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Abstract—The aim of this work is to look for a simple technique for the image compression. This method consists in 
determining the different Gaussian white noise (GWN) segments in each image matrix row. The resulting GWN segments 
lengths are dependent on the reconstructed image quality. The irregularly compressed image, in this case, is represented by 
the parameters vector of the corresponding mono-dimensional stochastic model; the variances, means and the corresponding 
segments lengths.   We have, in addition, compared the results obtained with the GWN to those obtained using a uniform 
distribution model and as a result, we have found that the GWN is more adequate for the irregular image compression.  The 
irregular compression rate obtained in this work is higher than the regular compression rate. 
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I. INTRODUCTION 

It is well known that image compression is the procedure 

of reducing the size in terms of bytes of a graphics file 
without degradation of the image quality to a certain 
reasonable level. This size file minimization allows more 
images to be saved or stored in a memory space. It also 
reduces the time required for transmitting images.   

Many successful methods and algorithms in image 
modeling and compression are performed using statistical 
models, and it is therefore of interest to improve models in 
order to obtain a higher compression rate as well as to 
accurately reconstruct an image that is as close as possible to 
the corresponding original image. Performing such models is 
usually a difficult task due mainly to the image data to be 
processed. To overcome this difficulty, two important 
assumptions are usually pointed out to simplify model 
analysis; a) the probability of a pixel is conditioned only on 
very nearest neighborhood and deemed independent from 
the remaining pixels of the image. This assumption is called 
Markovianity.  b) The local density is thought of as being 
independent of its absolute position in the image, in other 
words the density is homogenous. Any model that is 
characterized by these two assumptions is called 
homogenous Markov random field (hMRF).  The non-
Gaussian statistics of images, in addition, led some authors 
to develop non-Gaussian MRF models [1, 2]. But so far the 
most successful, may be, is the fields of experts model 
which has been recently developed by S. Roth and M. J. 
Black [3] and has shown a quite good performance. The 
local statistical properties of images have, also, been 
modeled using Gaussian scale mixtures (GSMs).  

Despite their global consistency and the interesting results 

provided by such field models, difficulties in their 
implementation and processing may hamper their 
performances. We suggest, therefore, in this paper an 
alternative and simple method based on matrix line 
segmentation instead of a Gaussian field realization for the 
image modeling and particularly for the image compression. 
This mode of representation corresponds to the regular 
compression and has been applied for the line by line 
processing of the images, in particular for the coding, the 
filtering and the storage [4,...,7]. In our case, however, we 
aimed to obtain a higher compression rate using an approach 
called irregular compression which will be explained in 
more detail in the following.   
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 II.  RESULTS AND DISCUSSION 
Many authors [8,…,13] have demonstrated that image 

statistics are not Gaussian realization, and hence they do not 
follow, particularly, Gaussian distribution. For example, 
decomposition of images using wavelet transforms provides 
coefficients that are non-Gaussian as indicated by their 
histograms. We believe, however, that this case may be 
slightly different when considering the image matrix line by 
line treatment and performing segmentation such that any 
segment may be approximated by a corresponding Gaussian 
model [14, 15] as formulated in the following:  

We started first by selecting a type of model with 
reasonable results and can be applied to a possible large 
number of images. After many tests on several types of 
models, we have decided to choose either the normal 
distribution model or the uniform distribution model for 
every resulting segment, mainly because of their simple 
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computing and the good results they provide.  
  
A. The proposed irregular compression method 

The principle of our proposed method of compression 
consists mainly of two steps: first, segment each matrix line 
into even length stationary intervals as shown in the 
following example corresponding to the first image matrix 
line (1), and seek the optimal model parameters (variance 
and mean in the case of a Gaussian model) to represent each 
of these intervals by an adequate corresponding model. If the 
reconstructed image is reasonably close to the original one, 
using this particular model, then this means that all the 
segments with the same length L are indeed Gaussian White 
Noises (GWN).  
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The GWN were obtained by assuming that the pixels are 
weakly dependent and thus the neighbouring pixel 
dependency may be neglected. The joint probability of any 
segment can be, therefore, approximated, using the chain 
rule, where each sample conditional probability is replaced 
by its prior probability as shown in the following example in 
the case of the first segment with the length L ;  
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And the corresponding estimated optimal GWN 

parameters; the mean 
∧
m  and the variance

2∧
σ , for each 

segment, were computed as shown in the case of the first 
segment using respectively the two following expressions   
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Once the reconstruction is reasonably acceptable, we 

proceed to the second step which consists in grouping as 
many adjacent stationary segments of the same matrix line 
with very close variances and means as possible in order to 
obtain stationary segments with longer lengths as indicated 
in the image matrix (2) in which it is shown that the first and 
the second segments are grouped into one segment with 
length 2L. 
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Each of these stationary segments is represented by three 

parameters; the variance, the mean and the segment length. 
The latter must be specified as the third parameter since the 
segments are not all of the same length in the case of the 
irregular segmentation. In order to obtain a higher irregular 
compression rate than the regular compression rate, the 
following criterion must be, therefore, satisfied; 
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Where 

ir
N and 

r
N are respectively the irregular and the 

regular segments total numbers  
We have represented in figure.(1a) below both the 300th 

line (column 201 to column 320) of the original image and 
its reconstruction version using the regular segmentation. It 
can be seen that this matrix line is well reconstructed 
indicating that the GWN is the right choice for the regular 
segmentation. Figure 1b illustrates the irregular 
segmentation and in which the stationary irregular segments 
are delimited by the vertical lines. We can notice in this 
figure that the reconstruction corresponding to the irregular 
segmentation is, also, almost perfect. So, this procedure is 
not only an alternative test to Kolmogorov-Smirnov test, but 
it represents also a simple way of determining the stationary 
and ergodic segments [16] for any matrix line. Notice that 
this second step is called an irregular compression since the 
stationary segments, obtained using our algorithm are not of 
even lengths, whereas the former is known as the regular 
compression. The obtained irregular segments are delimited 
by the breakpoints separating the adjacent segments. We 

(2) 
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then gather all these optimal parameters and their 
corresponding segments breakpoints indices in a matrix 
form with a smaller size than that of the original image 
matrix. The goal of our method for compression is, 
therefore, to reduce the size of the parameters matrix as 
possible as we could without degrading too mach the 
information in the original image.  
 
B. The suggested algorithm for the irregular compression 

The basic idea of the irregular (compression) 
segmentation is to seek for longer stationary segments by 
joining as many adjacent smaller regular stationary segments 
which are determined using statistical models as possible. 
This method is applied to each image matrix line. The 
parameters of the resulting adequate statistical model 
corresponding to the irregular compression are then gathered 
in the parameters matrix which is supposed to represent the 
irregular compressed image. 
 

 
 
 

 
b) 
.  

Fig.1. Original line (dotted curve) and its reconstructed 
(continuous curve); a) the regular stationary segmentation, 
b) the irregular stationary segmentation, where the vertical 
lines delimit the stationary segments.  

 

Algorithm: 
1- Divide each image matrix line into segments with an 

even given length L. 
2- Compute the parameters; the variance and the mean of 

every segment. 
3- Use these parameters to reconstruct segments [17] 

using the selected model, and hence to reconstruct the 
image. 

4-If the reconstructed image is reasonably perfect as in 

fig. 4, then go to step 5, else reduce the segment length L 
and go back to step 1. 

5- Gather as many adjacent segments with approximately 
even variance and mean as possible to obtain longer 
stationary segments. 

6-Groupe the different breakpoints indices (lengths) of the 
obtained stationary segments as well as their corresponding 
parameters; variances and means in a matrix form whose 
size should be not less than that of the original image matrix 
only but also less than that of the parameters matrix of the 
regular compression as well. Notice that the latter 
corresponds to the first step up to the fourth, whereas the 
irregular compression starts from the fifth to sixth step.  

The following scheme below in figure.2 describes briefly 
the six steps of our suggested algorithm for the irregular 
compression by the matrix line segmentation. 

-The original image matrix size is I*J=348*620=215760, 
where I and J are the rows and the columns numbers 
respectively. 

-The regularly compressed image parameters matrix size 
obtained is 2*Nr= 2*155*348= 107880, where Nr is the 
total number of the regular segments (same length) and 
finally the irregularly compressed image size obtained using 
our algorithm is 3* Nir = 3*30605= 91815, where Nir is the 
total number of all the irregular segments. As results we 
have obtained the following compression rates: the regular 
compression rate Tr=215760/107880=2 and the irregular 
compression rate Tirr=215760/91815=2.35. These results 
which are summarized in the following table 1 show clearly 
the improvement of the compression rate corresponding to 
the irregular compression. 
 
 
 
Table.1:  
Image nature Image size Compression Rate 

Original 215760      1 

Regular compression  107880      2 

Irregular compression 91815    2.35 

 
 
 
 
 

a) 
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 Fig. 2. The image irregular compression algorithm. 
 

The image modelling was performed using the image 
toolbox of Scilab5.3.3 which is free software. The results of 
our algorithm for the irregular compression are shown in 
fig.5 using the normal distribution (fig.5b) and the uniform 
distribution (fig.5b).  

 
 
Fig.3. Original image 

We can see that the results obtained with the latter 
distribution are better than those obtained using the 
former distribution. 
 

 
a 

 
b 

Fig.4. Regular compression; a) reconstructed image with 
normal distribution and b) with uniform distribution 
 
 

It should be noticed that we cannot perform the irregular 
compression without obtaining a very good image 
reconstruction quality corresponding to the regular 
segmentation as shown in fig.4. 
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b 

Fig.5. Irregular compression; a) reconstructed image with 
normal distribution and b) with uniform distribution 

 
 

The parameters matrix for the irregular compression, 
obtained using our algorithm, is 3 rows by a number of 
columns which is equal to the number of the breakpoint 
indices. Each breakpoint index represents a stationary 
interval length. The first, the second and the third row of the 
parameters matrix represent, respectively, the breakpoint 
indices, the variances and the means of the corresponding 
segments. 
 

III. CONCLUSION 
The main advantage of our irregular compression 

technique for the image compression over most non-
Gaussian fields based methods, lies in the ease of computing 
the mono-dimensional Gaussian representation of the 
stationary segments of each matrix line. The high irregular 
compression obtained in this work, indicates that our 
proposed irregular compression method can be very efficient 
in practice.  It should be noted, however, that in our line by 
line analysis of the image matrix, we have assumed that the 
pixels are very weakly dependent in order to reconstruct the 
image using the independent random variables joint 
probability. The quality of the reconstructed image using 
GWN model shows, indeed, that this assumption is quite 
reasonable.  
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