
 

 

  
Abstract—This paper focuses on a computationally-intense 

image preprocessing technique, specular light removal, operation 
which is essential for the correctness of many of the modern 
computer vision algorithms. The specular component is different 
from other lightning components in the way that it is dependent on 
the position of the viewer. This causes apparent changes in object 
shape during camera movement. Removal of this component has 
been implemented in multiple ways, but usually the processing takes 
a long time. We port an existing algorithm on a SIMT GPU 
architecture and prove that such complex algorithms can work in 
real-time, thus being of high importance for robot vision. 
 

Keywords—Computer vision, DirectX11, GPU porting, specular 
Removal. 

I. INTRODUCTION 
EPARATION of diffuse and specular lighting components 
is an important subject in the field of computer vision, 

since many algorithms in the field assume perfect diffuse 
surfaces. For example, a stereo matching algorithm would 
expect to find similar changes in the positions of the detected 
regions of interest; however, the specular reflection actually 
moves over the surface and doesn’t remain stuck to the same 
part of the object. Segmentation algorithms are highly 
influenced by the strong and sharp specular lights; the specular 
lit object will thus manifest two very different regions. Object 
tracking can also be disturbed by the sudden appearance of a 
strong specular light on an object that seemed constantly lit for 
a number of frames. 3D object reconstruction from three 
images of the same scene being lit from different angles is very 
easy to achieve, by calculating the normals from the diffuse 
light intensities, but specular lights again disturb the simple 
light calculations. In conclusion, any image-based 
classification is influenced by the variations in lighting [7]. 

In the real world almost all dielectrics exhibit specular 
highlights (except those with extremely rough surfaces or a 
low Fresnel reflectance at normal incidence, like chalk), while 
metals exhibit only specular reflection and no diffuse 
contribution. Thus, it is important to develop algorithms 
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focused on removing specular highlights from textured 
surfaces. 

The algorithm presented in this article improves on an 
existing algorithm by Tan and Ikeuchi [1], by adapting their 
method to run on a modern GPU. This is done using the 
newest features of the DirectX11 API, allowing for random 
read and write access from and to buffers containing various 
types of data. This paper continues the processing described in 
[8]. 

II. RELATED WORK 
In computer graphics certain models are used to 

approximate the intensity distribution of lighting components. 
Diffuse reflections approximately follow Lambert's Law [2], 
their intensity is determined by the angle between the surface 
normal at a point and the vector from the light source. 
Specular reflections can be modeled based on a micro-facet 
model, such as the Torrance-Sparrow model [3], which 
considers surfaces as consisting of tiny perfect reflectors, 
averaging their normals using a normal distribution function. 

There are many existing algorithms based on reflectance, 
models that separate reflection components, but most of them 
require additional images besides the original one (ex: [6]). 
This is because the general case of retrieving two intrinsic 
images from a single one is ill posed, meaning that we have 
two unknowns and a single equation. The ability to reconstruct 
those two images is more or less the result of an estimation 
process, but the helping hand comes from the fact that a color 
image contains not a single channel, but three different color 
channels. The physical properties of the color components for 
the specular light are different from those of the diffuse light. 
Two examples are color and polarization: the reflected light is 
very polarized, meaning that it can be filtered with a polarizing 
filter. This technique is used to test the effectiveness of 
software based solutions. And the most important part for us, 
the specular light bounces off the surface as soon as it touches 
it, meaning that it doesn’t diffuse through the object to be 
affected by the object’s color. Thus, the specular reflection has 
the color of the light source, while the diffuse light, that 
penetrated the object deeper and got scattered by it, has a 
mixture of the light source color and the object’s color. 

In their paper [1], Tan and Ikeuchi introduced an algorithm 
based on Shafer's dichromatic reflection model (model 
explained here: [4]). They used a single input image, 
normalized the illumination color using its chromaticity, thus 
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obtaining an image with a pure white specular component. By 
shifting the intensity and maximum chromaticities of pixels 
non-linearly, while retaining their hue, a specular-free image 
was generated. This specular-free image has diffuse geometry 
identical to the normalized input image, but the surface colors 
are different. In order to verify if a pixel is diffuse, they used 
intensity logarithmic differentiation on both the normalized 
image and the specular-free image. This diffuse-pixel check is 
used as a termination condition inside an iterative algorithm 
that removes specular components step by step until no 
specular reflections exist in the image. These processes are 
done locally, by sampling a maximum of only two neighboring 
pixels. 

Most of the presented methods can’t be used in real-time. 
There are, however, implementations that process an image in 
less than one second [5]. The algorithm we chose to implement 
also has the drawback of being very slow. 

III. GPU PROCESSING OVERVIEW 
In the past years, processing on the GPU has started to 

become widely adopted. This is because the GPU has a very 
different architecture from the CPU, one that is very suited for 
processing images. Image processing usually means applying 
the same identical operations over the entire surface of the 
image: on every pixel or on multiple local regions, overlapped 
or tiled. 

Modern GPUs have multiple Processing Units (SIMD 
Cores), the equivalent of a CPU core. Each Processing unit 
contains multiple Processing elements (Shader Cores). Each 
shader core can work on vectors of multiple elements. 
Quantitative, the total number of theoretical operations that 
can be done in a cycle, is in the order of thousands, where on a 
modern PC CPU it is around 4. 

Another advantage is memory speed. Even though accessing 
GPU RAM takes orders of magnitude more than accessing the 
GPU Cache (similarly on the CPU), the GPU takes advantage 
of its possibility to run millions of threads seemingly in 
parallel. When a group of threads is waiting for a response 
from the slower memory, with very little overhead, a new 
group of threads is started. This is like processing a 36x36 tile, 
and while we are waiting for the data to come, we start a new 
tile in the same processors and put the old threads on wait. 

The problem is that mapping the desired problem to the card 
architecture is seldom possible. From the thousands of threads 
that can potentially be running in parallel, we may end up with 
hundreds or tens. But this also gives a two orders of magnitude 
speedup over the CPU, on simple image processing. 

For complex problems, the speedup can become sub-
unitary, as resources are wasted and memory transfer is slow. 
This paper tries to map a problem on a GPU architecture in 
order to obtain a real speedup by massively parallelizing the 
operations. 

IV. THE GPU ALGORITHM 
The algorithm we decided to port to the GPU is a 

specularity removal problem, because this is a widely-used 
(and sometimes necessary) preprocessing phase for a lot of 
computer vision algorithms. We chose an algorithm that works 
on single images, in order to be integrated easily in existing 
applications, it is robust, so it doesn’t produce unrecognizable 
results when the input data doesn’t fit the requirements, and 
most importantly, it has the possibility to be split into multiple 
individual tasks, in order to be able to benefit from the highly 
parallel structure of the GPU. 

We went with Tan and Ikeuchi’s [1] proposed solution. The 
aforementioned authors started from the reflection model 
containing both the specular and diffuse spectral functions and 
energy diffusion and rewrote it in order to find distinguishable 
characteristics between the two illumination types. 

The entire technique can be split into two processing 
approaches: 
1) A single pixel processing step that plots the colors in a 

different coordinate system in order to estimate the 
amount of diffuse and specular components. This phase is 
perfect for parallelization. 

2) A phase that restores the specular free images, verifying the 
amounts of specular reflection of neighboring pixels. This 
phase is not as easy to port on the GPU, as neighboring 
elements need to be accessed simultaneously, and because 
the processing is done on just one of the neighboring 
pixels, without previously knowing which is the one that 
needs to have its specular value lowered. Another limiting 
factor is that the algorithm is iterative, imposing a strict 
parallelization limit, but we hope that by speeding up each 
of the iterations enough, the entire algorithm can gain 
enough speed. 

Details regarding the intricacies of the original algorithm 
can be found in [1]. Some important points will be emphasized 
in the following paragraphs. Also, advanced applications of 
GPGPU based parallelization are described in [5, 6]. 

All the steps of the algorithm are implemented using pixel 
shaders, Shader Model 5.0 with the newest compute features 
of DirectX 11. 

Image data is held using a structured buffer. DirectX 11 
allows the creation of buffers that can be bound as output to 
the pixel shader or compute shader parts of the pipeline. This 
means that a pixel shader can write to a buffer, addressing its 
contents exactly like one would use an array in C++. A 
structured buffer contains elements of custom defined 
structures. In our case it contains the color data and a flag used 
to indicate the type of pixel (specular, diffuse, noise, etc.). In 
order to obtain the conflict free random access the project uses 
the new DirectX 11 Unordered Access View buffer. 

The notion of chromaticity is important and it basically 
represents a normalized RGB value. Maximum chromaticity is 
the normalized maximum color component (R, G, or B). 

A new space is introduced, called the maximum 
chromaticity intensity space, where the maximum chromaticity 
is plotted on the horizontal axis and the maximum intensity of 
the color components on the vertical axis. It is observed that in 
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this space, the specular pixels' chromaticities are lower than 
the diffuse pixels' chromaticities. Thus, converting a specular 
pixel to a diffuse pixel is similar to shifting its chromaticity 
with respect to a certain larger diffuse chromaticity. This is 
called the specular-to-diffuse mechanism and it is a one-pixel 
operation, used to both generate the specular-free image, as 
well as to reduce the specularity of the input image. 

The basic idea of the method is illustrated in figure 1. 

 
Given a normalized input image, firstly a specular-free 

image is generated as mentioned above. Based on these two 
images, a diffuse verification process is run. It basically 
verifies if the input image has diffuse-only pixels. If it does, 
the process terminates. Otherwise, specular reduction is 
applied, decreasing the intensity of the specular pixels until 
they become diffuse pixels. Specularity reduction and diffuse 
verification are both done iteratively until there is no more 
specularity in the input image. 

A. Specular-Free Image 
The specular-free image is generated on the GPU using a 

pixel shader. The operations used by the specular- to-diffuse 
mechanism map perfectly to HLSL functions used to 
manipulate pixel data. The image is rendered to a texture that 
is then bound to the following passes as a Shader Resource 
View. 

B. Pixel Flag Initialization 
This pass actually represents the diffuse verification 

process. It runs a pixel shader that samples the normalized 
input image by loading pixel data from the image buffer UAV 
and the specular-free image render target texture. Two 
neighbors are sampled from each image also, the vertical 
neighbor below and the horizontal neighbor to the right of the 
current pixel. 

To determine the type of pixel and initialize the flag 
accordingly, intensity logarithmic differentiation is used. A 
pixel can either represent a specular highlight running in 
horizontal direction or vertical direction, or it can be a diffuse 
pixel. The flags are properly set for the current pixel by 
writing to the structured buffer UAV. 

This shader also counts the number of specular pixels. This 
number is used as a termination condition for the loop that 
runs the specular reduction iterations. This is done by using a 
buffer with a single element bound as an UAV to the pixel 

shader output. Whenever a pixel is flagged as specular, an 
atomic increment is performed on the single element in this 
buffer. Then, the UAV buffer is copied to a second buffer built 
as a staging resource. This means it can be memory mapped 
and its contents can be read by the CPU code. 

C. Specular Reduction 
This pass runs two pixel shaders. Since a given pixel can 

apply the specular-to-diffuse mechanism either on itself, or on 
one of its neighbors, and pixel shader code is run in parallel on 
multiple threads, we need to determine which pixels need to 
execute code. The first shader does this, it checks whether a 
pixel is “specular” or not, then using data from its neighbors, 
the shader code determines which of the pixels needs to be 
shifted with respect to the other (based on their maximum 
chromaticities). Then the pixel is flagged, either as modifying 
itself, or one of its neighbors. 

The second shader reads these flags and runs specular-to-
diffuse shader code only on the pixels that are flagged for 
execution. 

If run inside a single shader, the fact that a pixel thread is 
not aware if it was modified by a neighbor (due to the fact that 
it is run in parallel), it means that read-after-write hazards may 
appear. This generates undefined behavior, but usually the 
reduction process still converges to a mostly correct result, 
because the specular-to-diffuse mechanism generates spatially 
coherent results. However, if the algorithm is run in its entirety 
during a single frame, the visual result varies slightly from 
frame to frame. This is why two passes are necessary. 

The rendering loop was written in such a way, that an 
iteration of specular reduction is executed during a frame. This 
allows one to view the reduction over multiple frames, clearly 
seeing how the specular highlights are removed. 

V. RESULTS 
The GPU algorithm runs in about 250 milliseconds on a 

Radeon 7950 with 1792 stream processors running at 900 
MHz, for the fish image in figure 2 (with a resolution of 
640x480 pixels), and 50 seconds on one i5 CPU core running 
at 1.9 GHz, if all the iterations are executed in a single frame. 
The speedup is very large (200:1), however, we also want to 
point out that the CPU code was written just for validating 
GPU results and not having optimization in mind. An 
optimized CPU code may decrease the time by an order of 
magnitude, but not make real time. The results are presented in 
the following and include: 
1) Dinosaur image (Fig. 2): a comparison with the original 

algorithm. Strong JPEG compression artifacts are visible 
in our result because we started from the compressed 
image offered in the original PDF paper. These are not 
visible when images with normal compression ratios are 
offered at the input. 

2) Fish image (Fig. 3): showing the input, the specular free 
image constructed during single pixel processing, that 
generates a recolored specular free result, and the final 
output generated during the iterative phase that diminishes 

 

 
Fig. 1 Processing flow. Image taken from [1]. 
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the specular light at every iteration. 
3) Various computer generated and real images: for testing the 

robustness and how the algorithm fails (Fig. 4, Fig. 5, and 
Fig. 6). The last test (Fig. 6) contains numerous grey 
regions, which Tan and Ikeuchi mentioned that are not 
suitable for this specularity removal algorithm [1]. 

 

 

 

 

 
Fig. 2 Comparison to Tan and Ikeuchi [1] results. The tiles 

observed on our results are most likely the result of using the highly 
compressed, small resolution image copied from the source paper as 
input image. The following tests don’t show those artifacts. Despite 

these, the specular removal gives similar results 

 

 
 

 
 

 
Fig. 3 Fish image: Normalized input image; Specular-free image; 

Final output image with no specular highlights 
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A segmentation test was made with the original images and 

the images with specular light removal. The results are 
presented in Fig. 7. 

Specific-purpose segmentation algorithms that will fully 
benefit from the specularity removal phase may be found in 
[9][10]. 

In our examples, the object count difference is not that high, 

but the important observation is that the specular object 
element will not remain in the same position during the 
movement of the camera, thus an object delimitation is much 
harder. 

Even more, frame matching can be disturbed by the moving 
light elements. 

Another processing that will improve segmentation results is 

 

 

 
Fig. 4 Results for a computer generated scene. The black regions 

are the cause of clipping in the original image. 

 

 

 
Fig. 5 Results for a real scene. Problems can be seen in the bottom 

left corner where an object with small chrominance is visible. 

 

 
Fig. 6 Results for a real scene containing non-colored objects. 
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the homomorphic filter. This will minimize the differences in 
diffuse lighting, thus generating far less elements in the final 

result.

 

VI. CONCLUSIONS 
In this paper we offer the results of porting an existing 

specular removal algorithm to the GPU for reducing the 
computation time. 

Our implementation of the algorithm works on most of the 
images, but it seems to be influenced by high compression 
noise in small images. One category of images on which it fails 
is on the ones containing non-colored objects. Tan and Ikeuchi 
mentioned this issue at the beginning of their paper [1], and 
the cause is obvious: the deduction of the specularity of each 
pixel is done on the basis of its color. If the object has no 
color, it is assumed to be highly specular. We mentioned at the 
beginning that we wanted to choose a robust algorithm that 
does not fail when offered improper input data. Even though 

the grey objects become darker, this will not become an issue 
of more importance for most computer vision algorithms than 
the specular light itself. The rest of the objects remain 
unchanged, so the algorithm can be safely used in the 
preprocessing phase. 

Some quality loss is obvious in the output result because of 
minor simplifications in order to split the algorithm, but the 
overall gain in speed from the order of tens of seconds (on our 
implementation on the CPU) to less than a second is important. 

Finally, this paper shows that there could be a large number 
of algorithms, that were overlooked in the past because of 
large running times but could benefit from today’s technology 
for being incorporated in existing processing phases for 
robotic viewing. 

 

 
Fig. 7 Segmentation results with and without specular light. 
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VII. FUTURE WORK 
The specular reduction process can be implemented as a 

single-pass by using a compute shader. Immediately after 
marking the pixels that change with specific flags, a barrier is 
placed for synchronization. After that, only the flagged pixels 
execute code. 

It is also recommended for the image to be split into tiles, 
each tile representing a thread group. The tiles need to overlap 
each other with 1-pixel borders to ensure no tears are visible. 

Even higher speeds can be achieved by utilizing multiple 
devices, each for a different image. [6] 

As from the processing itself, a homomorphic filter applied 
on top of the specular free image could reduce the number of 
segments generated by most of the segmentation algorithms 
running in any computer vision processing pipeline. 
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