated navigation approaches attempt to ensure natural
mechanism for manipulation of the result visualization by combining
techniques for interaction with alternative effects on the
visualization elements. The end product of the applied approaches is
aesthetically appealing software visualization providing visually
accessible amount of knowledge for the presented system.

Keywords — information visualization, software visualization,
software comprehension, 3D.

I. INTRODUCTION
Every software developer is facing the challenges in getting

acquainted with unfamiliar software system. Frequently, the
effort needed to gain satisfying understanding of the structure
and the functioning of the system is proportional to its size
and design. Panas, Berrigan, and Grundy discusses the
process of extension, reuse and support of industrial size
software systems and present summarized statistics, claiming
that 50% to 75% of the time and resources are invested in
software comprehension as well as 47% to 62% of the time
for actual correction and enhancement tasks is spent on
comprehension activities. Moreover, the task of
understanding the target system is qualified as the first step in
the processes of software development and support [28].
These facts express the need of quality instruments for
software comprehension.

Another shared problem in the process of software

1 Dimitar Ivanov is with the Applied Research and Development Center at
Musala Soft, World Trade Center, 36, Dragan Tsankov blvd., 1113, Sofia,
Bulgaria (e-mail: dimitar.ivanov@musala.com).

Milena Lazarova is with Systems Department, Technical University of Sofia,
8 Kliment Ohridski blvd, 1756, Sofia, Bulgaria (e-mail: milaz@tu-sofia.bg).

Haralambi Haralabiev is with the Applied Research and Development Center
at Musala Soft, World Trade Center, 36, Dragan Tsankov blvd., 1113, Sofia,
Bulgaria (e-mail: haralambi.haralambiev@musala.com).

Delyan Lilov is with the Applied Research and Development Center at
Musala Soft, World Trade Center, 36, Dragan Tsankov blvd., 1113, Sofia,
Bulgaria (e-mail: delyan.lilov@musala.com).

comprehension is its time consumption. Several works
consider it as relevant in the context of getting acquainted
with large software systems, due to their inadequate or sparse
documentation ([28], [37], [33]).

Furthermore, Rilling and Mudur define reverse
engineering as “the process of analyzing subject system
components and their interrelationships to create a higher
level of abstraction and to understand the program execution
and the sequence in which it occurred” [36]. That definition
emphasizes the linkage between the software systems
comprehension and the reverse engineering, also discussed by
Ramkumar and Indumathi [33]. This respectively gives a
good reason for mutual usage shared approaches, which
decrease the time interval needed to gain knowledge for the
system.

In order to achieve deep understanding of given software
system, we search for possible methods for its representation.
Bonyuet, Ma, and Jaffrey suggest that the developers prefer to
see the information for the software system visually instead of
numerically [6]. We also believe that the best method for
getting familiar with considerable amount of information is to
visualize it adequately. According to Shneiderman the “users
can scan, recognize and recall images rapidly” and detect
visualization properties changes – in size, color, shape,
movement, etc. [38].

The information needed to get acquainted with given
information systems, varies according to the role, which the
participants in a software project take. In general, the
software engineers are interested in information about
functional and nonfunctional issues of the system. The main
aim of their tasks is modification of the system in order to
improve it. That is why their target can be generalized in
modifications, which will improve some aspect of the existing
system [28] and gaining of initial perception of the software
structure in order to communicate the development [41]. On
the other hand, project managers have to focus their attention
on system components with a global impact on the
maintenance – hot spots in the system, where it is frequently
modified and key places, where it can be restructured to
obtain performance or reliability [28]. Software architects
strive for identifying the structural and functional linkage
between the system components. They also follow different
indicators for the system quality – code metrics, resource
usage diagrams, performance, etc. [5]. The focus of the

UniVis - a 3D software system visualization
using natural metaphors

Dimitar Ivanov, Milena Lazarova, Haralambi Haralambiev and Delyan Lilov1

INTERNATIONAL JOURNAL OF COMPUTERS Volume 8, 2014

ISSN: 1998-4308 107

current work includes analysis of such requirements and
identification of the most commonly needed features in order
to build stable and usable visualization, appropriate for as
much users as possible.

One of the popular works, concerning the information
visualization defines a simple rule - “overview first, zoom and
filter, then details on demand” [38]. The present article
describes an abstraction and visual metaphors, used to
achieve software visualization, applying this principle to a
maximum extent. The abstraction is needed to overcome the
details on displaying the source code and to improve the
understandability of the software system [10]. The used
metaphors are natural and publicly familiar, ensuring that
every element of the software system has corresponding
representation. The visualization uses innovative approach for
visual clustering, achieved by using natural way of grouping
elements into visual clusters – the bloom effect [17].

The above-mentioned properties of the target software
visualization are applicable for either two or three
dimensions. There are vast amount of publications, discussing
the advantages and disadvantages of the data representations
in two or three dimensions. Marcus, Feng, and Maletic
analyze several works, concerning information visualization
in 2D and 3D and in conclusion choose 3D visualization [25].
Rilling and Mudur emphasize the use of 3D space, providing
shapes and other configurations, which help the users to link
certain design features from the code with geometrical objects
[36]. With regards to the aesthetic part of the visualization,
Teyseyre and Campo claims that the inclusion of three
dimensional aesthetically appealing elements can increase the
intuitiveness, memorability and the whole human perception
for the visualization [41]. Based on this research, the work
presented in this paper uses three dimensional visualization
as an environment for demonstrating different approaches for
representation of given software system. We believe that the
balance between the visually attractive and information richer
software visualization can be achieved only in three
dimensions.

The task of visualizing complex information requires
significant visualization frameworks know-hows as well as
mathematical skills. The work of Teyseyre and Campo
summarizes considerable number of development tools, used
for building three dimensional graphic applications [41].
Another point of view is presented by Satish and Raghuveera
– they discuss the advantages of 3D over 2D from clearness
and usability point of view [37].

The specifics of the selected visual metaphor and the bloom
effect (see III.C.2)) calls for the use of development tools with
more complete application programming interface (API),
which provides easy integration with variety of 3D widgets
[29]. That is why, this project develops software visualization
system on OpenGL [39] as a multiplatform rendering
framework for visualizations in two and three dimensions.
Another obstacle, met in the development of complex

visualization systems are the differences between the
perception of the system users and its designers [47].
Working in the current context of software system
visualization, the developers are familiar with the software
development processes, which decrease the impact of such
perception problems to minimum.

II. RELATED WORK
There are various approaches for representation of related

data in the 3D space. In order to use the third dimension
effectively, Rekimoto and Green present universal three
dimensional visualization techniques for hierarchical
information, called “The information cube” [35]. Gall,
Jazayeri, and Riva represents the time in the third dimension
of their visualization of software releases history [10]. Similar
to this idea, Radfelder and Gogolla uses the 3D space to
represent more complex and detailed sequence diagrams [31].

The present work aims to visualize software systems in
three dimensions and to ensure the fast orientation and
navigation by using defined metaphor. To illustrate the
related literature better, we use the work of Rilling and
Mudur, who divide the visualizations in static and dynamic
[36]. The next two subsections include examples of
visualizations, which uses abstractions and metaphors,
similar to the presented in the current paper.

A. Dynamic visualizations
Greevy, Lanza, and Wysseier focus their analysis on

combination of static and dynamic analysis of the system
features. The third dimension is used as a supplement for
interactive representation of the dynamic system information,
providing the ability to explore the execution traces ([13],
[14]). The authors apply static analysis to create the model of
the source code and combine it with dynamic information for
the basic runtime operations – object instantiations and
message sends. The visualization reacts relevantly to the
changes in the presented information by using animations
(Fig 1). The navigation is implemented with the classical
operations for pan, zoom and rotate. The work also presents
proof of concept, visualizing real working software system,
which gives the ability to focus on a user defined features of
interest.

Fig 1. The Dynamic Feature View allows the user to step (source:

[14])

INTERNATIONAL JOURNAL OF COMPUTERS Volume 8, 2014

ISSN: 1998-4308 108

Other authors try to use metaphors, similar to nature
objects. Malloy and Power use spring embedding algorithm to
aid the comprehension of given software system by
visualization of object diagrams as molecules [24]. This
approach is used in order to decrease the size of the object
graph, extracted from Java applications. The needed
information is taken by dynamically instrumenting the
bytecode and collecting the trace data. As a final step, the
trace data is analyzed and visualized in three dimensions
using VRML (Fig 2).

Fig 2. Full view of object model (source: [24])

In order to present another point of view in the software
visualization, Rilling and Mudur experiment in applying
metaballs metaphor for representation of software systems.
The visualization presents software entities and their mutual
influence (Fig 3), which form “a constantly moving micro-
universe of entities (metaballs)” [36]. The approach gives the
opportunity for dynamic alternation to the model program
parameters as well as navigation through the representation
for different purposes such as design evaluation, reverse
engineering, testing, maintenance, etc.

Fig 3. Metaballs in visualization of software interactions (source:

[36])

B. Static visualizations
To use the benefits of the third dimension, Alfert and

Fronk combine it with information, taken from the syntax
graph, generated for given software system ([2], [3]). The
authors describe several properties of the 3D space
visualization – motion, transparency and positioning of the
objects and use it appropriately to present the target system in
an adequate view. The semantic grouping of the elements is
achieved by the use of information cubes (Fig 4).

The metaphor described by Ploix is used to represent Lisp
programs as a solar system. Such representation transfers
“syntactic and behavioral components of a textual

programming language (Lisp) to a graphical representation”
[30]. The visualized solar system contains suns and planets,
connected with directed links, which represent the direction
of the calls between the functions. The “bottom up”
evaluations are represented as orbits of the planets, which
actually represents the functions. The additional data used by
functions is represented as moons (Fig 5). Graham, Yang,
and Berrigan present very similar idea for a solar system, but
for representation of object oriented software system metrics
[12].

Fig 4. Information cubes, representing software system (source: [3])

Balzer and Deussen present more practical software system
representation as a result from exploratory study for
visualization of the static structure of real-world systems [4].
The landscape metaphor is used to present three dimensional
images of the landscape elements, positioned with custom
layouts. The links between the elements are represented as
hierarchical connections, forming interconnection networks.
The clustering of the elements is achieved by using
transparent hemispheres, used to group semantically near
elements (Fig 6). The navigation is facilitated by dynamic
transparencies enabling the viewer to switch the detailed and
the general views easily.

Fig 5. Solar systems of a lists drawing Lisp program (source: [30])

Code Mapping presents the software structure in a three
dimensions using an atomic model – the elements are
represented as spheres and the relations as lines [6]. The
basic feature of the proposed visualization is the
representation in virtual reality, combined with advanced user
interactions (Fig 7). All the abstract information is extracted
from the system using scanner and parser, which process the
source code and provide the information to the visualization.

INTERNATIONAL JOURNAL OF COMPUTERS Volume 8, 2014

ISSN: 1998-4308 109

Fig 6. Hierarchy based 3D representation of a software system

(source: [4])
Panas, Berrigan, and Grundy present clear and

understandable metaphor for program visualization,
concerning the static and dynamic aspects of the analyzed
Java code [28]. The idea is to represent every package as a
three dimensional city, whereas its components (the classes)
are represented as its buildings. The authors describe this
approach and how it helps the system maintainers and
managers to decide the level of importance of every
component of the system.

Fig 7. Atomic model in Code Mapping visualization (source: [6])

III. UNIVIS IN GENERAL
Our analysis and works on providing comprehensible and

clear representation of software system are integrated in
UniVis – a prototype of software visualization tool. The
general description of the basic aspects of UniVis adheres to
the six key areas of interest proposed by Young and Munro
[46].

A. Representation
The representation area concerns the graphical

representation of the software system’s components and its
maximum information volume – how much information can
be encoded in the representation. The representation is also
defined as one of the most important aspects of the
visualization.

According to Teyseyre and Campo the effective 3D
visualization of graph-based representations should consider
three main aspects [41]:
 positioning of the elements, achieved by usage of specific

layout algorithm;
 comprehensible representation of the relationships;
 appropriate usage of clustering.

In order to adhere to these recommendations, UniVis

integrates several alternative software system representations,
containing the proposed three aspects. The elements’ layout is
customized in such a way to achieve semantic ordering. The
links are represented as straight lines or curves, according to
the metaphor used. The clustering is developed as a natural
way of grouping elements into visual clusters – the bloom
effect [17].

Marcus, Feng, and Maletic enumerate a number of
representation forms (source code, tables, diagrams, etc.) and
attributes (interactive, static, dynamic, etc.) of software
visualization [25]. By using their proposal we identify the
UniVis as a virtual world dynamic offline representation of
software system using one abstract level and drill-down
capabilities. UniVis visualization also experiments in
constructing drawings of the system graph, using several
metaphors borrowed from the nature and the surrounding
world. The following sections describe the used metaphors
and their elements in detail.

1) Space metaphors
The space metaphors used in UniVis borrows the visual

concept from the widespread popular science materials,
concerning the known space universe. The correspondence
between the software systems and the universe is made
visually and semantically (Fig 8).

Fig 8. Software visualization in 3D using space metaphor

The semantic correspondence is straightforward - as the
planets and their satellites form systems, the systems form
galaxies, situated in the unlimited universe, so the statements
form methods, the methods form classes, which are part of
components, combined in a software system. To attain the
ordering of the objects in the space, UniVis integrates custom
dynamic layout algorithm, developed to adhere to the space
concepts such as gravity or more generally - force-directed
layout algorithm. Thus, the related elements are situated near
to each other and distributed based on their semantics (e.g.
the private methods are nearer to the class representation,
whereas the public methods are in the outer orbits).

The visual correspondence between UniVis and the
universe aims to achieve comprehensible clustering of the

INTERNATIONAL JOURNAL OF COMPUTERS Volume 8, 2014

ISSN: 1998-4308 110

elements, depending on the distance to the viewer. In real
environment, such separation is formed naturally by the light
of the space objects – emitted or reflected. This concept is
developed in the UniVis as the bloom effect (see III.C.2)).
The viewer perception is very close to a light, emitted from
the objects, but in order to form distinguishing clusters, the
radiance of the elements is artificially enlarged.

2) Geographic metaphors
In the context of orientation, the most popular association

refers to the geographical objects and their mutual
connections. If the third dimension is involved, the most
reasonable metaphor appears to be the geographical globe.
Such ideas are also inspired by the use of hyperbolic layouts
for representation of connected data [21]. UniVis transfers
these ideas to the subject of the software systems and
represents them by using geographic metaphor - visualizing
the whole software system, projected on the surface of an
adequately sized sphere (Fig 9). The result visualization
resembles to a three dimensional world map, displaying the
cities and their road links.

Fig 9. Software system, represented on a surface of a sphere
3) Combined metaphors

The improvement of the orientation in representation of
given data is not only a question of aesthetically appealing
visualization. The third dimension brings orientation
problems, related to the absence of a starting point such as
coordinate system and its center. Another problem in this
context is the amount of information, needed to represent
comprehensible coordinate system. In case of large graphs,
such information can cause an information overload. To
reduce the presented information as much as possible, UniVis
also integrates different ordering of the visualization elements
by applying a combination of the concepts, introduced in the
space and geographic metaphors.

Fig 10. Software system, represented on a plane in the space

a) System plane
To facilitate the information representation and

comprehension, UniVis uses simpler flat version of
geographic metaphors, enriched with three dimensional
graph nodes. The whole software system is presented as graph
with three dimensional nodes and edges, situated on a single
plane (Fig 10). Since the applied navigation is intended to
operate in three dimensions the result visualization look like a
3D view of a geographic map.

b) Component planes
Washizaki, Takano, and Fukazawa introduce the idea, that

the software maintainer understanding of the system is
simplified to “collection of components” [43]. By taking the
latter and the system plane as base ideas UniVis integrates an
approach for representation of software system, which places
the system components in separate planes (Fig 11). The
planes are distributed in the space by following the same
force-directed layout principles as for the atomic elements. To
represent the relations clearly, UniVis uses an algorithm for
force-directed edge bundling (see III.C.3)). The edges
between the different components are gathered in bundles,
representing general view of the components’ relations.

Fig 11. Software system components, situated in separate planes

INTERNATIONAL JOURNAL OF COMPUTERS Volume 8, 2014

ISSN: 1998-4308 111

The most powerful feature of the component planes
approach is its ability to represent structures with unlimited
level of depth. The methods can be applied as the complexity
of the represented system grows or even on representation of
multiple related systems.

B. Abstraction
The abstraction is the process of extracting the information

away from the low level detail. In order to abstract the
domain specific format of the data [23], reduce the mapping
and interpretation load [32] and overcome the lack of
standard “physical corpus” [2] of a software system, UniVis
uses knowledge discovery meta-model [27]. The extraction of
software system information from the source code is applied
using the work of Yanakiev, Haralambiev, and Kraichev for
gaining entity-relationship model of the source code [45]. The
key advantage of this method is its independence from the
used programming language, providing the ability to
represent large number of software systems.

Generally, the abstraction level in the UniVis is high and
the amount of details, available to the user is reduced to
minimum in order to achieve better comprehension [36]. The
visualization represents only top level code elements –
classes, interfaces and methods, including their relations –
extends, implements, uses, etc. All other details about the
software system elements are shown on demand.

C. Navigation
The volume of the represented information presumes

corresponding size of the visualization. The navigation is a
set of approaches for guiding the users through the
visualization without getting them lost or disoriented. The
following section describes several methods, which was
experimentally integrated in UniVis and intended to facilitate
the navigation.

1) Semantic coloring
The number of the elements, contained in a software

system requires a good approach for distinguishing them from
a distance. There is wide variety of methods for altering the
visualization appearance without affecting the source code
[3]. The most noticeable properties of a visual element are its
shape and its color. Aginsky and Tarr discuss the advantages
and disadvantages of different methods, used to facilitate the
visual search tasks [1]. Unfortunately, the shape is not
considered reliable, whereas the color is described as
“perceiving natural scenes” property of the target visual
elements. Moreover, when using a shape as distinguishing
property, the elements appear with reduced size from a
distance and therefore - losing its shape outline. The distance
reduces the size of the elements, but their color remains
unchanged. That is why UniVis uses special mechanism of
color determination in order to provide stable semantic
coloring of the visualization elements.

The proposed approach for distinct color generation
implements an algorithm for generation of distinct colors in

HSV (hue, saturation, value) model and converting them in
RGB (red, green, blue) model [40]. The basic idea is to
generate visually close nuances for the semantically
connected elements and distinguishing colors for the
unrelated ones. The principle is to divide the color spectrum
for the main components of the system and then – to split the
result intervals according to the number of the owned
elements of each component (Fig 12). The separation of the
color space is developed differently according to the used
model – the RGB space represents the color on a plane,
whereas the HSV model uses a cylinder.

Fig 12. Visual illustration of the distinct color generation

The method of distinct color generation creates visual
mapping between the responsibility of a system element and
the color of its representation in the visualization. This
approach tries to accelerate the process of full visual
identification of an element by its representation.

2) Bloom effect
One of the key properties of UniVis is the used approach

for semantic visual clustering – the bloom effect [17]. Since
the described metaphors use the abstraction of light and its
color as base characteristic of the elements, the bloom effect
is used to artificially enhance the effect.

Fig 13. Illustration of the bloom effect in three scale coefficients
The size of the bloom is dynamically calculated according

to the distance from the camera (the viewer) to the objects in
the space. The used calculations provide a size of the bloom,
which visually forms a kind of super nodes. These super

INTERNATIONAL JOURNAL OF COMPUTERS Volume 8, 2014

ISSN: 1998-4308 112

nodes represent group of ordinary nodes. Most frequently, the
represented groups are the system components. This
technique of hiding the elements when they are not needed is
also called elision [29].

The advantage of the bloom effect approach is its unlimited
level of depth. In other words, such representation of group of
nodes can provide unlimited number of drill-downs and thus
introducing the opportunity for visualization of single systems
as well as groups of related systems.

The bloom effect also provides a resolution for the basic
search task in collection of items having multiple attributes
[38]. The grouping of the elements, satisfying values of a set
of attributes is achieved visually with the color and the size of
the bloom effect (Fig 13).

3) Edge bundling
The relations of the software system graph represent the

linkages between the software system components, such as
“calls”, “uses type”, “implements”, etc. Their number usually
grows exponentially and turns the graph into an
incomprehensible tangle. The types of the relations also vary
and the grouping of the edges by certain type doesn’t give a
satisfying result. In order to reduce the overload and provide
clearer system visualization, UniVis applies force-directed
edge bundling algorithm, introduced by Holten and Wijk
[16].

The application of the bundling over the software system
graph increases its readability in the general view (Fig 8, Fig
11) and also contributes to the natural form of some
metaphors [36]. For example, when the bundling is applied
over the edges of the graph, represented by using the
geographic metaphor (Fig 9, Fig 10), the bundles resembles
to a roads and highways between towns and cities.

The bundling of the edges also provides information about
the semantics of the relations between the different system
components. When the edge bundle is thick it is compounded
of more relations and indicates tight coupling between the
components, whereas the thin bundles represents loosely
coupled system components.

Like the bloom effect, the bundling approach also provides
a kind of unlimited drill-downs. The edge bundling algorithm
is force-directed and therefore gathers the near edges
together. Theoretically, when using the same algorithm for
representation of related systems, the bundles should also be
grouped into large bundles, illustrating the relations between
the visualized systems.

4) Layout
The graph layout gets into the navigation section, since

Parker, Franc, and Ware defines it as a non-spatial navigation
together with the dynamic querying capabilities [29].
Teyseyre and Campo introduce different types of information
visualization layouts – tree layout, cone layout, orthogonal
layout, etc. [41]. In order to present the software system in
the best way, the UniVis uses custom force-directed layout,
developed by Iliev, Haralambiev, Lazarova, and Boychev

[18]. All the metaphors use this layout, but each of them
modifies its product before or after the layout application.

The space metaphors (see III.A.1)) use a three dimensional
modified version of Iliev’s layout and the nodes are placed in
the space following the same concept as used in two
dimensions - the methods are placed around the class in
concentric spheres, the component are differentiated in
clusters in the space (Fig 8). The edges of the graph are also
situated in the space and bundled in order to avoid
information overload.

The geographic metaphors (see III.A.2)) use the planar
version of the layout and add post-processing step, consisted
of inversed stereographic projection, which places the layout
on the surface of a sphere. The curves of the edges are also
following the sphere outlines, instead of crossing its interior.

The system plane approach (see III.A.3)a)) uses the
original version of the layout and places all the nodes and
relations of the graph in a single plane, which respectively
means that the bundling algorithm is also used in its original
version.

The component plane approach (see III.A.3)b)) applies the
“divide and conquer” strategy and uses the original version of
Iliev’s layout in several separate planes, containing the
representation of the components of the system (Fig 11). The
planes are distributed in the space by following the same
layout principles for three dimensions. The result
representation gives a very good overview of the visualized
system, against the expectations [15].

D. Correlation
The correlation is the linkage between the visualization

and the represented information store. UniVis analyzes the
current state of the source code and constructs entity-
relationship model, describing it. The model is then
represented as three dimensional graph, using different
metaphors. Every element of the visualized graph has a
reference to its corresponding source code. Unfortunately, the
used model construction approach does not provide an
opportunity for iterative building of the model and thus the
modifications, made in the code, are not reflected in the
visualization. The latter mean that the correlation in the
current state of UniVis is at its base level and the
development of this aspect should be included as future work
(see VII.B).

E. Automation
The automation defines how much of the visualization is

generated automatically without need of user interaction in
the entire process. The effort needed to work with UniVis is
reduced to minimum. The initial properties that must be set
from the user are the location of the source code and the type
of the view – standard or stereo. All the other properties of
the visualization can be optionally controlled by the user – the
type of interaction, used metaphor (respectively layout),
elements shape and color, etc.

INTERNATIONAL JOURNAL OF COMPUTERS Volume 8, 2014

ISSN: 1998-4308 113

F. Interaction
Interaction concerns the quality and quantity of the needed

user activities, in order to use the visualization sufficiently.
The following paragraphs summarize the basic interaction
issues, integrated into UniVis.

1) Input device interaction
Navigation varies according to the used approach for

visualization. Herman, Melanc¸ and Marshall share the
opinion, that the layout algorithm is not the only part of the
visualization, needed to overcome the problems, raised by the
large graphs [15]. That is why UniVis provides several
interaction techniques, concerned with the used input devices.

If the system is visualized by using the system plane
approach (see III.A.3)a)) the navigation features are focused
on the plane, where the system representation is situated on.
Thus, the interactions tend to manipulate only the target
plane. On the other hand, when using the approaches which
visualize the system in three dimensions (see III.A), the
navigation is classic three dimensional – panning, zooming
and rotation. These three basic interactions relies on the
distance from the viewer to the target object and therefore it is
dynamically calculated for the panning and the zooming,
whereas the point of the rotation is defined by the currently
selected element or from the center of the cuboid, bounding
the whole layout.

UniVis also integrates alternative approaches for
interaction in three dimensional environment. To simplify the
navigation and use minimal number of input devices’ data,
the visualization is controlled by using the concepts of
UniCam - interaction technique, described by Zeleznik and
Forsberg [48]. This type of interaction uses the input from
simple input devices, such as mouse or stylus. It manipulates
the visualization according to defined rules, based on the
position and the direction of the user movement actions on
the input device.

2) Stereo viewing
Stereo view exploration of the data presents the

information in different environment in order to use the
perceptual senses of the user as an advantage [6]. This type of
representation aims to facilitate the user in the exploration of
three dimensional objects, such as software system graph,
represented in the space (see III.A).

UniVis integrates simple type of stereo viewing of the
software system visualization, using active shuttering glasses
[8]. The technique of visualization uses two synchronized
views, showing the visualization from slightly different points
of view, imitating the eyes of the viewer. Using the stereo
capabilities of the output devices, these two views are merged
and explored via the active shuttering glasses. The interaction
remains as in the three dimensional approaches.

3) Filtering
Besides the natural visual clustering and the edge

bundling, UniVis provides additional ways for interaction
with the nodes and the relations in order to improve the

orientation in the system visualization. The integrated
approaches are implemented as the most relevant features,
needed in exploring a graph – full text search of a node by its
name and switching (on and off) of the relations. The full text
search accelerates the finding of the nodes by using the
Patricia set data structure, based on the most popular Trie
structure [34]. On the other hand, the switching of the
relations helps the user to choose which relations should be
visualized. The control of the switching is categorized by the
type of the relation and by the incidence with given node (Fig
8).

IV. UNIVIS REPRESENTATION PROPERTIES
Young and Munro define the representation as “a graphical

(and other media) depiction of a single component” [46]. The
following paragraphs describe in detail the representation
level properties inherent to UniVis.

A. Individuality
Individuality concerns the unique representation of

different parts of the visualization, according to their
semantics. This representation property is achieved by using
the fully qualified name of the source code elements and
displaying it as a label, placed next to its corresponding visual
element.

To avoid the information overload, the labels are shown in
dynamically calculated size, corresponding to the dimensions
of the whole system visualization and available only if their
scaled size to the screen appears readable to the user. It is
assumed that font sizes, less than 5 pt. are not readable.

The readability of the labels also appeared to be a problem
for their visualization in the third dimension. To optimize the
performance, UniVis uses the billboards technique – all the
text labels are placed in plane, parallel to the image plane [9].

B. Distinctive appearance
Distinctive appearance concerns the contrasting,

recognizable appearance of the representations. It contradicts
with the low visual complexity (see IV.D). The most natural
distinctive appearance is achieved by the color of the
elements’ representations.

Usually the coloring of the elements is used to indicate that
given elements belongs to a certain group (component of the
system). Xie, Poshyvanyk, and Marcus use predefined color
interval to illustrate the similarities between vectors in Latent
Semantic Indexing space, representing the source code and
documentation of a software system [44]. UniVis integrates
similar simplified approach for generation of distinct color
nuances, according to the ownership information for every
represented element (see III.C.1)).

C. High information content
The information content is appraised by the amount of

information, provided through the representations. UniVis
uses the size and the position of the elements to show certain

INTERNATIONAL JOURNAL OF COMPUTERS Volume 8, 2014

ISSN: 1998-4308 114

information about them
The real size of every representation is dynamically

calculated by the lines of code, contained in its corresponding
code element. UniVis provides the possibility to choose the
resize mechanism of given element according to the
measurements of different source code metric, but this feature
is still on its development stage and is included in the future
work (see VII.A).

The positioning of the elements is calculated by the layout
algorithm and shown in the placement of the methods around
their parent class (see III.C.4)). The same layout algorithm is
used to arrange the representations on the next level of
generalization, when the components are separated as single
planes.

Other information, concerning the source code of the given
visual element is available on demand by certain command in
the context menu.

D. Low visual complexity
The visual complexity is related to the simplicity of the

representation. UniVis visualizes the software system and its
elements in the context of their interrelationships. Since the
source code metrics or other properties of the elements are not
relevant to such context, we can state that the visual
complexity of UniVis is reduced to minimum.

V. UNIVIS VISUALIZATION PROPERTIES
Young and Munro define the visualization as “a collection

or configuration of individual representations (and other
information) which comprise a higher level component” [46].
The following paragraphs represent a detailed view over the
visualization properties of UniVis.

A. Simple navigation
The navigation is significant part of the user orientation in

the visualization. In order to keep the user perception for the
visualized data, the navigation should be done adequately to
the used visual metaphor.

As we described in the previous sections, UniVis integrates
several techniques for navigation (see III.C), adaptable to the
used visual metaphor, ensuring that the user will have the
comfort to explore the data in the current context. More
navigation features, needed for deep understanding of the
explored system are included as future work (see VII.B).

B. High information content
The information content of visualization is the equivalent

of the information content for the representation – it aims to
decrease the information overload. Balzer and Deussen uses a
layout, based on the hierarchy of the system elements
(packages, classes, methods, etc.) and hemispheres for
grouping them [4]. Similarly, UniVis uses the bloom effect
and custom force-directed layout to group the elements by
components and to define the color to represent their
subcomponent.

C. Well-structured visualization
The visual complexity of the visualization depends on the

representations, included in it, their relations and the
structure of the visualization itself. To present adequate
amount of information and decrease the visual complexity,
UniVis uses the bloom effect and its interrelationship with the
distance from the object to the viewer. When the distance to
the viewer is increased (i.e. the visualization is zoomed out),
the bloom size is also increased and the elements are
“absorbed” by their own bloom, forming amorphous color
cloud, representing group of elements (Fig 8, Fig 11). When
the appropriate layout is used, this group represents whole
system component. In the case with decreased distance to the
viewer, the size of the bloom appears smaller and the
elements – more distinguishable. Young and Munro also
describe these methods as “scalability of visual complexity
and information content” [46].

The number of the elements in the visualization is
proportional to the size of the visualized software system. The
large number of visualization elements increases the volume
of the space, needed to display it. Thus, some of the elements
appear very small from the viewer point of view. To reduce
the information overload and speed up the performance,
UniVis uses level-of-detail techniques, affecting the elements,
situated to a great distance from the viewer.

D. Varying levels of detail
The levels of detail, presented in the different states of the

visualization should be relevant to the user needs – the system
overview should be shown for newcomers, while more
detailed view will be visualized on demand. UniVis applies
combination of standard methods and the bloom effect to
achieve such variations in the displayed information. The
used force-directed layout algorithm situates the nodes in
semantic cluster, while their color is generated according to
their place in the system structure. Finally, the bloom effect is
applied to the result picture and the radiance of the near
elements forms natural bloom clusters. These clusters are the
elision technique [29], used to show only the needed
information, corresponding to the user defined zoom scale.

E. Resilience to change
The resilience of the visualization is its ability to remain

stable after changes on the presented information. Aiming at
such stability, the most important part of the presented
visualization approach is the choice of appropriate layout
algorithm. A layout algorithm can be described as stable if it
keeps the physical position of given graph elements, when
their corresponding system elements are semantically
changed. We also call this mental map preservation [20]. The
best combination of aesthetically appealing and useful layout
[41] is subjective and depends on the target information for
the visualization. The applicability of Iliev’s force-directed
layout (see III.C.4)) for visualization of series of graph

INTERNATIONAL JOURNAL OF COMPUTERS Volume 8, 2014

ISSN: 1998-4308 115

drawings, representing software system, is explored with
ReViewer [19]. The results show that the layout is stable and
preserves users’ mental map. Moreover, the Iliev’s layout is
suitable for “functional comparisons between program
versions” [6].

F. Good use of visual metaphors
The metaphors, used for the visualization should be

familiar for most of the target users. Ploix defines the
metaphor as transition of knowledge between different
domains, which uses the “intuitive knowledge of one domain
to help the understanding of the other one” [30]. Inspired by
the stars representation in Chrome experiments [7], the night
Earth view from NASA [26] and other popular science
materials of the space, the UniVis integrates the bloom effect
as a basic element of all the used metaphors. The specific
element of the metaphors borrows shapes, concepts and
representations from well-known information representations
– geographical map (see III.A.3)a)), globe (see III.A.2)),
galaxies (see III.A.1)) and their combinations. These
representations are popular among wide range of users, which
means that their understandability will be satisfactory.

G. Approachable user interface
The interface is considered approachable, when it achieves

a balance between the hardware used and the hardware
popularity among the users. Since the software development
is the target area for UniVis, the input devices and the user
interface is considered standard. The basic interactions are
achieved by using the mouse and the keyboard (see III.F). The
user interface contains standard controls like sliders,
dropdowns, context menus, etc.

H. Integration with other information sources
The integration concerns the linkage between the current

data visualization and other types of its visualizations. UniVis
visualizes the source code of software systems, written in
standard Java. The alternative visualizations of several
software data aspects are represented in the different Java
IDEs. UniVis experiments to integrate the visualization in
Eclipse [42]. The basic idea is to show the visualization of
selected software projects on demand in internal views of the
IDE. The development stage is still on its experimental phase
and included in the future work (see VII.D).

I. Good use of interaction
The good use of interaction consists of variety of user

interaction techniques which improve the user perception and
maintain the interest. UniVis applies several techniques for
better interaction. The first is the discussed bloom effect.
Another one is the UniCam navigation, providing easy
control by the use of one mouse button. The advantage of this
technique is that it can be easily applied in the mobile
context, where the user would be able to control the
visualization only by using single finger gestures. The

interaction technique, which needs additional user devices, is
the stereo viewing of the visualization (see III.F.2)).

J. Suitability for automation
According to Young and Munro “a good level of

automation is required in order to make the visualizations of
any practical worth” [46]. To save time and provide easy to
use visualization, UniVis encapsulates all the preliminary
operations - the building of the abstraction, the analysis of the
code elements and their relationships, etc. By implementing
such mechanism separately, UniVis automates the process of
construction of the visualization and respectively gives a
method for easy visualization of single system or several
related systems.

VI. RESULTS AND DISCUSSIONS
In spite of the presence of numerous tools for software

visualization and comprehension, the developers, software
architects and managers are still encountering problems in
the analysis and understanding of unfamiliar software system.
Similar problems also arise in the processes of bug fixing,
refactoring, optimization, etc. These processes become more
and more complicated with the need of systems with growing
scope [33]. On one hand, the volume and complexity of the
source code supporting a large scale software system
increases with the addition of new functionalities. On the
other hand, the process of software development is
characterized with very high dynamics and the time, required
to get acquainted with the whole system (or parts of it) needs
to be decreased to minimum.

As a system for software visualization and comprehension,
UniVis demonstrates and combines several experimental
approaches for representation of software system. These
approaches tend to provide full control over the represented
information. Some of them give a general overview of the
system, whereas others - detailed view of its components and
their structure. The rest of the approaches use intuitive
methods for information representation by using widespread
and popular metaphors. As a result, the visualization can be
generally categorized as multidimensional and adaptive.

A. Multidimensional
The multidimensional (or „layered”) structure of the

visualization appears in different aspect according to the
metaphor, used to represent the system’s source code and the
attributes of the visualization’s elements. Generally, these
aspects can be divided into color and location.

1) Color
Frequently, the semantic coloring of the elements facilitates

the orientation in the system representation. The package
ownership in UniVis is shown by the color of every
visualization element (see III.C.1)), while the used graph
layout algorithm places the elements from given package
close to each other. This leads to forming of different color

INTERNATIONAL JOURNAL OF COMPUTERS Volume 8, 2014

ISSN: 1998-4308 116

layers, which can be used for identification of the structural
components of the system. Moreover, a problem in the system
structure can be identified visually, by detection of
specifically colored areas in the general view of the system.

2) Location
The layered structure is noticeable in the location

distributions of the elements in the space and the groups
which they form. The space metaphors rely on the third
dimension and the layout algorithm to present the software as
a number of different space systems whereas the software
system is represented as a galaxy (see III.A.1)). The combined
metaphors presumes that the user perceives the information
better in a plane and presents the details of the lower level of
abstraction in planes, distributed in three dimensions. On the
other hand, to resemble real world objects and increase the
understandability, the geographic metaphors present the
software system as a planet with cities and highways.

The illustrated location aspects of the visualization are used
to identify of the strength of the dependencies between the
different system’s components and there interconnections in a
simple way, close to the real world.

B. Adaptive
The adaptability of the visualization is achieved with the

use of approaches, realizing dynamic reactions to the given
system information and its state. The following paragraphs
discuss the results which makes UniVis an adaptive software
visualization tool.

1) Universal
The universal description of all the proposed metaphors

provides a mechanism for visualization of any data, described
using entity-relationship model or graph structures. The
methods are integrated into UniVis and their interoperability
for this type of visualization is shown. The latter means that
such combination of visualization methods can be applied in
all the spheres of research, using entity-relationship
abstractions for the data and more specifically – for software
systems, written in various programming languages.

2) Visually clustered
As a key specific of the visualization, the bloom effect (see

III.C.2)) adapts it to the user interaction – when the distance
between the view point and the displayed objects varies, the
visible information is filtered visually by dynamically
changing the bloom size. The result radiances cover the
detailed information and only the most significant parts of it
remains. These visualization characteristics accomplish the
initial goal to the software system representation, following
the principle “overview first, zoom and filter, then details on
demand” [38].

3) Stable
The dynamic processes of software system development

produces frequent changes in the source code. To maintain
the visualization up-to-date and keep the user perception for
the entire system representation, UniVis integrates a change

resilient force-directed layout algorithm (see V.E). As result
the visualization preserves its state according to the changes
in the source code. By using this valuable visualization
quality, the user can easily identify structural problems in the
system only by observing the translations between the visual
elements.

VII. FUTURE WORK
The future work on UniVis can be categorized in four main

aspects – the adjustment of the representation and
visualization attributes according to semantic qualities of the
code; visualization supplements for dynamic simulations,
representing the changes in the visualized system;
optimizations for ensuring better capacity for the
visualization; integration of UniVis with other information
sources and systems.

A. Semantic adjustment
The node sizes of the system graph are currently

determined proportionally to simple source code metric – the
lines of code (see IV.C). The future work in this aspect of the
visualization includes a mechanism for node size
determination, relying on other software metrics [22].

UniVis also provides a linkage between the visualization
elements and their code snippets (see IV.C). The reversed
linkage – from the source code to the visualization elements,
is planned for future work and will be used as a base for the
realization of the dynamic simulations (see VII.B)

The component planes visualization approach (see
III.A.3)b)) relies on the preliminary defined system
components. To the current moment, this component
identification is based only to the package structure of the
system. The work of Garlan and Shaw [11] inspires the
identification of system components and should be beneficial
for extracting the basic characteristics of common types of
software architecture and respectively - the identification of
the components, contained in the certain type of architecture.

B. Dynamic simulations
Several authors present visualizations, which show the

system activities on their execution or through dynamic
visualizations of the static data ([30], [36], [38]). The used
visualization gives the possibilities for integration of similar
approaches by using the metaphor of light. The bloom effect
brightness and size can be used to point key changes in the
system and apply approaches such as animation of the
program flow between the elements’ representations,
application of visual effects over the nodes, changed in the
consequent code revisions. The latter future work objective
concerns the UniVis ability to develop a method, which
provides iterative building of the abstract system model.

C. Optimization
The size of the industrial software systems increases and

appears as a great impediment for the tools such as UniVis.

INTERNATIONAL JOURNAL OF COMPUTERS Volume 8, 2014

ISSN: 1998-4308 117

The visualization of thousands of elements with a good
performance is inconceivable without the use of specialized
optimizations. UniVis uses several techniques to speed up the
performance – level-of-detail for the distant objects (see V.C),
billboards for the elements’ labels (see IV.A) and display lists
for the edges curves. The future work on the optimizations
concerns experiments with point sprites, vertex buffer objects
and geometry instancing [39].

D. Integration
As a tool, targeted to the software developers, UniVis

should be convenient to use as a part of the development
process. The integration of the OpenGL view in the Eclipse
IDE is initiated (see V.H) and the future work in this aspect
concerns the mutual work of UniVis, the IDE and the used
versioning system.

ACKNOWLEDGMENT
This work was partially supported by the Bulgarian

Science Fund through contract ДМУ 02/18 – 2009 “Fast
Orientation in Complex Information Systems”.

REFERENCES
[1] V. Aginsky, M. J. Tarr, How Are Different Properties of a Scene Encoded

in Visual Memory?, Journal Visual Cognition, volume 7, pages 200 - ?,
2000.

[2] K. Alfert, A. Fronk, 3-Dimensional Visualization Of Java Class Relations,
in proc. of the Fifth World Conference on Integrated Design & Process
Technology, Dallas, Texas, 2000.

[3] K. Alfert, A.Fronk, Manipulation of 3-dimensional Visualizations of Java
Class Relations, In proc. of Integrated Design and Process Technology,
IDPT-2002, USA, 2002.

[4] M. Balzer, O. Deussen, Hierarchy Based 3D Visualization of Large
Software Structures, in proc. of IEEE Conf. Visualization (VIS ’04), p.
598.4, 2004.

[5] H. Byelas, A. Telea, Visualization of areas of interest in software
architecture diagrams, in proc. of ACM symposium on Software
visualization (SoftVis '06), pp. 105 – 114, New York, USA, 2006.

[6] D. Bonyuet, M. Ma, K. Jaffrey, 3D Visualization for Software
Development, in proc. of IEEE Int’l Conf. Web Services (ICWS ’04), p.
708, 2004.

[7] Chrome Experiments, Stars, retrieved from
http://workshop.chromeexperiments.com/stars/, Google, 2012

[8] A. Craig, W. R. Sherman, J. D. Will, Developing Virtual Reality
Applications: Foundations of Effective Design, Developing Virtual Reality
Applications: Foundations of Effective Design, Morgan Kaufmann
Publishers Inc., USA 2009.

[9] X. Décoret, F. Durand, F. X. Sillion, J. Dorsey, Billboard clouds for
extreme model simplification, in proc. of SIGGRAPH '03, pp 689 – pp
696, New York, NY, USA, 2003.

[10] H. Gall, M. Jazayeri, C. Riva, Visualizing Software Release Histories: The
Use Of Color And Third Dimension, in proc. of the IEEE International
Conference on Software Maintenance, ICSM '99, p. 99, Washington, DC,
USA, 1999.

[11] D. Garlan, M. Shaw, An Introduction to Software Architecture, School of
Computer Science, Carnegie Mellon University, Pittsburgh, January, 1994.

[12] H. Graham, H.Y. Yang, R. Berrigan, A Solar System Metaphor for 3D
Visualisation of Object Oriented Software Metrics, in proc. of Australasian
Symp. Information Visualisation, pp. 53-59, 2004.

[13] O. Greevy, M. Lanza, C. Wysseier, Visualizing Feature Interaction in 3-D,
in proc. of third IEEE Int’l Workshop Visualizing Software for
Understanding and Analysis (VISSOFT ’05), p. 30, 2005.

[14] O. Greevy, M. Lanza, C. Wysseier, Visualizing Live Software Systems in
3D, in proc of ACM Symp. Software Visualization (SoftVis ’06), pp. 47-
56, 2006.

[15] Herman, G. Melanc¸ M.S. Marshall, Graph Visualization and Navigation
in Information Visualization: A Survey, IEEE Trans. Visualization and
Computer Graphics,vol. 6, no. 1, pp. 24-43, 2000.

[16] D. Holten, Jarke J. van Wijk, Force-Directed Edge Bundling for Graph
Visualization, Eurographics/ IEEE-VGTC Symposium on Visualization,
Vol 28, number 3, Berlin, Germany, 2009.

[17] D. Hubanova, H. Haralambiev, M. Lazarova, S. Boychev, Dynamic Visual
Clustering Using Bloom Effect, Sixth International Scientific Conference
Computer Science, Ohrid, Macedonia,pp. 308 – 311, 2011.

[18] I. Iliev, H. Haralambiev, M. Lazarova, S. Boychev, Dynamic Force-
Directed Graph Layout for Software Visualization, International Scientific
Conference on Information, Communication and Energy Systems and
Technologies, Volume 3, pp. 885 – 888, Nis, Serbia, 2011.

[19] D. Ivanov, H. Haralambiev, M. Lazarova, S. Boychev, Quality Assessment
of Graph Drawing Sequences Representing Software Systems Evolution,
Journal Information Technologies and Control, Year VIII, No.4, pp.20–
29, 2011.

[20] D. Ivanov, M. Lazarova, H. Haralambiev, D. Lilov, Visual Identification
of Mental Map Anomalies in Graph Drawing Algorithms, in proc. of
Automatics and Informatics, pp. 267 – pp. 270, Sofia, Bulgaria, 2012.

[21] J. Lamping, R. Rao, P. Pirolli, A Focus + context Technique Based on
Hyperbolic Geometry for Visualizing Large Hierarchies, Human Factors in
Computing Systems, CHI ’95 Conference Proceedings, ACM Press, 1995.

[22] M. Lanza and R. Marinescu, Object-Oriented Metrics in Practice, first
edition, Berlin: Springer Verlag, 2006.

[23] J. Maletic, A. Marcus , M. L. Collard, A Task Oriented View of Software
Visualization, In proc. of the 1st International Workshop on Visualizing
Software for Understanding and Analysis (VISSOFT '02), p.32,
Washington, DC, USA, 2002.

[24] B.A. Malloy, J.F. Power, Using a Molecular Metaphor to Facilitate
Comprehension of 3D Object Diagrams, in proc. of IEEE Symp. Visual
Languages and Human-Centric Computing (VL/HCC ’05), pp. 233-240,
2005.

[25] A. Marcus, L. Feng, J. Maletic, 3D Representations for Software
Visualization, In proc. of SoftVis '03, Pages 27-ff, New York, USA, 2003.

[26] National Aeronautics and Space Administration, Earth city lights, retrieved
from http://visibleearth.nasa.gov/view.php?id=55167, Visible Earth - a
catalog of NASA images and animations of our home planet.

[27] Object Management Group, retrieved from
http://www.omg.org/spec/KDM/1.0/, Knowledge Discovery Meta-Model,
January 2008.

[28] T. Panas, R. Berrigan, J. Grundy, A 3D Metaphor for Software Production
Visualization, In proc. of the Seventh International Conference on
Information Visualization, IV '03, pp.314, Washington, DC, USA, 2003.

[29] G. Parker, G. Franck, C. Ware, Visualization of Large Nested Graphs in
3D: Navigation and Interaction, J. Visual Languages and Computing,vol.
9, no. 3, pp. 299-317, 1998.

[30] D. Ploix, Building Program Metaphors, retrieved from
http://damien.ploix.free.fr/papiers/ppig96/ppig96.html, October 2008.

[31] O. Radfelder, M. Gogolla, On Better Understanding UML Diagrams
through Interactive Three-Dimensional Visualization and Animation, in
proc. of Working Conf. Advanced Visual Interfaces (AVI ’00),pp. 292-
295, 2000.

[32] H. Ramadhan, Z. Al-Khanjari, H. Al-Lawati, Design and Evaluation of a
Visual Framework for Facilitating Re-engineering and Re-use of
Relational Databases, in proc. of International Conference of Automation
and Information , pp. 342 – pp. 349, Spain, 2003.

[33] K. Ramkumar, J. Indumathi, A framework for architecture recovery of web
applications, in proc. of 4th WSEAS International Conference on Software
Engineering, Parallel & Distributed Systems, Article No 1, Stevens Point,
Wisconsin, USA, 2005.

[34] T. U. Rehman, retrieved from http://www.badgenow.com/, February,
2013.

[35] J. Rekimoto, M. Green, The Information Cube: Using Transparency in 3D
Information Visualization, Proc. Third Ann. Workshop Information
Technologies and Systems,pp. 125-132, 1993.

[36] J. Rilling, S. P. Mudur, On the Use of Metaballs to Visually Map Source
Code Structures and Analysis Results onto 3D Space, In proc. of the Ninth
Working Conference on Reverse Engineering, WCRE '02, pp.299,
Washington, DC, USA, 2002.

[37] C. J. Satish, T. Raghuveera, Visualizing object oriented software using
virtual worlds, in proc. of 4th WSEAS International Conference on
Software Engineering, Parallel & Distributed Systems, Article no. 3,
Stevens Point, Wisconsin, USA, 2005.

INTERNATIONAL JOURNAL OF COMPUTERS Volume 8, 2014

ISSN: 1998-4308 118

[38] B. Shneiderman, The Eyes Have It: A Task by Data Type Taxonomy for
Information Visualizations, In proc. of IEEE Symposium on Visual
Languages, pp. 336, Washington, DC, USA, 1996.

[39] Silicon Graphics, Inc., OpenGL, retrieved from http://www.opengl.org
[40] R. Smith, Color gamut transform pairs, Comput. Graph., pp.12 – pp.19,

1978.
[41] R. Teyseyre, M. R. Campo, An Overview of 3D Software Visualization,

IEEE Transactions on Visualization and Computer Graphics , Volume 15
Issue 1, pp. 87 – pp.105, Piscataway, NJ, USA, 2009.

[42] The Eclipse Foundation, Eclipse, retrieved from http://www.eclipse.org/
[43] H. Washizaki, S. Takano, Y. Fukazawa, Visualization of binary

component-based program structure with component functional size, in
proc. of 5th WSEAS international conference on Applied computer
science, pp. 911 – pp. 917, Stevens Point, Wisconsin, USA, 2006.

[44] X. Xie, D. Poshyvanyk, A. Marcus, 3D Visualization for Concept Location
in Source Code, In proc. of the 28th international conference on Software
engineering, ICSE '06, pp.839 – pp.842, New York, NY, USA, 2006.

[45] A. Yanakiev, H. Haralambiev, K. Kraichev, Revisiting Abstract Syntax
Tree as a Basis of Source Code Knowledge Models, in proc. of Informatics
in the Scientific Knowledge, pp.242 – 257, Varna, Bulgaria, 2012

[46] P. Young, M. Munro, Visualizing Software in Virtual Reality, in proc. of
Sixth Int’l Workshop Program Comprehension (IWPC ’98), p. 19, 1998.

[47] I. Zayour, T. C. Lethbridge, A Cognitive and User Centric Based
Approach For Reverse Engineering Tool Design, in proc. of the conference
of the Centre for Advanced Studies on Collaborative research, CASCON
'00, pp. 16, IBM Press, 2000.

[48] R. Zeleznik, A. Forsberg, UniCam - 2D Gestural Camera Controls for 3D
Environments, In proc. of the 1999 symposium on Interactive 3D graphics
(I3D '99), pp. 169 – pp. 173, New York, NY, USA, 1999.

Dimitar S. Ivanov was born in Vidin, Bulgaria on
04.07.1987. He graduated “Ekzarh Antim I” high school of
mathematics and science (2006) and continued his education
as bachelor’s degree of informatics (2010) in the Sofia
University “St. Kliment Ohridski”. He also finished his
master’s degree in “E-Management and E-business” (2012)
in Sofia University “St. Kliment Ohridski”. At the current
moment D. Ivanov studies his PhD on “Automated Systems

for Information Processing and Management” in Technical University of Sofia.
He started his career as JUNIOR SOFTWARE ENGINEER in the Applied

Research and Development Center at Musala Soft (September 2009 – October
2010) and continued as SOFTWARE ENGINEER (October 2010 – February
2013). In the current moment he is SENIOR SOFTWARE ENGINEER and
coordinates the research process in the Applied Research and Development
Center at Musala Soft, Sofia, Bulgaria. He has several publications in
conferences and journals including:
 Visual Identification of Mental Map Anomalies in Graph Drawing

Algorithms (D. Ivanov, M. Lazarova, H. Haralambiev, D. Lilov, in proc.
of International Conference of Automatics and Informatics, pp. 267 – pp.
270, Sofia, Bulgaria, 2012);

 Quality Assessment of Graph Drawing Sequences Representing Software
Systems Evolution (D. Ivanov, H. Haralambiev, M. Lazarova, S. Boychev,
Journal Information Technologies and Control, Year VIII, No.4, pp.20–
29, 2011);

 ReViewer: tool for monitoring and analysis of graph images (D. Ivanov, H.
Haralambiev, M. Lazarova, S. Boychev, in proc. of International
Conference of Automatics and Informatics, Sofia, Bulgaria, 2011).

Assistive Prof. Dr. Milena Lazarova is a promising young
scientist in the Faculty “Computer systems and control”
(FCSC) at Technical University of Sofia. She is first prize
winner for the project “System for discovering disasters” on
educational science Expo 2008, as well as bearer of a Batch
of Honor of the state Agency for Information Technologies
and Communications. In the last two years she is a software
projects leader with which students from FCSC at Technical
University of Sofia participate in the “Imagine Cup”

competition organized by Microsoft. Two years in a row (2008 and 2009) the
project leaded by her are winners in competitions on national level and represent
Bulgaria on the world finals in the category “Software Design”. She is a leader
of the internal-university contract funded by SRS, Technical University of Sofia.
She has several publications in conferences and journals including:
 Visual Identification of Mental Map Anomalies in Graph Drawing

Algorithms (D. Ivanov, M. Lazarova, H. Haralambiev, D. Lilov, in proc.

of International Conference of Automatics and Informatics, pp. 267 – pp.
270, Sofia, Bulgaria, 2012);

 Quality Assessment of Graph Drawing Sequences Representing Software
Systems Evolution (D. Ivanov, H. Haralambiev, M. Lazarova, S. Boychev,
Journal Information Technologies and Control, Year VIII, No.4, pp.20–
29, 2011);

 ReViewer: tool for monitoring and analysis of graph images (D. Ivanov, H.
Haralambiev, M. Lazarova, S. Boychev, in proc. of International
Conference of Automatics and Informatics, Sofia, Bulgaria, 2011).

Haralambi K. Haralambiev was born in Burgas, Bulgaria on
19.12.1985. He graduated “Akad. Nikola Obreshkov” high
school of mathematics and science (2004) and continued his
education with the bachelor’s degree of computer science in
Sofia University “St. Kliment Ohridski” (2008). Several
years later he also finished his master’s degree on “Discrete
and algebraic structures” (2013).
His career started as JUNIOR SOFTWARE ENGINEER in

Musala Soft (July 2005 – September 2005), continued as SOFTWARE
ENGINEER (October 2005 – January 2007), SENIOR SOFTWARE
ENGINEER (February 2007 – May 2008) and TEAM LEAD (June 2008 –
October 2011) at Musala Soft. In the current moment he is TECHNICAL
STAFF DEVELOPMENT MANAGER and coordinates the application and
integration of the processes in Musala Soft, Sofia, Bulgaria. He has several
publications in conferences and journals including:
 Visual Identification of Mental Map Anomalies in Graph Drawing

Algorithms (D. Ivanov, M. Lazarova, H. Haralambiev, D. Lilov, in proc.
of International Conference of Automatics and Informatics, pp. 267 – pp.
270, Sofia, Bulgaria, 2012);

 Dynamic Force-Directed Graph Layout for Software Visualization (I. Iliev,
H. Haralambiev, M. Lazarova, S. Boychev, International Scientific
Conference on Information, Communication and Energy Systems and
Technologies, Volume 3, pp. 885 – 888, Nis, Serbia, 2011.);

 Applying source code analysis techniques. A case study for a large mission-
critical software system (H. Haralambiev, S. Boychev, D. Lilov, in proc. of
EUROCON, April 27-29, 2011).

Delyan Lilov was born in Sofia, Bulgaria on 26.11.1969. He
has a master degree in informatics from Sofia University “St.
Kliment Ohridski” (1994).
 He is founder, CEO and a shareholder in one of the most
successful Bulgarian software companies - Musala Soft. In
nine years, due to his extensive experience, professionalism
and vision, Musala Soft expanded and positioned as a
reliable and prestigious long term partner for world industry

leaders such as mag, EnBW, IBM, HP, SAP and others. As a CEO Mr. Lilov
defines company strategy, leads operations and is involved in key accounts.
Commitment to quality, continuous process improvement and mainstay of
company teams are among his core areas of activity. Mr. Lilov holds a MA in
Computer Science. He is a leader from the Musala Soft side of the Unified
Science Group on SCAM (Software Code Analysis and) of SU-FMI and Musala
Soft. He has several publications in conferences and journals including:
 Visual Identification of Mental Map Anomalies in Graph Drawing

Algorithms (D. Ivanov, M. Lazarova, H. Haralambiev, D. Lilov, in proc.
of International Conference of Automatics and Informatics, pp. 267 – pp.
270, Sofia, Bulgaria, 2012);

 Applying source code analysis techniques. A case study for a large mission-
critical software system (H. Haralambiev, S. Boychev, D. Lilov, in proc. of
EUROCON, April 27-29, 2011);

 Improving software architecture through circular dependency detection (B.
Strandjev, H. Haralambiev, D. Lilov, in proc. of International Conference
Automatics and Informatics, October, 2010).

INTERNATIONAL JOURNAL OF COMPUTERS Volume 8, 2014

ISSN: 1998-4308 119

