

Abstract— It is important to have quality software requirements as
they set a foundation to the software project resource estimation,
provide a baseline for architecture and design and eventually mould
the shape of the software products. Besides, history proves that good
quality software requirements are crucial and the cost of fixing
defects increased exponentially the later the defects were detected in
the software development life cycle. Through a survey technique, this
paper presents a study to position the significance of software
requirements defects in the software development life cycle. It was
conducted among practitioners in Malaysia which includes various
industry background and level of experiences. Based on the survey
analysis, the IT practitioners agreed on the existence of software
requirements defects in the current practice and the types of defects
were identified. Referring to the early stage of requirements
elicitation, the types of defects identified were incomplete, incorrect,
inconsistent, unclear, infeasible, irrelevant and incomprehensible.
This paper is expected to provide an insight into the relevance of
conducting research to deal with software requirements defects.

Keywords— correlation, quality requirement, requirements
engineering, software requirements defects, survey

I. INTRODUCTION
n the process of developing software products, defects are
inevitable. This is especially so when the development

involves various stages, processes and stakeholders. Literature
shows that much effort has been put to further improve the
prediction, the discovery, the management and the elimination
of software defects. However, the attempt to handle defects in
software requirements is inadequate. It is believed that the
requirements defects are barely exist and will eventually
resolve as the development progress throughout the system
development life cycle. On the other hand, literatures and a
survey conducted demonstrated otherwise. This paper will
present the literatures and the findings on the existence of
defects in software requirements in the industry in Malaysia.

This work is funded by Fundamental Research Grant Scheme numbered

FRGS/2/2013/ICT01/FTMK/02/1/F00184 by the Ministry of Education
Malaysia.

Sabrina Ahmad is with the Faculty of Information and Communication
Technology, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, Durian
Tunggal 76100 Melaka, Malaysia (e-mail: sabrinaahmad@utem.edu.my).

Siti Azirah Asmai is with the Faculty of Information and Communication
Technology, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, Durian
Tunggal 76100 Melaka, Malaysia (e-mail: azirah@utem.edu.my).

Why is it important to position the relevance of software
requirements defects existence? It is important to instill
awareness to both practitioners and researchers to keep
working on improving the quality of software requirements. In
fact, history proves that good quality requirements are crucial
for the success of system development. Getting requirements
right might be the single most important and difficult part of a
software project. Considering the importance of software
requirements, this paper presents an investigation through
literatures and a survey among practitioners in Malaysia to
determine the significant existence of software requirements
defects. It also presents the attributes of requirements defects
which differ from software defects. In relation to that, when the
defects occurred and how the practitioners currently handling
them are presented too.

Following Introduction, Section 2 presents the current effort
by researchers in literatures. It is then followed by the
explanation of the economic impact of software requirements
defects in Section 3. Next, Section 4 explains the survey
methodology. Section 5 presents the results and discussion.
Finally, Section 6 concludes the paper.

II. LITERATURE REVIEW
A literature review has been done to discover current efforts

on software requirements defects. The focus of the exploration
is to position the existence of the defects and if it is worth
conducting research to remove or at least to minimize the
impact of the defects. The literature is developed based on a
research question. The question is focus on to find the evidence
on the relevance of software requirements defects to the
practitioners and researchers and their limitations. The research
question is:

“What is software requirements defect and does it exist?”

The motivation of the research question stated above is as

below:

“Discovering the definition and types of software

requirements defects, if exist.”

A Survey to Determine the Significance of
Software Requirements Defects from

Practitioners’ Perspectives in Malaysia
Sabrina Ahmad and Siti Azirah Asmai

I

INTERNATIONAL JOURNAL OF COMPUTERS Volume 10, 2016

ISSN: 1998-4308 18

A. Search Strategies and Search Selection
The search was done through digital libraries and databases;

found through search string, and refining search string. Below
is the list of the digital databases that being used to search
papers in our study:

1) ACM Digital Library (dl.acm.org)
2) Cornell University Library (arXiv.org)
3) Elsevier (Elsevier.com)
4) Google Scholar (scholar.google.com)
5) IEEE Xplore (ieeexplore.iee.org)
6) ScienceDirect (sciencedirect.com)
7) Scopus (scopus.com)
8) Springer (Springerlink.com)
The search strings were based on the research questions and

the keywords of the research field. It was limited by the year of
1996-2015 including journal papers and conference
proceedings. Language for the search was limited to English
only. The general keyword that we used in searching the
related articles for the literature review were “systematic
literature review”, “software requirement engineering”,
“requirement engineering” and “requirements defects”. Other
than that we specified the search to “defect”, “error”, “fault”,
“software problem”, “requirement elicitation phase”,
“requirement elicitation” and “defect classifications”. The
searched was resulting in the various reliable journals and
conference proceedings covering issues in the software
requirement defects.

Upon the completion of the searching process, we filtered
the findings and narrow them to related works only. The next
phase of review was based on the references of relevant papers
to the research questions and the filtered papers were added to
the final list for further analysis.

B. The Review
In a software development, defects usually referred to

software defects which appear in the code of a software
system. A software defect is an error, failure or fault in
software [1] that produces an incorrect or unexpected result, or
causes it to behave in unintended ways. It is a deficiency in a
software product that causes it to perform unexpectedly [2].
Software defects are expensive in quality and cost. Moreover,
the cost of capturing and correcting defects is one of the most
expensive software development activities [3]. It is even worst
when the defects are originated from requirements. Software
requirements are critically important because defects originated
in requirements engineering stage will propagate to the
subsequent stages and therefore affect the entire software
development process. Defects in requirements exist in the
requirements statements usually presented in a requirements
document.

A software requirements document is a formal
documentation to record the requirements following the
completion of requirements engineering process[4]. It also
includes the identification of requirements and software and
system requirements specifications. Eliciting requirements is
crucial to determine the functionality and constrains of the

system to be developed. Dealing with multiple stakeholders
and sources, the interpretation of the requirements into a
document has high potential to contain defects. It is especially
so when the process involve human factors which is reported to
contribute thirty-four of the risks in the research of Global
Software Development [5]. IEEE defined defect as fault or an
incorrect step, process or data definition in a computer
program (IEEE, 1994). A defect is a problem that occurs in an
artefact and may lead to a failure [6]. Any blemish,
imperfection, or undesired statements in the product is defined
as defect [7].

Definition of defects and its acronyms are stated below [8]
and it is consistent with software engineering textbooks [9] and
an IEEE standard [10]:

1) Error – defect in the human thought process made
while trying to understand given information, solve
problems, or to use methods and tools. In the context
of software requirements specifications, an error is a
basic misconception of the actual needs of a user or
customer.

2) Fault – concrete manifestation of an error within the
software. One error may cause several faults, and
various errors may cause identical faults.

3) Failure – departure of the operational software system
behaviour from user expected requirements. A
particular failure may be caused by several faults and
some faults may never cause a failure.

Defects are always being mentioned to be appearing in the
line of codes. However, a study had discovered that defects
found in software requirements are in higher percentage
compared to the defects in the line of codes [11]. Besides, the
effect of software requirements defects are more severe as the
defects will propagate and affect the sequential stages of
software development lifecycle. Therefore, the artefacts
developed since then such as architecture, design and test cases
were based on the wrong foundation.

Table I. List of requirements defects types.

Defect types Quality attributes
Infeasibility Feasibility
Imprecise Precise
Incomplete Complete
Winding Concise
Incorrect Correct
Misinterpret Interpretable
Externally inconsistent Externally consistent
Internally inconsistent Internally consistent
Unmodifiable Modifiable
Redundant Not redundant
Unorganized Organized
Unusable Reusable
Ambiguous Unambiguous
Incomprehensible Understandable
Unnecessary Necessary

INTERNATIONAL JOURNAL OF COMPUTERS Volume 10, 2016

ISSN: 1998-4308 19

Usually, requirements defects appear in requirements
statements while transforming the various stakeholders’ wish
list gathered into requirements specification. There were two
research works identified to work on software requirements
quality attributes [12, 13]. The quality attributes if read in
reverse will give a list of software requirements defects types
as presented in Table I.

The list gives us an indication of qualities to achieve and at
the same time the defects types that might exist in the
requirements documents. This could be a fundamental
guideline to express the difference between defects in
requirements and software. However, the types of software
defects are not included in this paper. Software defects are
basically active in nature in which they can be detected and
removed during software run time. Unlike requirements
defects, the defects types are passive and need to be identified
from the requirements documents.

Table II. Types of defects

Defects Explanation
Missing or incomplete The requirement is absent in

document
Incorrect information The information contained the false

requirement
Inconsistent The requirement is inconsistent with

the overall document and in conflict
with another requirement that is
correctly specified

Ambiguous or unclear Information or vocabulary have more
than one interpretation

Misplaced The requirement information is
misplaced either in the section of the
requirement specification document
or in the functionalities, packages or
system.

Infeasible The requirement is not implementable
Redundant or duplicate Requirement duplicate of another

requirement or part of it already
present in the document

Typo or formatting Orthographic, semantic, grammatical
error or missing word

Not relevant Unnecessary information or out of
project scope

A research has been done to classify software requirements

defects [6] as stated in Table II. Based on the definition given
in the literatures, the name and the explanation of the defects
are sound for the requirements. However, the defects listed in
Table II are only possible to be detected and removed from an
appropriate document like Software Requirements
Specification (SRS). Therefore, in order to handle all defects
listed in the table, a complete document must be presented.

Yet, in the process of requirements elicitation in which the
requirements are still in high level requirement statements,
proper requirement specification document is not there yet.
Therefore, this research has scope the list of defects to the
followings which is already identified [14] to be feasibility
exists in the high level requirements statement during

elicitation process. List of the defects are incomprehensible,
inconsistent, incomplete, infeasible and incorrect.

III. THE ECONOMIC IMPACT OF SOFTWARE REQUIREMENTS
DEFECTS.

Project Managers aim to deliver a product of sufficient
quality on time and within budget. In line with that, research
has been done to reduce the software requirements defects by
detecting and fixing the defects early [15, 16] to better
improve overall quality; both in the software development
process and the end product. However, Boehm claimed that
[17] current software projects spend about 40 to 50 percent of
their effort on avoidable rework. Such rework consists of
effort spent fixing software difficulties that could have been
discovered earlier and fixed less expensively or avoided
altogether.

Eliciting and analysing software requirements is a critical
stage because defects originated in this stage will propagate to
the subsequent stages and therefore effect the entire software
development process.

Fig. 1 Cost of fixing Defects [18]

According to Boehm [18] the cost of fixing errors

increased exponentially the later the errors were detected in
the development lifecycle because the artefacts within a serial
process were built on each other. Also, the average cost arose
exponentially after the defects were detected because the
development continues upon an unstable foundation. This
meant that there is a possibility that the software being
developed had been based on unwanted or wrong
requirements. Fig. 1 shows an exponential effect to the
development cost the later the defects were detected and fixed
or removed. Recognizing and fixing defects early leads to an
economic benefit [16]. It is based on the reduction in future
effort of development and to the higher quality inputs on
which development and project planning are based. Benefits
come in savings of rework when a defect has to be detected
and removed at a later stage of development or operation. The
benefit from savings depends on the severity of the defect and

INTERNATIONAL JOURNAL OF COMPUTERS Volume 10, 2016

ISSN: 1998-4308 20

the impact it would have had on the development project; this
may vary with the development phase in which it would have
surfaced [19]. Therefore, it is beneficial for the software
development team to being able to recognize defects early.

IV. THE SURVEY METHODOLOGY
On top of literature review, a survey has been done to

investigate the existence and significance of requirements
defects in the industry in Malaysia.

A. Sampling
The sampling frame of this study comprised of various

organizations including public sector, private sector and
software houses in Malaysia. The targeted population
comprised IT practitioners with various experience level which
were categorize as fresh graduates (less than a year), junior (1-
3 years), senior (3-5 years) and expert (5 years and above).
Besides, the IT practitioners have various roles in the software
development process which includes business analyst, system
analyst, software engineer, tester, programmer and project
manager.

The IT practitioners were selected in this study because
they are known to undergo the actual activities in software
development life cycle. The reason why various roles were
involved was due to the diverse practice implemented by
different organization and no standard job title or role is
pertinent to handle software requirements. For example, in an
extreme case, a software engineer could be responsible to elicit
the requirements, establish the architecture, design the
software, write the code and run the testing himself. Among
the 51 respondents, 30 of them claim to be familiar and
involved in producing software requirements for the
development.

B. The Instrument
The questions were divided into two sections. The first

section captured the information of the respondent and the
second section captured the defects information.

1) Respondent Information

The respondent information focused on determining
the range of respondents by several factors. The first
factor is based on different organization types they
are working in to represent different practices. The
second factor is their years of experience in the
industry. The third factor is their role in the software
development life cycle and if they are familiar with
software requirements.

2) Defects Information

The defects information section focused on
determining if the defects really exist from the
perspective of the practitioners. If they exist, the
types of defects were captured and when the defects
usually occurred was identified. Besides, how
practitioners handle or manage the defects were
recorded too. All items in Defects Information
Section, consist of questions 7-10, were measured
using four points likert scale from 1=Never to
4=Always.

3) Validity and reliability

In determining the reliability of the instrument, a
general rule is that the indicators should have a
Cronbach’s α of 0.6 or more (Nunnally et al.,
1967).With the range of α scores between 0.87 and
0.94 obtained in this study (shown in Table 4), we
can conclude that the questionnaire is reliable and the
data can be applied for further analysis.

V. THE RESULTS AND DISCUSSION
This section presents the survey results and discussion.

A. Demographic
Table III shows the demographic profiles of the

respondent surveyed. Most of them are from private sector
with 41.2% followed by software house (29.4%) and public
sector (25.5%). Only 2% are from education organization. The
majority of them are junior practitioner with 1 to 3 years of
experience (71.8%). Overall, most of the respondents claimed
to be familiar with software requirements defects (54.9%) and
are involved in producing software requirements documents
(58%).

Table III. Demographic profiles of the respondent

 Percentage

Sector

Education 2.0

Others 2.0

Private 41.2

Public 25.5

Software House 29.4

Involvement in producing Software Requirement

No (Proceed to Question 4) 42.0

Yes (Proceed to Question 5) 58.0

Level Experience

Expert (5 years and above) 10.3

Junior (1-3 years) 71.8

Senior (3-5 years) 17.9

Familiar Defect

No 13.7

No, Not Sure 2.0

Not Sure 29.4

Yes 54.9

INTERNATIONAL JOURNAL OF COMPUTERS Volume 10, 2016

ISSN: 1998-4308 21

B. Cronbach’s α and Statistic
Table IV presents mean and standard deviation scores of

the variables.

Table IV. The results

 Mean Std. Deviation N of Items Cronbach’s Alpha

Types of Defects 8 0.871

Missing 2.65 .753

Incorrect 2.35 .789

Inconsistent 2.51 .692

Ambiguous 2.54 .836

Infeasible 2.19 .877

Not Relevan 2.16 .688

Incomprehensible 2.03 .833

Others 1.92 .829

Sources of Defects 14 0.938

OperationalDoc 2.97 .164

SoftwareDoc 2.43 .801

ReqChangeForm 2.62 .794

EndUser 2.68 .884

ManagerialStaff 2.54 .989

Sponsor 2.03 .866

CEO/CIO 2.11 .936

BussinessAnalyst 2.14 .887

SystemAnalyst 2.32 .784

EnterpriseArchitect 2.14 .887

SoftwareDesigner 2.30 .812

Programmer 2.57 .929

Tester 2.51 .961

Others 2.05 1.026

When the Defects Detected 9 0.883

RequirementPhase 2.45 .961

ReqElicitation 2.35 .985

ReqAnalysis 2.48 .851

ReqSpec 2.58 .923

ReqValidation 2.71 .824

DesignPhase 2.77 .762

ImplementPhase 2.74 .855

TestingPhase 2.74 .930

Others 2.16 1.036

With the range of standard deviation of 0.87 to 0.68, the

results show that the respondents agreed on the existence of
software requirements defects in the current practice. The
types of defects were also agreed to be missing, incorrect,
inconsistent, ambiguous, infeasible, not relevant and
incomprehensible. Even though there were several feedbacks
chose ‘others’, the defects stated by the respondents were
synonyms to the defects listed earlier. Therefore, we can
conclude that the types of defects detected by practitioners in
the industry are aligned with the justification in the literatures.

Furthermore, the most popular sources of defects were
identified as operational documents and requirements change
form with mean 2.97 and 2.62 respectively. Other popular
sources were identified as stakeholders; end user, managerial
staff, programmer and tester with mean more than 2.50.

The results in Table 4 also indicate when the defects are
usually detected during the system development lifecycle. In

good practice, it is ideal to detect defects as early as possible.
However, the results showed that the defects are usually
detected later; in design phase, implementation phase and
testing phase with mean more than 2.7. Therefore, it is
important to instill awareness to encourage defects detection
early to avoid unnecessary cost to fix defects later in the
system development lifecycle.

C. Correlation

Table V shows the correlation between types of
defects(ToD), sources of defects (SoD) and when the defects
are detected (WDD). Pearson’s correlation coefficient r is
used as a descriptive measurement to test an association
between two variables [20]. Despite of correlation coefficients
r is more than 0.5 with both variables, the sources of defects
and when the defects detected has statistically high correlation
(r=0.843). Thus, it shows that WDD has a significant
association with the SoD. The significant association may
suggest that the phase at which the defects were detected is
traceable to the sources that cause the defects. All the
correlation are significant at P<0.01.

Table V. Correlations

 ToD SoD WDD

 Types of Defects (ToD) .514** .511**

 Sources of Defects (SoD) .514** .843**

When Defects Detected (WDD) .511** .843**

**. Correlation is significant at the 0.01 level (2-tailed).

In addition, Figure 2 shows scatter plot diagrams of
relationship between the three variables based on types of
defects (ToD), sources of defects (SoD) and when the defects
detected (WDD) respectively. More specifically, these
diagrams can visualize potential relationship between two
variables individually and show how each point of a variable
can respond to another point in another variable. Moreover,
the trends of the data scattering also can be identified [21].

Scatter plots for these variables can be done by arranging
the variables in pair such as Xi and Yi. Each pair of Xi and Yi is
plotted in diagram and a regression line can be used for further
estimation [22]. Since WDD and SoD has high correlation
coefficient as shown in Table 5, the relationship can be
observed in Fig.2(b) that most of the data points WDD and
SoD are closer to the regression line. Therefore, it would show
that the points of when the defects are detected and the sources
of defects are closely correlated. Furthermore, distribution of
data points between ToD and SoD, and WDD and SOD are
likely more scattered about the regression lines as shown in
Fig.2(a) and (c). Hence, the relationships both ToD and WDD
against SoD are less correlated.

INTERNATIONAL JOURNAL OF COMPUTERS Volume 10, 2016

ISSN: 1998-4308 22

(a)

(b)

(c)

Fig. 2. Scatter plots of three variables (a) type of defect(ToD)
against when defects detected(WDD) (b) Sources of Defects
(SoD) against when defects detected(WDD) (c) Sources of
Defects(SoD) against type of defect(ToD)

Referring to the awareness of IT practitioners to realize the
existence of software requirements defects, Fig. 3 shows that
there is relatively no difference if they are experienced
practitioners or not based on the mean presented. Therefore,
even though the majority of the respondents are junior, the
data obtain in the survey conducted is reliable.

Fig. 3 Mean of respondents detecting defects

VI. CONCLUSION
Based on the literatures and the survey findings, it is hoped

that the knowledge presented in this paper shed some lights to
the researchers and academics to realize the significant
existence of software requirements defects and the urgency to
keep improving the current practice in order to avoid
unnecessary cost to fix the defects later. It is also important to
realize the significant association between the types of defects
and the sources of the defects to serve as a guide for the
industry to better handle the defects in the future.

Given the limited sample size and scope within Malaysia, it
is reasonable for future study to include a bigger sample size
and to open the scope to other countries.

ACKNOWLEDGMENT
The authors would like to acknowledge Faculty of

Information and Communication Technology, Universiti
Teknikal Malaysia Melaka for contribution to this study.

REFERENCES

[1] K. Naik, and P. Tripathy, Software testing and quality assurance:
theory and practice: John Wiley & Sons, 2011.

[2] S. Adikari, C. McDonald, and N. Lynch, "Design science-oriented
usability modelling for software requirements," Human-Computer
Interaction. Interaction Design and Usability, pp. 373-382: Springer
Berlin Heidelberg, 2007.

[3] M. V. Mäntylä, and J. Itkonen, “How are software defects found? The
role of implicit defect detection, individual responsibility, documents,
and knowledge,” Information and Software Technology, vol. 56, no.
12, pp. 1597-1612, 2014.

[4] D. Pandey, U. Suman, and A. Ramani, "An effective requirement
engineering process model for software development and requirements
management." pp. 287-291.

[5] J. M. Verner, O. P. Brereton, B. A. Kitchenham et al., “Risks and risk
mitigation in global software development: A tertiary study,”
Information and Software Technology, vol. 56, no. 1, pp. 54-78, 2014.

[6] I. L. Margarido, J. P. Faria, R. M. Vidal et al., "Classification of defect
types in requirements specifications: Literature review, proposal and
assessment." pp. 1-6.

[7] V. Suma, and T. Nair, “Defect Management Strategies in Software
Development,” Intec Web Publishers, 2012.

INTERNATIONAL JOURNAL OF COMPUTERS Volume 10, 2016

ISSN: 1998-4308 23

[8] F. Lanubile, A. Lonigro, and G. Vissagio, "Comparing models for
identifying fault-prone software components." pp. 312-319.

[9] G. Walia, and J. Carver, "Development of a Requirement Error
Taxonomy as a Quality Improvement Approach: A Systematic
Literature Review MSU-070404, Department of Computer Science and
Engineering, Mississippi State University," 2007.

[10] IEEE, "Standard Classification for Software Anomalies," 1994, pp.
1044-2009.

[11] S. Kumaresh, and R. Baskaran, “Defect analysis and prevention for
software process quality improvement,” International Journal of
Computer Applications, vol. 8, no. 7, 2010.

[12] A. Davis, S. Overmyer, K. Jordan et al., "Identifying and measuring
quality in a software requirements specification." pp. 141-152.

[13] N. Yilmatzurk, "“Good Quality” Requirements in Unified Process.,"
Engineering and Managing Software Requirements, A. W. Aurum, C.
, ed., Springer-Verlag, 2005, pp. 373-401.

[14] S. Ahmad, “Measuring the Effectiveness of Negotiation in Software
Requirements Engineering,” The University of Western Australia,
2012.

[15] S. Biffl, B. Freimut, and O. Laitenberger, "Investigating the cost-
effectiveness of reinspections in software development." pp. 155-164.

[16] M. Halling, S. Biffl, and P. Grünbacher, “An economic approach for
improving requirements negotiation models with inspection,”
Requirements Engineering, vol. 8, no. 4, pp. 236-247, 2003.

[17] B. Boehm, and V. R. Basili, “Software defect reduction top 10 list,”
Computer, vol. 34, no. 1, pp. 135-137, 2005.

[18] B. W. Boehm, Software engineering economics: Prentice-hall
Englewood Cliffs (NJ), 1981.

[19] S. Biffl, and M. Halling, “Investigating the defect detection
effectiveness and cost benefit of nominal inspection teams,” IEEE
Transactions on Software Engineering, vol. 29, no. 5, pp. 385-397,
2003.

[20] R. K. Ekawati, and A. N. Hidayanto, “The Influence of Antecedent
Factors of IS/IT Utilization Towards Organizational Performance-A
Case Study of IAIN Raden Fatah Palembang,” WSEAS Transactions on
Computers, vol. 10, no. 3, pp. 81-92, 2011.

[21] Z. Nopiahl, M. Khairir, S. Abdullah et al., "Segmentation and
scattering of fatigue time series data by kurtosis and root mean square."

[22] R. Mauro, Giuffre, O., Grana, A. & Chiappone, “A Statistical
Approach for Calibrating a Microsimulation Model for Freeways,”
WSEAS Transactions on Environment and Development, 2014.

Sabrina Ahmad has qualifications and undergone formal trainings in the
area of software engineering and development. She is specialized in
requirements engineering in both research and practice. She obtained her PhD
in Computer Science from The University of Western Australia in 2012. She
endeavours to maintain the bridge between academia and practitioners and
therefore continue strengthening software engineering curriculum and apply
the knowledge in the industries through consultation projects. Therefore, she
continues to upgrade her skills and knowledge through professional training
and certification. She obtained Professional Certification in Requirements
Engineering and currently cultivate skills in IT Architecture. She is also a
Certified Professional IT Architect and formally trained for TOGAF 9.1.

Siti Azirah Asmai received her Ph.D degree in Information dan
Communication Technology from the Universiti Teknikal Malaysia Melaka,
in 2014. She obtained her master degree in ICT for Engineers from Coventry
University, UK in 2004 and bachelor science degree in computer science
from Universiti Teknologi Malaysia in 2000. Currently, she is a senior
lecturer in the Department of Industrial Computing, Faculty of ICT, Universiti
Teknikal Malaysia, Melaka. Her research interests include data analytics,
applied statistics, computational industry, simulation and modelling and
artificial intelligence.

INTERNATIONAL JOURNAL OF COMPUTERS Volume 10, 2016

ISSN: 1998-4308 24

