
 

 

  
Abstract—Automatic annotation methods deal with visual 

features such as color, texture and structure that can be extracted 
from the raw image data, and can automatically assign keywords to 
an unlabeled image. The major goal is to bridge the so-called 
semantic gap between the available features and keywords that could 
be useful to humans for image retrieval. 

Although different people will most likely annotate the same 
image with different words, most people when searching for images 
use object or scene labels. Therefore, the aim of this paper is to 
annotate the images with on both object and scene labels, and to 
compare the performance of automatic image annotation both levels.  

The assumption is that there can be many objects in each image, 
but an image can be classified into only one scene. Therefore, the 
object level annotation is considered as a multi-label classification 
problem and the scene level annotation as a single-label multi-class 
classification problem. In order to facilitate the comparison the same 
features sets composed of dominant colors, GIST and SIFT 
descriptors for the both annotation levels were used. Due to the 
different types of classification problems, different classification 
methods were more appropriate, so we have used RAKEL and ML-
kNN multi-label classification methods to perform the annotation of 
object level and the Naïve Bayes and SVM classifier for annotation 
on scene level. The Naïve Bayes and SVM classifier were also used 
in case of object level annotation, but on transformed data. Results of 
scene and object level annotations of outdoor images are compared 
using different feature subsets on Corel and Flickr images. 
 

Keywords—image annotation, multi-label classification, scene 
classification 

I. INTRODUCTION 
MAGE retrieval, search and organization became a problem 
due to the huge number of images produced daily. In order 

to simplify these tasks, different approaches for image retrieval 
have been proposed that can be roughly divided into those that 
compare visual content (content based image retrieval) [1] and 
those that use text descriptions of images (text based image 
retrieval).  

Image retrieval based on text appeared to be easier, more 
natural and more suitable for people in most everyday cases. 
This is because it is much easier to write a keyword based 
query then to provide image examples, and it is likely that the 
user does not have an example image of the query. Also, 
images corresponding to same keywords can be very diverse. 
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For example, a person can search for an image of a different 
view of the same town that looks very different to an image he 
already has, in which case content-based retrieval would not be 
the best choice. On the other hand, with a text query very 
diverse images can be retrieved with the same keywords, e.g. 
Rijeka (town, river…). 

To be able to retrieve images using text, they must be 
labeled or described in the surrounding text, and the problem 
is that most of the images are neither of that. Manually 
providing image annotation is a tedious and expensive task, 
especially when dealing with a large number of images, so 
automatic annotation appeared as a solution.  

Automatic annotation methods deal with visual features that 
can be extracted from the raw image data, such as color, 
texture, structure, etc. and can automatically assign metadata 
in form of keywords from a controlled vocabulary to an 
unlabeled image. The major goal is to bridge the so-called 
semantic gap [2] between the available features and the 
keywords or interpretation of the images that could be useful 
to humans.  

This problem is challenging because different people will 
most likely annotate the same image with different words that 
reflect their knowledge about the context of the image, their 
experience, cultural background, etc. However, the survey that 
we conducted among the students has shown that most people 
when searching for images use object or scene labels, Fig. 1. 
Therefore, in this paper we focus on automatic image 
annotation on scene and object levels.  
 

  
 a) Flickr image b) Corel image 
 Annotator 1 Annotator 2  
Object 
labels 

Rabbit, grass Rabbit, 
grass 

tracks, train, cloud, 
sky, trees, 

Scene label rabbit rabbit SceneTrain 
Search 
keywords 

Rabbit, grass rabbit  

Scene 
description 

A confused 
rabbit sitting in 

grass and 
looking at 

camera 

Rabbit in 
grass 
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Fig. 1. Example of image annotation on object and scene levels for a a) Flickr 
and b) Corel image. Search keywords and scene descriptions of two 
annotators are additionally presented for of the Flickr image. 

 
The object labels correspond to objects that can be 

recognized in an image, like sky, trees, track and train for 
image in Fig. 1b). The scene labels represent the context of the 
whole image, like SceneTrain or more general Transportation, 
and can be either directly obtained as a result of global 
classification of image features or inferred from object labels.  

For the scene level annotation, classification methods can be 
used that treat each scene label as an independent class and 
train one classifier for each scene label, as in [3], [4]. A recent 
survey of research made in the field can be found in [5], [6]. 
On the other hand, since many object labels can be assigned to 
an image, the object level annotation can be treated as a multi-
label problem and then appropriate multi-label classification 
methods should be used. Similarly, in [7], [8] multi-label 
classification methods were applied for scene classification, 
for music categorization into moods and genres, in [9] for 
poster classification into genres, etc. Comparison of methods 
for multi-label learning is given in [10], [11]. 

In this work, we treat object and scene level annotation as 
independent problems, that differs to the approach taken in 
[12]. The data sets used in the experiment are presented in 
Section 2. Both annotation tasks were independently 
performed on the same data sets represented by subsets of 
features that were defined in Section 3. In Section 4, the 
classification methods used for image annotation on object and 
scene levels are described. Obtained results were compared as 
detailed in Section 5. The paper ends with a conclusion and 
directions for future work.  

II. DATA SETS 
The annotation experiments were performed on a part of the 

Corel image database [13] related to outdoor scenes, and on a 
set of images from the Flickr website. Each image was 
described with more than one object labels and with one scene 
label. The images in the Corel dataset were labeled with one of 
the 20 keywords related to outdoor scenes such as 
‘SceneTrain’ and with one or more keywords from a 
vocabulary of 27 keywords related to natural and artificial 
objects such as 'airplane', 'bird', ‘lion’, ‘train’ etc. and  
background objects like 'ground', 'sky', ‘water’ etc.  

The Flickr images were selected from the website using the 
set of the same 27 keywords of natural and artificial objects as 
in the Corel dataset as a query for image search. For each of 
the chosen keywords, 100 most relevant image results were 
collected, resulting in a dataset of 2700 images belonging to 
27 classes. Each of the Flickr images was annotated with the 
query keyword, but possibly along with other keywords or text 
descriptions. Due to this, there are images in the database for 
which the query keyword does not represent the main object in 
the image, and they are discarded. The remaining images were 
additionally manually annotated using a flat controlled 
vocabulary of objects and scenes. In the object level, the 

annotators have described all the relevant objects that are 
visible in the image, including background objects. Along with 
the object and scene level annotation, the annotators were 
asked to label the images with keywords they would use 
themselves if they were searching for that specific image, so in 
this case the vocabulary was unconstrained. A free-form text 
description of scenes was also requested for each image. There 
were 64 persons involved in the annotation task. Each person 
annotated 50 images, and more than one person annotated 
some images, so in total there were 3200 annotation sets for 
2700 images. In case of two annotation sets for the single 
image, the union of object labels was used in further 
experiments.  

The results of the free-form tasks (text description and 
search keywords) have shown that users would most 
commonly use object names or scene level keywords (1-2 
words) when searching for images, in contrast with the longer 
texts they would use to describe the scene (Fig. 1a). 

 In both Corel and Flickr data sets, some labels were too 
rare to effectively train the classifiers and images that 
correspond to those labels were excluded from data. The 
resulting data consisted of 397 images in case of Corel and 
1706 for Flickr, and was more suitable for learning of 
classification models. The details of the data set before and 
after transformation are presented in Table 1. 

 
TABLE 1. STATISTIC OF ORIGINAL AND TRANSFORMED DATA SETS   

Statistic Data set 
Original data Transformed 

data 

Objects Scenes Objects Scenes 
No. of 
labels 

Corel 54 20 22 12 
Flickr 770 27 28 18 

Max 
images 
per label 

Corel 248 81 220 77 
Flickr 450 138 450 138 

Min 
images 
per label 

Corel 1 1 9 15 
Flickr 1 14 41 40 

Mean 
images 
per label 

Corel 26 25.2 50 32 
Flickr 7.7 71 127 76 

Median 
images 
per label 

Corel 7.5 19 28 25.5 
Flickr 1 76 92 79 

Std. dev. 
per label 

Corel 50 22 56 21 
Flickr 30 23 94 22 

III. FEATURE SETS 
The variety of perceptual and semantic information about 

scenes and objects on the outdoor image could be contained in 
global low-level features such as dominant color or color 
histogram, texture, structure etc.  

Here we have considered color histograms as pixel-based 
descriptors, GIST [14] as structure-based descriptors and SIFT 
[15] as keypoint descriptor of images for both the object and 
scene level annotation.   

The pixel-based color descriptor is made up of dominant 
colors of the whole and of the parts of the image, and of color 
histograms and color moments, similarly as in [16].  
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The color histogram was calculated for each of the RGB 
color channels of the whole image. Next, histogram bins with 
the highest values for each channel were selected. These bins 
correspond to global dominant colors in decreasing order. 
After experimenting with different numbers of dominant colors 
(3, 6, 8, 12, 16, 24 and 36), we have chosen to use 12 
dominant colors per channel (referred to as DC) in each image 
as features for our classification tasks (Fig. 2).  
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Fig. 2. Computation of global dominant color (DC) feature. 
 

To preserve the information about the color layout of an 
image, a 3x1 grid is applied across each image and a color 
histogram was computed for each tile. Then the local dominant 
colors were extracted from each of the RGB histograms in the 
same manner as for the whole image. These are considered as 
local dominant colors and are referred to as DC1 to DC3 (Fig. 
3).  
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Fig. 3. Computation of local dominant colors (DC1..DC3) from three image 
regions. 

 
To capture the information about the possible central image 

object and the background, the image is divided into the 
central part that most likely contains the main object and the 
surrounding parts that would probably contain the background. 
The size of the central part was 1/4 of the diagonal size of the 
whole image, and of the same proportions, Fig. 2. The DC4 
feature was computed on the central part of the image, and 
DC5 feature on the surrounding part. The size of DC vector is 
36 and the size of local DC vectors (DC1..DC5) is 180. 
Additionally, we have computed the color moments (CM) for 
each RGB channel: mean, standard deviation, skew and 
kurtosis. The size of CM feature vector is 12. 

 
Fig. 4. The arrangement of central and background regions from which the 
dominant colors features were computed 

 
To represent coarse spatial information the GIST image 

descriptor was used. It is a structure-based image descriptor 
[17] that refers to the dominant spatial structure of the scene 
characterized by properties of its boundaries (e.g., the size, 
degree of openness, perspective) and its content (e.g., 
naturalness, roughness) [14]. The spatial properties are 
estimated using global features computed as a weighted 
combination of Gabor-like multi scale-oriented filters. In our 
case, we used 4x4 encoding samples in the GIST descriptor 
within 8 orientations per 4 scales of image components, so the 
GIST feature vector has 512 components (Fig. 5.). 

Input image Descriptor

Multiscale 
oriented 

filters 4x4x4x8 = 512-dimensional 
feature vector

(4x4 divisions)

(4 scales x 8 
orientations)

Fig. 5. Computation of local dominant colors (DC1..DC3) from three image 
regions. 

 
SIFT [15] (Scale Invariant Feature Transform) transforms 

image data into local features coordinates that are invariant to 
translation and rotation as well as to scale. The SIFT 
descriptor is a 3D spatial histogram of image gradients that 
distinguish the appearance of edges or key points located on a 
regular grid across the image. The gradient at each pixel is a 
sample of an elementary feature vector, formed by the pixel 
location and the gradient orientation. Gradient orientations are 
quantized into eight bins and the spatial coordinates into four. 
To give less importance to gradients farther away from the 
keypoint center Gaussian-weighting function is applied (Fig. 
6). 

 

 
Fig. 6. SIFT keypoint and descriptor [18] 
 

The samples are weighed by a gradient norm, vector 
quantized into 1000 visual words (bag of words) and recorded 
into a histogram. The computed histogram forms the SIFT 
descriptor. In our experiment, the images were divided into 3 
slices (Fig. 3), and for each slice the SIFT descriptor is 
computed. The final image feature vector is a concatenation of 
these three histograms with the size of 3000. 

We performed the classification tasks using all the extracted 
features, in which case the size of the feature vector was 3740. 
This set of features is denoted further in text as AF. Since the 
feature vector is high dimensional we have used PCA for a 
reduction of dimensionality while retaining as much of the 
variance in the dataset as possible. The transformed features 
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form a vector of 30 components, which explain 60% of 
variance in the original data. Features were normalized and 
scaled to range [0,1] prior to applying the PCA transformation. 
This transformed feature set is denoted as AF+PCA. 

In addition, we wanted to compare the impact of the 
descriptor type on the result of classification and to determine 
the descriptors that are the most successful for our task, so we 
have tested and analyzed the classification performance using  
four feature subsets.  

The first two subsets are the pixel based descriptors only, 
with the first denoted as PB1 comprising only features DC and 
CM (size 48), and the second denoted PB2 comprising all the 
pixel based descriptors (DC, DC1..DC5 and CM, size 228). 
The subsets SB and KB comprise structure based GIST and 
keypoint based SIFT descriptors, respectively.  

All features were extracted from images that were sized 128 
x 192 pixels or 192 x 128 pixels in the case of the Corel 
dataset. For the Flickr dataset, the images were rescaled to the 
width of 256 pixels before feature extraction. 

IV. METHODS USED FOR OBJECT AND SCENE LEVEL IMAGE 
ANNOTATION 

Images of outdoor scenes commonly contain one or more 
objects of interest like person, boat, dog, bridge and different 
kinds of background objects such as sky, grass, water etc. 
However, people often think about these images as a whole, 
interpreting them as a scene, for example, tennis match instead 
of person, court, racquet, net, and ball. To make the image 
annotation more useful for organizing and retrieval of images, 
it should cover both object and scene levels.  

In this work, we attempt to label both foreground and 
background objects assuming that they are all useful for image 
interpretation. On the other hand, we assume that an image can 
be classified into one scene, so we treat the scene level 
annotation task as a single-label multiclass classification 
problem.  

In [4], an inference engine to infer the scene labels from 
objects recognized on an image using relations between 
objects and scenes defined in a knowledge representation 
scheme is used. We want to test the annotation performance on 
both levels independently without using a knowledge base that 
is only relevant for a specific domain. 

For the scene level annotation, the Naïve Bayes and SVM 
classifier were used.  

The Naïve Bayes (NB) classifier is a simple 
probabilistic classifier with a  strong  
independence assumption suited for multi-class classification  
problems. Naive Bayes classifier was trained in a supervised 
learning setting using maximum likelihood parameter 
estimation from data.  

Support Vector Machine provides a binary classification 
mechanism based on finding a dividing hyperplane between a 
set of samples with positive and negative outputs. Although it 
cannot be directly used for multi-class classification problems, 
it has been proven successful when the problem is transformed 

into many binary classification tasks [19]. Scene level 
annotation is a multi-class single-label classification problem 
for which the Naïve Bayes classifier is naturally suited and the 
problem must be transformed into multiple 1-vs-rest binary 
classification sub-problems for using the SVM classifier.  

In case of object level annotation, we want to annotate the 
image with all object labels, so this task is treated as a multi-
label classification. We used the ML-kNN [20]  and RAKEL 
[21] classification methods that are designed for multi-label 
classification problems.  

ML-kNN [20] is a lazy learning algorithm derived from the 
traditional k-Nearest Neighbor (kNN) algorithm and adapted 
for multi-label classification problems, so it can be directly 
used on multi-label data. For each unseen instance, its k 
nearest neighbors are first identified in the training set. Then, 
based on the information gained from the class labels of these 
neighboring instances, maximum a posteriori (MAP) principle 
is utilized to determine the classes of the unseen instance. 

RAKEL (RAndom k-labELsets) [21] is a data adaptation 
method that enables using of single-label classifiers on multi-
label problems. The RAKEL algorithm considers a small 
random subset of labels and uses a single-label classifier for 
the prediction of each element in the powerset of this subset. 
In this way, the algorithm aims to take into the account label 
correlations using single-label classifiers.  We used RAKEL 
with kNN and J45 as base classifiers. The base classifiers are 
applied on subtasks with manageable number of labels.  

Besides the common multi-label classification methods, we 
also used the SVM and Naïve Bayes classifiers on the 
transformed data. The data was transformed so that each 
instance with multiple labels was duplicated as many times as 
there were class labels assigned to it.  For example, if an image  

 was annotated with labels “Lion”, “Sky” and “Grass” 
as shown in Table 2, it was transformed into three single-label 
instances as shown in Table 3.  

Then, single-label classifiers were independently trained for 
each class. Each classifier decides whether an image belongs 
to that class or not. The overall classification result contains all 
class labels assigned to that instance. 

 
TABLE 2. A PART OF ORIGINAL, MULTI-LABEL DATA SET 

         Object label 
Instance 

Airplane Grass Lion … Sky 

e115 1 1   1 
e116  1 1  1 
e117 1    1 

 
TABLE 3. A PART OF DATA SET THAT IS TRANSFORMED INTO SINGLE-LABEL 

INSTANCES 
         Object label 
Instance 

Airplane Grass Lion … Sky 

e115 1     
e115  1    
e115     1 

e116  1    
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e116   1   

e116     1 

e117 1     

e117     1 

V. EVALUATION MEASURES 
We evaluate the classification performance on the scene and 

object levels in terms of accuracy, precision, recall and F1 
score as instance-based and label-based evaluation measures 
[11]. The instance-based evaluation measures are based on the 
average differences of the actual and the predicted sets of 
labels over all examples in the test dataset. The label-based or 
macro-averaged evaluation measures assess the predictive 
performance for each label separately and then average the 
performance over all labels [9]. These measures are used due 
to the fact that an instance may not only be correctly or 
incorrectly annotated, but also partially correctly in case of 
multi-label classification. For example, if an image should be 
annotated with grass, sky, wolf, and is automatically annotated 
with tree, sky, dog, cloud, then the evaluation measure should 
reflect the insertion of wrong labels (tree, dog, cloud), missing 
labels (wolf, grass) and correct labels (sky).  

To define the evaluation measures, we assume that an 
instance  should be classified into the set of 
true class labels ,   where  is a set 
of image feature vectors,  is a set of all class labels.  For an 
example , the set of labels that are predicted by a classifier is 
denoted as . In case of single-label classification, 

.  
Instance based accuracy is defined as the average ratio of 

correctly assigned and all labels assigned to each example by 
the classifier and the true labels: 

 
Instance based precision is defined as the average ratio of 

correctly assigned and all labels assigned to each example by 
the classifier: 

 
Instance based recall is defined as the average ratio of labels 

correctly assigned by the classifier and all labels of each 
example (ground truth): 

 
Instance based F-Measure is the harmonic mean of 

Precision and Recall and can be interpreted as a weighted 
average of the precision and recall: 

 
These measures reach their best value at 1 and the worst at 

0. 

Label based measures are computed firstly by computing the 
instance-based measure and then averaging over all labels.  

VI. EXPERIMENTS 
We have compared the results of automatic image 

annotation on scene and object level. We used 3-fold cross 
validation so the obtained results are the average of 3 runs. 

The label-based evaluation measures for scene annotation 
level on the Corel data set are presented in Table 4. The best 
classification results are obtained using the whole feature set 
with PCA transform (AF+PCA) with the Naive Bayes 
classifier. Naive Bayes (NB) performed better than the SVM 
classifier with all feature sets, however due NB classifier could 
not be trained effectively for higher dimensional feature sets 
(KB and AF) due to low variance of some features and low 
number of examples. It can be pointed out that pixel based 
descriptors (PB1, 48 elements and PB2, 228 elements) 
perform similarly to the structure based GIST descriptor (SB, 
512 elements). This suggests that dominant colors contain 
important information about scene classes. The keypoints 
based descriptor SIFT (KB, 3000 elements) used on its own 
has shown lower performance. Since the PCA transformed set 
AF+PCA with 30 elements performed better than the 
untransformed set AF with 3740 elements, only the first was 
considered further. 

 
TABLE 4. LABEL-BASED EVALUATION MEASURE FOR SCENE ANNOTATION 

LEVEL, COREL DATASET. 

Feature subset 
 Label-based evaluation measure for 

scene level annotation 

Classification 
method Accuracy Precision Recall F1 score 

PB1 
NB 0.79 0.22 0.64 0.32 

SVM 0.88  0.21 0.19 

PB2 
NB 0.83 0.27 0.66 0.37 

SVM 0.88  0.32 0.29 

SB (GIST) 
 

NB 0.84 0.28 0.68 0.39 

SVM 0.6  0.61 0.22 

KB (SIFT) SVM 0.88  0.17 0.13 

AF  SVM 0.91  0.46 0.46 

AF+PCA  
NB 0.91 0.56 0.47 0.5 

SVM 0.88 0.34 0.39 0.36 

 
The results on the Flickr dataset (Table 5.) again show 

similar performance considering the F1 measure with pixel 
based (PB1 and PB2) and structure based descriptors (SB). 
The best F1 score is obtained using the GIST descriptor and 
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the Naive Bayes classifier. Again the simpler 48-dimensional 
PB1 subset performs comparably as the more complex 512-
dimensional GIST descriptor. The SIFT descriptor again 
yields the lowest F1 score. 

 
TABLE 5. LABEL-BASED EVALUATION MEASURE FOR SCENE ANNOTATION 

LEVEL ON THE FLICKR DATASET. 

Feature 
subset 

Classification 
method 

Label-based evaluation 
measure for object level 

annotation  

Precision Recall F1 score 

PB1 
NB 0.12 0.21 0.25 

SVM  0.03 0.05 

PB2 
NB 0.15 0.61 0.23 

SVM  0.11 0.14 
SB 
(GIST) NB 0.17 0.66 0.26 

KB 
(SIFT) SVM  0.07 0.05 

AF+PCA 
NB  0.21 0.25 

SVM 0.22 0.32 0.25 

 
In Table 6, label-based results for object level annotation 

with RAKEL, ML-kNN and NB are presented. Overall the 
best results considering the F1 score are obtained using the NB 
classifier with the combination of pixel and structure based 
features. Also, the NB classifier has the best F1 score with all 
feature subsets except for GIST. A possible reason is that the 
number of examples for each class is higher in case of NB due 
to the data transformation as explained in Section 3. For the 
GIST feature subset, the best F1 score is obtained using 
RAKEL with kNN as base classifier. For all feature subsets, 
the NB has significantly better recall than other methods. For 
precision, the best score is achieved using RAKEL with kNN 
in most cases.  

When comparing Tables 4 and 6, it can be noticed that 
scene and object level results are similar, although there are 
almost twice as many object labels than there are scene labels 
and thus better performance for scene level annotation may be 
expected. That may be due to the fact that for most scenes 
there exists one main object that represents that scene and 
background objects are common to most scenes and thus do 
not play an important role in scene recognition. For example, 
in case of object-level annotation, the best F1 scores are 
obtained for train (0.8), tracks (0.77) and polarbear (0.68), 
and the worst for wolf (0.07) classes. This is reflected on the 
scene level classification, where SceneTrain has the best F1 
score (0.86) and SceneWolf among the worst (0.30). For 
background objects, the best F1 scores are for sky (0.65) and 
grass (0.66) and the worst F1 for mountain (0.11) and clouds 
(0.13).  

 

TABLE 6. LABEL-BASED EVALUATION MEASURE FOR OBJECT ANNOTATION 
LEVEL, COREL DATASET. 

Feature 
subset 

Classification 
method 

Label-based evaluation 
measure for object level 

annotation  

Precision Recall F1 score 

PB1 

RAKEL-J45 0.40 0.27 0.29 

RAKEL-kNN 0.31 0.32 0.29 

ML-kNN 0.16 0.10 0.11 

NB 0.28 0.65 0.36 

SVM  0.21 0.19 

PB2 

RAKEL-J45 0.39 0.27 0.30 

RAKEL-kNN 0.39 0.33 0.31 

ML-kNN 0.20 0.11 0.12 

NB 0.31 0.66 0.41 

SVM  0.16 0.15 

SB 
(GIST) 

RAKEL-J45 0.35 0.26 0.27 

RAKEL-kNN 0.48 0.45 0.43 

ML-kNN 0.26 0.17 0.19 

NB 0.31 0.65 0.40 

SVM  0.61 0.22 
KB 
(SIFT) SVM  0.07 0.05 

PB2 + 
GIST 

RAKEL-J45 0.39 0.28 0.30 

RAKEL-kNN 0.49 0.41 0.40 

ML-kNN 0.32 0.2 0.23 

NB 0.38 0.64 0.46 

SVM  0.63 0.27 

AF+PCA 
SVM  0.39 0.35 

NB  0.25 0.27 
The object level results for the Flickr data set are presented 

in Table 7. As for the Corel dataset, object level results are 
similar to the scene level results (Table 5). 

 
TABLE 7. LABEL-BASED EVALUATION MEASURE FOR OBJECT ANNOTATION 

LEVEL, FLICKR DATASET. 

Feature 
subset 

Classification 
method 

Label-based evaluation 
measure for object level 

annotation  

Precision Recall F1 score 

PB1 NB 0.12 0.6 0.2 

PB2 
NB 0.12 0.6 0.19 

SVM  0.08 0.11 

GIST NB 0.14 0.63 0.22 
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SIFT SVM  0.06 0.05 

AF+PCA 
NB  0.18 0.22 

SVM 0.21 0.32 0.24 

 
Instance-based classification results for the scene level 

annotation, obtained using NB, and object level annotation are 
presented in the Tables 8 and 9, respectively for the Corel data 
set. In case of instance based evaluation, the NB classifier has 
not performed well, and the best F1 scores are achieved with 
RAKEL, with both J45 and kNN as base classifiers. 

Instance-based results in case of scene level (Table 8) are 
notably lower than label based results (Table 4) for all 
evaluation measures, but not for object level (Tables 6 and 9). 
That may be due to imbalanced number of examples per class 
and the fact that in case of multi-label classification, partially 
correct annotation is possible. In case of similar classes, e.g. 
lion and tiger, cloud and sky in multi-label classification, both 
labels can be assigned.  

 
TABLE 8. INSTANCE BASED EVALUATION RESULTS USING NB FOR SCENE 

ANNOTATION LEVEL, COREL DATASET 

Feature subset 

Instance-based evaluation measure for 
scene level annotation 

Accuracy Precision Recall F1 score 

PB1 0.40 0.11 0.30 0.15 

PB2 0.41 0.07 0.19 0.1 

SB (GIST) 
 0.42 0.13 0.27 0.16 

PB2 + SB 0.43 0.16 0.16 0.1 
TABLE 9. INSTANCE BASED EVALUATION RESULTS FOR OBJECT LEVEL 

ANNOTATION, COREL DATASET 

Feature 
subset 

Classification 
method 

Instance-based evaluation measure 
for object level annotation 

Accuracy Precision Recall F1 
score 

PB1 

RAKEL-J45 0.42 0.60 0.50 0.52 

RAKEL-kNN 0.39 0.50 0.48 0.47 

ML-kNN 0.31 0.63 0.34 0.41 

NB 0.63 0.22 0.44 0.27 

PB2 

RAKEL-J45 0.42 0.59 0.52 0.52 

RAKEL-kNN 0.18 0.51 0.46 0.47 

ML-kNN 0.31 0.64 0.34 0.41 

NB 0.65 0.22 0.4 0.26 

SB (GIST) 

RAKEL-J45 0.39 0.58 0.50 0.50 

RAKEL-kNN 0.20 0.57 0.55 0.54 

ML-kNN 0.35 0.60 0.38 0.44 

NB 0.65 0.21 0.38 0.26 

PB2+GIST 

RAKEL-J45 0.44 0.61 0.54 0.54 

RAKEL-kNN 0.22 0.57 0.53 0.53 

ML-kNN 0.38 0.66 0.42 0.48 

NB 0.67 0.22 0.34 0.25 
 

VII. CONCLUSION AND FUTURE WORK  
In this paper, automated annotation of images on object and 

scene levels was modeled as a classification task, where a 
single image may be labeled with more than one object label, 
and only one scene label. The experiment was conducted on 
Corel image dataset with images representing outdoor scenes 
in 12 scene categories and on a dataset of Flickr images in 15 
scene categories. On object level, images were labeled with 
one or more object labels from a vocabulary of 22 for Corel 
and 28 objects for the Flickr dataset.  

As the usual single-label classification algorithms can't 
directly be used to solve the multi-label problem, for the object 
level annotation multi-label classification algorithms (RAKEL 
and ML-kNN) and data transformation along with the Naïve 
Bayes and SVM classifiers were used.  

The features used in the classification were low-level pixel-
based features based on color histograms and color moments 
combined with the structure-based GIST descriptor and 
keypoints based SIFT descriptor. Obtained results are 
evaluated and compared on the datasets using different subsets 
of features features. The pixel based and structure based 
descriptors performed better than the keypoint based 
descriptor on both Corel and Flickr data sets. 

 Obtained results in case of label-based evaluation are 
similar for both the object and scene level annotation, but in 
case of instance-based evaluation, the object level annotation 
performed much better. This suggests that classification results 
on object level could be used for improving the classification 
on scene level by using object labels as features for classifying 
the scenes. Also, knowledge base that captures relations 
between scenes and objects can improve the automatic image 
annotation on both levels.  

In the future work, we plan to implement automatic 
inference of relations between objects and scenes, which are 
captured in data. Spatial relations between objects, e.g. in front 
of or beside are often used in descriptions obtained in the 
manual annotation task, so the automatic inferrence of these 
relations should also be included. 
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