

Abstract— Software Configuration Management controls

evolution of software development process to include only valid
configuration items in the final product. To establish this control, a
set of tasks should be implemented in software development project:
version control, build and deploy management, source code
management etc. Usually companies already have tools and solutions
to implement mentioned tasks. The main challenge is an
implementation of software configuration management tasks in new
projects. This implementation should be done with minimum
additional efforts and customization using existing solutions and
tools where it is possible. The study offers novel model-driven
approach for planning and implementation of software configuration
management using models with different level of abstraction. Firstly,
meta-model for general model-driven approach is provided. Using
this meta-model, three different models are developed for planning
and implementation of software configuration management. Finally,
simplified use case provided to describe designed models from
practical side and direction of further works are underlined.

Keywords— Software Configuration Management, Model-
Driven Approach, Environment Model, Model Transformation.

I. INTRODUCTION
OWADAYS software configuration management is not only
challenge to choose an optimal version control system

and branching strategy for a particular software development
project [1, 4, 15]. Many different tasks should be solved to
support the overall process, for example, identification of
software configuration items, version control, configuration
item status accounting, build management, release
management, etc. The set of tools should be installed and
integrated between themselves to support full configuration
management process [1, 4]. Usually software development
companies already have tools such as bug tracking systems,
version control systems, build and deployment frameworks,
release building tools, etc. The mentioned tools are
implemented for software configuration management in the
existing projects. The main challenges are implementation of
all configuration management tasks for new projects as soon as
possible, and achievement of fully-automated level to reduce
manual efforts. To achieve this, existing solutions, scripts,
frameworks should be reusable as much as possible. In case
new solutions are to be developed, they should also be

reusable. All of the mentioned solutions should be
decomposed to independent units and parameterized. It means
that a particular function, script, framework or some other unit
should receive set of parameters and return expected result or
error message. No any details about other solutions or
provenance of received parameters should be included in the
body of the current function, script or framework. Solutions
organized by this way should be reusable and particular
components should be used in other projects [18, 19]. In
practice it means that, for example, function for compilation
JAVA project from source should receive parameters and
return an executable JAR file. A function body should not
contains any details about version control repository,
continuous integration servers, a bug tracking system or any
hardcodes. All information should be provided by parameters.
Only parameterized and independent functions could be used
in other projects without additional efforts for customization.
In practice very often solutions for version control, branching,
building, installation and release management are mixed and
very specific for a particular project. Some script, called
“refresh_test_environment” could be imagined as an example.
The script contains import of source code from particular
repository, compilation and building details, hardcodes etc. All
specific values of the current project, absolute paths of
directories, addresses of servers are hard-coded in the script. It
is not possible to use the same script in other project without
additional customization. There is necessity to design
framework for independent solution units to solve particular
tasks of configuration management process. Firstly, the picture
of general software configuration management process should
be created. After that all needed solution units should be
selected from the mentioned framework to apply general
process that have been designed. It will reduce efforts for
manual customizations and save resources during setup of
configuration management in new projects.

This paper provides a new model-driven approach for
implementation of software configuration management.
Different models of the new approach allows getting general
flow of configuration management process, select actions
needed to implementation of mentioned flow and choose
specific solution from special database for each action. The
main scopes of the new model-driven approach are increase
reusability of existing solutions for configuration management

Model-Driven Conception for Planning and
Implementation of Software Configuration

Management
Arturs Bartusevics, Leonids Novickis

N

INTERNATIONAL JOURNAL OF COMPUTERS Volume 9, 2015

ISSN: 1998-4308 62

and assist to design parameterized and reusable solutions to
save up resources. Unlike other approaches, the new solution
is not oriented to particular tool or platform and provides
relations between abstract process and concrete solutions for a
particular project. Other novelty of this research is a set of
models designed using new approach. These models help to
establish dynamic, documented planning of software
configuration management, and allow reusing existing
solutions instead of developing new one.
The current paper, firstly, provides overview of studies related
to software configuration management to identify trends of
improvement and the main problems of existing solutions. As
a result, a new model-driven conception is provided for
software configuration management. The main part of the
article describes implementation of new model-driven
approach for configuration management. Use case for
designed models is given to illustrate practical aspects of them.
Finally, directions of further works are provided.

II. RELATED WORKS
As far back as 1992, there was published an article [16]
introduced to five future challenges in configuration
management area. One of the main ideas is related to
configuration management service model, which could be
implemented with special tools. Many things have changed
since then; more standards have been developed in software
development area and tools for specific configuration
management tasks have been designed. In a recent interview
with a long-term expert in configuration management area [17]
was mentioned the year 1998 when there was an attempt to
create a “super tool” to integrate all solutions of configuration
management in one place. The attempt was failed because
solutions was too complicated in practice. Configuration
managers and programmers were afraid of "majesty and
mysticism" of such a tool. As the future trend, the
configuration management expert [17] emphasizes challenge
to enhance trust between configuration management and
programmers. The main requirement for this is a clear
procedure, which could be trusted. Other configuration
management experts [1, 4] note that it is necessary to plan the
process and only then apply tools for implementation
otherwise solutions will be ineffective and will require
additional resources. Modern solutions require reusable
approaches that allow coming efficiently from the process
general requirements to technical implementation.

During analyzing studies dedicated to approaches of reuse
oriented solutions, more ideas from MDA have been found.
The most important task in configuration management is the
version control and the significant part of model-driven
researches is devoted to solve this task [18, 19, 20]. New
approaches try to improve version control and management of
source code [20]. Abstract models designed to improve
development of version control systems [18, 19]. There are
also solutions offering an abstract model for overall
configuration management process based on software quality
standards and specifics of development methodologies [21, 22,
23]. Usually the proposed approaches are not supported by

tools which could allow doing experiments and evaluating
benefits. But the common thing for all solutions is MDA
(Model-Driven Architecture) idea. According to the main
principles of MDA approach, all models should have sources
and transformation rules should be defined to transform one
model to other. Solutions also should be supported by tools,
otherwise practical implementation is not possible.

The following solutions [12, 7, 8] consider a configuration
management process as a whole, not just a specific task.
Solution in article [12] has been developed configuration
management and model-driven development unification
concept, meta-model, which allows creating an abstract model
of software configuration. The solution is focused on projects
where development is based on a model-driven approach, but
there are no recommendations how this approach can be used
in projects with classical development methodologies.

Configuration management principles for solution [8] were
taken from the ITIL (Information Technology Infrastructure
Library) [17] standards and later abstract models were created.
With this models configuration, the management process could
be created and later the model could be transformed into a
platform specific model. Although that solution also includes
an implementation for model-driven configuration
management, it is focused on a single technology (JAVA).

Study [7] focuses on various configuration management
tools mutual integration. In order to maintain a full
configuration management process, a number of tools are
required: version control systems, bug tracking systems, build
servers, continuous integration servers and other tools. As
practical experience indicates, all tools work separately from
each other. The main scope of solution is to integrate different
tools to solve all tasks for configuration management.
However, in order to integrate various configuration
management tools together, it is necessary to define a general
concept of each integrated tool [7]. The study offers an
ontology for configuration management process. This ontology
is used as a configuration management model that shows how
various configuration management tools should be integrated.
The study does not have any specific instructions how the
ontology can be used for a specific project configuration
management. It is not clear what kind of ontology editors are
advised to use and how to determine the moment when the
changes have to be made.

III. MODEL-DRIVEN APPROACH FOR SOFTWARE
CONFIGURATION MANAGEMENT

The main idea of new approach is based on MDA
principles. To increase reuse of existing solutions in a field of
software configuration management, process should be
represented by models with different level of abstraction.
Using transformation rules and reducing abstraction level in
software configuration management model, it is possible to
select concrete script or tool from general repository. Planning
and implementation of software configuration management
could be decomposed to three levels:

• Creating of computing independent model of

INTERNATIONAL JOURNAL OF COMPUTERS Volume 9, 2015

ISSN: 1998-4308 63

software configuration management process.
• Getting platform independent model using

transformation rules.
• Getting platform specific model and selecting

existing tools and scripts for all particular parts of
modelled process.

New model-driven approach is abstract. It allows defining
different domain specific languages to represent software
configuration management from different sides. The approach
is based on the following components:

• User – works with models, manage transformations
where it is necessary.

• Metamodel – domain specific language for
representing software configuration management
from particular side.

• Model – representation of software configuration
management in particular project. Model could be
created or generated only from particular
Metamodel.

• TransformationAlgorithm – an algorithm that works

with particular kind of models and using
transformation rules or manual interactions from
User, generates a model with different level of
abstraction.

• Element – additional part of model-driven approach
that devoted to help to particular
TransformationAlgorithm. For example,
transformation algorithm could use special
database where different scripts, tools or libraries
are stored. Algorithm could use this database and
could allow User to select some particular
solution for concrete part of process.

A meta-model for model-driven software configuration
management provided in Fig. 1.

Fig. 1 Meta-Model for Model-Driven Software Configuration Management

As represented in Fig. 1., User can generate different

Models using special Metamodels or defined domain specific
languages. Conception also could contains transformation
algorithms to transform one kind of models to other. Depends
on situation and type of model, transformation algorithm could
use Metamodel or some additional Elements, for example,
warehouse of scripts, tools or frameworks.

IV. IMPLEMENTATION OF NEW MODEL-DRIVEN APPROACH
Implementation of models for software configuration

management is based on conception provided in previous

section. New graphical domain-specific language is designed
to represent all new models provided in this study. New
domain-specific language developed using MetaEdit+ tool.
This tool allows developing new graphical modelling
languages and changing own language during modelling
process [22]. During development of new software
configuration models, ideas from [20, 21] paper have been
taken. Mentioned studies underline that in 21-century script for
support of software configuration management could not be
static. Only dynamic and model-driven scripts and tools could
increase its reuse and save up resources during implementation
of software configuration management process in new

INTERNATIONAL JOURNAL OF COMPUTERS Volume 9, 2015

ISSN: 1998-4308 64

projects.
Novelty, presented in current article, is improvement of

researches described in papers [23, 24].
There are three levels of models in provided approach:

• Platform Independent Environment Model (PIEM) –
provides a model of all instances included in a
software development project. A model also
contains all flows of software changes between
different environments. This model provides
overview of general infrastructure of the project in
context of instances. In additional, this model
contains all actions needed to transfer software
changes between different environments. The
actions are abstract and do not contain any specific
details for a particular platform. For example,
action “Compile” should be used to compile
software from source code, but in this model, any
details about software technology, compilation
algorithm, and platform are not known.

• Platform Specific Action Model (PSAM) – provides
an extended variant of Platform Independent
Environment Model because actions are fulfilled
with details about platform, technology, specific
scripts, etc. In this model, action “Compile”
already have information about details of
technology, compilation algorithms, platform, etc.
It means that in this model all details are known,
for example, it could be ANT build script for
JAVA projects.

• Code Model (CM) – provides a set of files and
scripts generated according to PSAM model.
Scripts are executable from continuous integration
server to implement all transfers of software
changes between environments described in PIEM
model.

General picture of a new model-driven framework provided
in Fig.2.

Fig. 2 General Overview of Implemented Model-Driven Approach

Designed model-driven framework starts with creation of

Platform Independent Environment Model by Manager. To
make PIEM model (Fig. 2.) manager works with PIEM meta-
model – special domain-specific language that designed by
MetaEdit+ to describe all environments in project, flows of
software changes between them and actions needed to
implement these transfers.

During the next step, transformation algorithm “PIEM ->
PSAM” works with PIEM model that is created by Manager.
Using meta-model of PSAM model and Solution Management
System, the transformation algorithm generates PSAM model
– platform specific action model. As it could be seen in Fig. 2.,
“PIEM -> PSAM” transformation algorithm asks Manager to
choose platform and tools during generation of PSAM.
Solution Management System is additional element of

INTERNATIONAL JOURNAL OF COMPUTERS Volume 9, 2015

ISSN: 1998-4308 65

designed model-driven framework, which provides graphical
user interface for Manager to choose solutions for particular
tasks from Solution Database. The structure of Solution

Database provided in Fig. 3.

Fig. 3 Structure of Solutions Database

Solutions Database in context of provided solution is a

warehouse of all experience, tools, scripts and solutions in
particular company. Database contains the following tables:

• Platform – contains information about all platforms
where solutions of software configuration
management implemented, for example: Linux,
Windows etc.

• SCMServer – continuous integration server devoted
to manage all actions of software configuration
management. Examples: Hudson, Jenkins,
Bamboo, CruiseControl etc.

• ToolFramework – contains information about all
tools and frameworks needed for implementation
of actions. For example, to merge software changes
from one source code branch to other, at least one
tool of version control is required. This tool could
be, for example Subversion. In this case,
ToolFramework table contains a row “Subversion”.
This row has relations to other database tables:
Action, Variable, and Function. The table Function

contains all functions that could be executed from
particular platform using this tool. In case of
Subversion, functions could be “svn_merge”,
“svn_commit”, “svn_update” etc. ToolFramework
rows also have relations to actions that could be
implemented and variables that should be defined
to execute particular actions.

Transformation algorithm PIEM ->PSAM (Fig. 2.)
prepares structure from two parts:

• Information about project, SCM server jobs,
environments. This part of PSAM should be taken
from PIEM model.

• Information about platform, SCMServer, actions,
tools or frameworks, variables. This part of
PSAM model should be fulfilled by selecting
particular solutions from database, provided in
Fig. 3. PIEM -> PSAM transformation algorithm
allows Manager to choose solutions from database
using Solution Management System.

Meta-model of PSAM provided in Fig. 4.

INTERNATIONAL JOURNAL OF COMPUTERS Volume 9, 2015

ISSN: 1998-4308 66

Fig. 4 PSAM meta-model

Transformation algorithm “PSAM -> Code Model”

provided in Fig. 2. generates a set of source code files. This
source code is executable from SCM Server, for example,
Jenkins.

Implementation of software configuration management
process by new model-driven framework, using PIEM, PSAM
and CM models allows using existing libraries, frameworks,
tools, scripts and functions that are already implemented in
other projects. It could save up resources and reduce risks of
unexpected errors. Additionally, implementation process
contains strongly defined steps and such steps are documented
and supported by graphical modelling tools developed using
MetaEdit+.

V. USE CASE FOR MODELS OF SOFTWARE CONFIGURATION
MANAGEMENT

Current section presents implementation of simplified
configuration management process to illustrate practical
application of designed models: PIEM, PSAM and CM.

There are two environments: DEV and TEST. Current
example introduce a software “X”. This software has
developing by programmers in development environment,
called DEV. To track problems and changes in mentioned
software, programmers use bug-tracking system JIRA. Each
change in software should be related to particular issue in

JIRA. Source code of software “X” controlled by version
control system Subversion. After changes, related to particular
issues, are done, it should be transferred to TEST environment
for testing process. Jenkins server will be used to manage all
task in current process.

In current test case, only two steps of process will be
implemented:

• Extract from JIRA all issues ready for testing,
• Find particular changes in Subversion system for all

issues detected during previous step.
PIEM model provided in Fig. 5. defines the following

components:
• Two environments: DEV and TEST.
• View for continuous integration server

“test_delivery” which will contains all jobs related
to transfer of software changes between
mentioned environments.

• Particular job name “DEV_TO_TEST”.
• Set of actions. Action ‘getIssues’ should extract

issues from JIRA, but action ‘getRevisions’
should find particular revisions in Subversion
repository.

• Script ‘dev_to_test.sh’ contains a source code for
implementation of actions mentioned before.
Code of this script will be available only in Code
Model.

INTERNATIONAL JOURNAL OF COMPUTERS Volume 9, 2015

ISSN: 1998-4308 67

Fig. 5 Platform Independent Environment Model

Ready PIEM model provided in Fig. 5. has been

transformed to PSAM model by transformation algorithm
“PIEM->PSAM”. Transformation process has the following
steps:

• Using MetaEdit+ standart functionality, ready PIEM
model exported to XML format.

• PIEM model in XML format has been parsed by
“PIEM->PSAM” algorithm. During this step,
initial structure of PSAM has been prepared:
information about project, environments and jobs
of continuous integration server.

• User selects platform, kind of SCM Server, tools for
implementation of each action in PIEM.

• According to items selected at previous step,
algorithm asks user to define nodes and instances
introduced by PSAM. To execute particular
actions by tool or framework, depends on action,
node or instance should be created. The first
action ‘getIssues’ should extract issues from
JIRA. However, process could have many JIRA
projects. So, algorithm asks to specify all

instances of JIRA. Action ‘getRevisions’ should
get revisions from Subversion repository.
However, software could contains more than one
component and locations of components should
be different. So, each subversion repository
should be specified as part of independent node.

• Finally, ready PSAM model has been stored in
XML format and it is ready to be transformed to
Code Model.

In context of this study Code Model for Linux platform and
transformation algorithm “PSAM -> Code Model” have been
designed. Transformation algorithm works with PSAM model
in XML format and prepare structure of Linux Shell scripts
ready to be executed from Jenkins continuous integration
server. The structure of Jenkins jobs generated according to
PIEM model. Fig. 6. represents structure of Jenkins server for
experiment. Name of view “test_delivery” and name of job
“DEV_TO_TEST” have been taken from PIEM model.

INTERNATIONAL JOURNAL OF COMPUTERS Volume 9, 2015

ISSN: 1998-4308 68

Fig. 6 Jenkins Server

Code Model for current experiment provided in Fig. 7.

Fig. 7 Code Model

Scripts located in directory “NODES/TEST” represents

variables of different parts of software “X” mentioned before.
These scripts are generated automatically using values entered
by user during creation of PSAM model. Three shell scripts
nitis.sh, pais.sh and varis.sh means that software “X” contains
three components and each component stored in different
Subversion repository.

All shell scripts in directory “FrameworksVariables”
represents all necessary actions with special tools, in our case:
JIRA and Subversion. Scripts located in folder
“FrameworksVariables/JIRA/jira_instances” represents two

instances or two different JIRA projects from what issues
should be extracted.

Scripts jira_common_variables.sh and
subversion_common_variables.sh contains common variables
needed to call particular functions of SUBVERSION and
JIRA frameworks. Values of variables defined during creation
of PSAM model, but in Code Model, variables are only
represented in Linux Shell format.

Finally, script BuildServerJobs/dev_to_test.sh is a main
script of current experiment. This script will be called from
Jenkins job “DEV_TO_TEST” provided in Fig. 6. Script
contains the following parts:

INTERNATIONAL JOURNAL OF COMPUTERS Volume 9, 2015

ISSN: 1998-4308 69

• Script name – value is taken from PSAM model.
• Reference to functions of each tool or framework.

Any framework contains a set of functions. Each
function devoted to execute single action. For
example: commit, update, getIssues, merge etc.

• Reference to common variables of each tool or
framework. In our case, there are script
jira_common_variables.sh and
subversion_common_variables.sh.

• References to home directories of all available
instances and nodes. In our case, there are scripts
in folders “NODES/TEST” and
“FrameworksVariables/JIRA/jira_instances”.

• Algorithms for each action from PSAM and PIEM
models. Algorithm in cycle goes through each
node and instance depend on action type and
execute necessary actions for all nodes or

instances. It is important that algorithms are only
recommended but not necessary for real-live
solution. After Code Model is ready,
configuration manager could modify default
algorithm generated by framework. However,
functions of frameworks or tools should not be
modified in normal case. All changes in functions
of frameworks should be tracked and should be
under classic procedure of software configuration
management.

Fragment of shell scrip “dev_to_test.sh” provided at Fig. 8.
This fragment contains an algorithm for action “getRevisions”
and references to variables mentioned before.

Fig. 8 Fragment of script for Jenkins job

VI. DIFFERENCES OF MODEL-DRIVEN APPROACH FROM
OTHER RELATED WORKS

This section devoted to underline differences of provided
approach from other solutions for software configuration
management. Authors introduce the following differences:

• Model-Driven approach for implementation of
software configuration management represented as
a meta-model with abstract components. This fact
allows designing new domain specific language to
represent software configuration management by
different sides. Conception also allows using
different transformation algorithm with special
transformation rules and together with some

external elements. In this study, external elements
are Solution Management System and Solution
Database.

• Approach provides strongly defined, documented
and supported by tools steps for implementation of
software configuration management. Initially,
approach shows only steps and meaning of
different models and do not impose to use concrete
tool that “will solve any problems”.

• Approach provides a way to organize existing
solutions to increase its reuse. After solutions are
stored in Solution Database, each new project will
use existing functions, scripts or frameworks, as it
is possible. As experiment from previous section
shows, using provided approach, code-writing
actions are minimal, because significant part of all

INTERNATIONAL JOURNAL OF COMPUTERS Volume 9, 2015

ISSN: 1998-4308 70

code generated automatically and represented in
Code Model.

• Provided approach uses nodes and instances. It
allows supporting dynamic scripts because adding
or removing instances/nodes do not requires
modifications in main scripts.

VII. LESSONS LEARNED USING PLATFORM INDEPENDENT
ENVIRONMENT MODEL

Platform Independent Environment Model has been used in
different software development projects and the following
lessons are learned:

• Only tested configuration could be trusted and
successfully moving from one environment to
other. For example, if in TEST environment five
changes are tested, all of them should be moved to
the next environment (QA – quality accepting).
However, technically, it is possible to move only
particular changes from one environment to other,
and such release could be unstable because of
functional dependencies between different items.
It is very important to explain all risks during
moving changes between environments partially,
so customers should see it on PIEM.

• PIEM could be perfected by new elements to
improve simulation of single environment. For
example, in customer’s opinion, it could be better
if element “Environment” will contain
supplements to describe infrastructure better. It
could be achieved by entering such elements as
servers, connections between them, firewalls, size
of storages, etc.

VIII. CONCLUSIONS AND FURTHER WORKS
The study provides new model-driven approach for

implementation of software configuration management. The
main scope is to increase reuse of existing solutions and
reduce efforts to implement the process in other projects.
Meta-models for Platform Independent Environment Model,
Platform Specific Action Model and for Code Model designed
as implementation example of the provided approach. In
addition, use case for designed models is given. Finally,
differences from other approach are underlined.

In order to continue research, it is necessary to carry out the
following activities:

• With the help of experiment, develop criteria that
evaluate models benefits in software development
projects,

• Based on developed criteria, evaluate benefits of
designed models,

• Develop criteria to assess whether the developed
model-driven approach for configuration
management implementation corresponds to
guidelines of ISO/IEC 15504, ITIL, CMMI
standards.

• Design Code Models and transformation algorithms
for other platforms.

• Add and improve tools and frameworks in existing
platforms.

The approach provided in this article is abstract and only
general stages, kinds of models and basic elements are defined.
The authors hope that the new approach will generate new
ideas because many useful lessons could be learned from
different implementations of this model-driven approach.

ACKNOWLEDGMENT
The research has been partly supported by the project

eINTERASIA “ICT Transfer Concept for Adaptation,
Dissemination and Local Exploitation of European Research
Results in Central Asia's Countries”, grant agreement No.
600680 of Seventh Framework Program Theme ICT-9.10.3:
International Partnership Building and Support to Dialogues
for Specific International Cooperation Actions – CP-SICA-
INFSO.

REFERENCES
[1] Aiello, R., Configuration Management Best Practices: Practical

Methods that Work in the Real World (1st ed.). Addison-Wesley, 2010.
[2] Berczuk, A., Software Configuration Management Patterns: Effective

TeamWork, Practical Integration (1st ed.). Addison-Wesley, 2003.
[3] Calhau R., Falbo R., A Configuration Management Task Ontology for

Semantic Integration. Proceedings of the 27th Annual ACM Symposium
on Applied Computing Pages 348-353 ACM New York, NY, USA,
2012.

[4] Giese H., Seibel A., Vogel T., A Model-Driven Configuration
Management System for Advanced IT Service Management. Available
at: http://www.hpi.unipotsdam.de/giese/gforge/publications/pdf/GSV-
MRT09_paper_7.pdf, 2009.

[5] Nikiforova O., Pavlova N., Gusarovs K., Gorbiks O., Vorotilovs J.,
Zaharovs A., Umanovskis D., Sejans J. Development of the Tool for
Transformation of The Two-Hemisphere Model to The UML Class
Diagram: Tehnical Solutions and Lessons Learned. Proceedings of the
5-th International Scientific Conference „Applied Information and
Communication Tehnologies”, 2012, Jelgava, Latvia, pp. 11-19.

[6] Osis J., Asnina E., Model-Driven Domain Analysis and Software
Development: Architectures and Functions. IGI Global, Hershey -
New York, 2011, 514 p.

[7] Pindhofer W., Model Driven Configuration Management. Master work
of Wien University, Wien, 2009.

[8] Удовиченко, Ю. Управление изменениями и кессонная болезнь
проектов. Available at: http://experience.openquality.ru/software-
configuration-management/, 2011.

[9] Dart, S., The Past, Present, and Future of Configuration Management.
CMU/SEI-92-TR-8, 1, 25., 1992.

[10] CMCrossroads. 2014. How Configuration Management Is Changing:
An Interview with Joe Townsend. [ONLINE] Available at:
http://www.cmcrossroads.com/interview/how-configuration-
management-changing-interview-joe-townsend?page=0%2C0.
[Accessed 02 September 2014].

[11] Yongchang, R., Fuzzy Decision Analysis of the Software Configuration
Management Tools Selection. In ISCA 2010. France, 19-23 June, 2010.
Information Science and Engineering (ISISE): ACM. 295 - 297., 2010.

[12] de Almeida Monte-Mor, J., GALO: A Semantic Method for Software
Configuration Management. In Information Technology: New
Generations (ITNG), 2014. USA, 7-9 April, 2014. ITNG: IOT360. 33 -
39., 2014.

[13] Toth, Z., Using Version Control History to Follow the Changes of
Source Code Elements. In Software Maintenance and Reengineering
(CSMR), 2013. Italy, March 5–8, 2013. IEEE Digital Library. 319 -
322., 2013.

INTERNATIONAL JOURNAL OF COMPUTERS Volume 9, 2015

ISSN: 1998-4308 71

[14] Estublier, J., Software configuration management: a roadmap. In ICSE
'00 Conference on The Future of Software Engineering. USA, June 4-
11, 2000. IEEE Digital Library: ACM. 279 - 289., 2000.

[15] Ruan, Li., A new configuration management model for software based
on distributed components and layered architecture. In Parallel and
Distributed Computing, Applications and Technologies, 2003. China,
August 27-29, 2003. IEEE Digital Library: IEEE. 665 - 669., 2003.

[16] Mingzhi, M., A New Component-Based Configuration Management 3C
Model and its Realization. In Information Science and Engineering,
2008. China, December 20-22. 2008. IEEE Digital Library: IEEE. 258 -
262., 2008.

[17] Galup, S. D., Dattero, R., Quan, J.J., Conger, S., An Overview of IT
Service Management. Commun. ACM, 2009, vol. 52, no. 5, pp. 124-
127.

[18] Szenssi, S., Vamossy, Z., Kozlovszky, M., Evaluation and comparison
of cell nuclei detection algorithms. 16th International Conference on
Intelligent Engineering Systems (INES 2012), Lisbon, 2012, pp. 469-
475.

[19] Kerekes, Z., Toth, Z., Szenasi S., Vamossy, Z., Sergyan, Sz., Colon
Cancer Diagnosis on Digital Tissue Images. Proceedings of IEEE 9th
International Conference on Computational Cybernetics. Tihany, 2013,
pp. 159-163.

[20] Ragan, T., 21st-Century DevOps--an End to the 20th-Century Practice
of Writing Static Build and Deploy Scripts, Linux Journal, 230, pp.
116-120, Computers & Applied Sciences Complete, EBSCOhost,
viewed 22 October 2014.

[21] Azoff, R., DevOps: Advances in Release Management and Automation.
[ONLINE] Available at: http://electric-cloud.com/wp-
content/uploads/2014/06/EC-IAR_Ovum-DevOps.pdf, 2014.

[22] Vasiljevics, I., Milosavljevics, G., Dejanovics, I., Filipovics, M.,
COMPARISON OF GRAFICAL DSL EDITORS. The 6th PSU-UNS
International Conference on Engineering and Technology (ICET-2013),
Novi Sad, Serbia, May 15-17, 2013.

[23] Novickis, L., Bartusevics, A. Model-Driven Software Configuration
Management and Environment Model. In: Recent Advances in
Electrical and Electronic Engineering: Proceedings of the 3rd
International Conference on Systems, Communications, Computers and
Applications (CSCCA"14), Italy, Florence, 22-24 November, 2014.
Florence: WSEAS Press, 2014, pp.132-140. ISBN 978-960-474-399-5.
ISSN 1790-5117.

[24] Novickis, L., Bartusevičs, A., Lesovskis, A. Model-Driven Software
Configuration Management and Semantic Web in Applied Software
Development. Proceedings of the 13th International Conference on
Telecommunications and Informatics (TELE-INFO '14), IIstanbul,
Turkey December 15-17, 2014.

Arturs Bartusevics currently is a Doctoral Student at Riga Technical
University, the Faculty of Computer Science and Information Technology, the
Institute of Applied Computer Systems. He obtained BSc (2008) and MSc
(2011) degrees in Computer Science and Information Technology,
respectively, from Riga Technical University. His research areas are software
configuration management, release building and management process and its
optimization. He works at Ltd. Tieto Latvia as a Software Configuration
Manager.
E-mail: arturik16@inbox.lv

Leonids Novickis is a Head of the Division of Software Engineering at Riga
Technical University. He obtained Dr.sc.ing. degree in 1980 and
Dr.habil.sc.ing. degree in 1990 from the Latvian Academy of Sciences. He is
the author of 180 publications. Since 1994, he is regularly involved in
different EU-funded projects: AMCAI (INCO COPERNICUS, 1995-1997) –
WP leader; DAMAC-HP (INCO2, 1998-2000), BALTPORTS-IT (FP5, 2001-
2003), eLOGMAR-M (FP6, 2004-2006) – scientific coordinator; IST4Balt
(FP6, 2004-2007), UNITE (FP6, 2006-2008) and BONITA (INTERREG,
2008-2012) – RTU coordinator; LOGIS, LOGIS-Mobile and SocSimNet
(Leonardo da Vinci) – partner, eINTERASIA (FP7, 2013-2015)- project
coordinator. He was an independent expert of IST and Research for SMEs in
FP6 and FP7. He is a corresponding member of the Latvian Academy of
Sciences and an elected expert of the Latvian Council of Science. His

research fields include Web-based applied software system development,
business process modeling, e-learning and e-logistics.
E-mail: lnovickis@gmail.com

INTERNATIONAL JOURNAL OF COMPUTERS Volume 9, 2015

ISSN: 1998-4308 72

