

Abstract—This paper focuses on a computationally-intense

image preprocessing technique, specular light removal, operation
which is essential for the correctness of many of the modern
computer vision algorithms. The specular component is different
from other lightning components in the way that it is dependent on
the position of the viewer. This causes apparent changes in object
shape during camera movement. Removal of this component has
been implemented in multiple ways, but usually the processing takes
a long time. We port an existing algorithm on a SIMT GPU
architecture and prove that such complex algorithms can work in
real-time, thus being of high importance for robot vision.

Keywords—Computer vision, DirectX11, GPU porting, specular
Removal.

I. INTRODUCTION
EPARATION of diffuse and specular lighting components
is an important subject in the field of computer vision,

since many algorithms in the field assume perfect diffuse
surfaces. For example, a stereo matching algorithm would
expect to find similar changes in the positions of the detected
regions of interest; however, the specular reflection actually
moves over the surface and doesn’t remain stuck to the same
part of the object. Segmentation algorithms are highly
influenced by the strong and sharp specular lights; the specular
lit object will thus manifest two very different regions. Object
tracking can also be disturbed by the sudden appearance of a
strong specular light on an object that seemed constantly lit for
a number of frames. 3D object reconstruction from three
images of the same scene being lit from different angles is very
easy to achieve, by calculating the normals from the diffuse
light intensities, but specular lights again disturb the simple
light calculations. In conclusion, any image-based
classification is influenced by the variations in lighting [7].

In the real world almost all dielectrics exhibit specular
highlights (except those with extremely rough surfaces or a
low Fresnel reflectance at normal incidence, like chalk), while
metals exhibit only specular reflection and no diffuse
contribution. Thus, it is important to develop algorithms

C. A. Boiangiu is with the Computer Science Department from
“Politehnica” University of Bucharest, Romania (e-mail:
costin.boiangiu@cs.pub.ro)

R. M. Oita is with the Computer Science Department from “Politehnica”
University of Bucharest, Romania (e-mail: razvan.oita@siggraph.org)

M. Zaharescu is with the Computer Science Department from
“Politehnica” University of Bucharest, Romania (e-mail:
mihai.zaharescu@cs.pub.ro)

focused on removing specular highlights from textured
surfaces.

The algorithm presented in this article improves on an
existing algorithm by Tan and Ikeuchi [1], by adapting their
method to run on a modern GPU. This is done using the
newest features of the DirectX11 API, allowing for random
read and write access from and to buffers containing various
types of data. This paper continues the processing described in
[8].

II. RELATED WORK
In computer graphics certain models are used to

approximate the intensity distribution of lighting components.
Diffuse reflections approximately follow Lambert's Law [2],
their intensity is determined by the angle between the surface
normal at a point and the vector from the light source.
Specular reflections can be modeled based on a micro-facet
model, such as the Torrance-Sparrow model [3], which
considers surfaces as consisting of tiny perfect reflectors,
averaging their normals using a normal distribution function.

There are many existing algorithms based on reflectance,
models that separate reflection components, but most of them
require additional images besides the original one (ex: [6]).
This is because the general case of retrieving two intrinsic
images from a single one is ill posed, meaning that we have
two unknowns and a single equation. The ability to reconstruct
those two images is more or less the result of an estimation
process, but the helping hand comes from the fact that a color
image contains not a single channel, but three different color
channels. The physical properties of the color components for
the specular light are different from those of the diffuse light.
Two examples are color and polarization: the reflected light is
very polarized, meaning that it can be filtered with a polarizing
filter. This technique is used to test the effectiveness of
software based solutions. And the most important part for us,
the specular light bounces off the surface as soon as it touches
it, meaning that it doesn’t diffuse through the object to be
affected by the object’s color. Thus, the specular reflection has
the color of the light source, while the diffuse light, that
penetrated the object deeper and got scattered by it, has a
mixture of the light source color and the object’s color.

In their paper [1], Tan and Ikeuchi introduced an algorithm
based on Shafer's dichromatic reflection model (model
explained here: [4]). They used a single input image,
normalized the illumination color using its chromaticity, thus

Real-Time Specular Highlight Removal Using
the GPU

Costin A. Boiangiu, Razvan M. Oita, and Mihai Zaharescu

S

INTERNATIONAL JOURNAL OF COMPUTERS Volume 10, 2016

ISSN: 1998-4308 25

obtaining an image with a pure white specular component. By
shifting the intensity and maximum chromaticities of pixels
non-linearly, while retaining their hue, a specular-free image
was generated. This specular-free image has diffuse geometry
identical to the normalized input image, but the surface colors
are different. In order to verify if a pixel is diffuse, they used
intensity logarithmic differentiation on both the normalized
image and the specular-free image. This diffuse-pixel check is
used as a termination condition inside an iterative algorithm
that removes specular components step by step until no
specular reflections exist in the image. These processes are
done locally, by sampling a maximum of only two neighboring
pixels.

Most of the presented methods can’t be used in real-time.
There are, however, implementations that process an image in
less than one second [5]. The algorithm we chose to implement
also has the drawback of being very slow.

III. GPU PROCESSING OVERVIEW
In the past years, processing on the GPU has started to

become widely adopted. This is because the GPU has a very
different architecture from the CPU, one that is very suited for
processing images. Image processing usually means applying
the same identical operations over the entire surface of the
image: on every pixel or on multiple local regions, overlapped
or tiled.

Modern GPUs have multiple Processing Units (SIMD
Cores), the equivalent of a CPU core. Each Processing unit
contains multiple Processing elements (Shader Cores). Each
shader core can work on vectors of multiple elements.
Quantitative, the total number of theoretical operations that
can be done in a cycle, is in the order of thousands, where on a
modern PC CPU it is around 4.

Another advantage is memory speed. Even though accessing
GPU RAM takes orders of magnitude more than accessing the
GPU Cache (similarly on the CPU), the GPU takes advantage
of its possibility to run millions of threads seemingly in
parallel. When a group of threads is waiting for a response
from the slower memory, with very little overhead, a new
group of threads is started. This is like processing a 36x36 tile,
and while we are waiting for the data to come, we start a new
tile in the same processors and put the old threads on wait.

The problem is that mapping the desired problem to the card
architecture is seldom possible. From the thousands of threads
that can potentially be running in parallel, we may end up with
hundreds or tens. But this also gives a two orders of magnitude
speedup over the CPU, on simple image processing.

For complex problems, the speedup can become sub-
unitary, as resources are wasted and memory transfer is slow.
This paper tries to map a problem on a GPU architecture in
order to obtain a real speedup by massively parallelizing the
operations.

IV. THE GPU ALGORITHM
The algorithm we decided to port to the GPU is a

specularity removal problem, because this is a widely-used
(and sometimes necessary) preprocessing phase for a lot of
computer vision algorithms. We chose an algorithm that works
on single images, in order to be integrated easily in existing
applications, it is robust, so it doesn’t produce unrecognizable
results when the input data doesn’t fit the requirements, and
most importantly, it has the possibility to be split into multiple
individual tasks, in order to be able to benefit from the highly
parallel structure of the GPU.

We went with Tan and Ikeuchi’s [1] proposed solution. The
aforementioned authors started from the reflection model
containing both the specular and diffuse spectral functions and
energy diffusion and rewrote it in order to find distinguishable
characteristics between the two illumination types.

The entire technique can be split into two processing
approaches:
1) A single pixel processing step that plots the colors in a

different coordinate system in order to estimate the
amount of diffuse and specular components. This phase is
perfect for parallelization.

2) A phase that restores the specular free images, verifying the
amounts of specular reflection of neighboring pixels. This
phase is not as easy to port on the GPU, as neighboring
elements need to be accessed simultaneously, and because
the processing is done on just one of the neighboring
pixels, without previously knowing which is the one that
needs to have its specular value lowered. Another limiting
factor is that the algorithm is iterative, imposing a strict
parallelization limit, but we hope that by speeding up each
of the iterations enough, the entire algorithm can gain
enough speed.

Details regarding the intricacies of the original algorithm
can be found in [1]. Some important points will be emphasized
in the following paragraphs. Also, advanced applications of
GPGPU based parallelization are described in [5, 6].

All the steps of the algorithm are implemented using pixel
shaders, Shader Model 5.0 with the newest compute features
of DirectX 11.

Image data is held using a structured buffer. DirectX 11
allows the creation of buffers that can be bound as output to
the pixel shader or compute shader parts of the pipeline. This
means that a pixel shader can write to a buffer, addressing its
contents exactly like one would use an array in C++. A
structured buffer contains elements of custom defined
structures. In our case it contains the color data and a flag used
to indicate the type of pixel (specular, diffuse, noise, etc.). In
order to obtain the conflict free random access the project uses
the new DirectX 11 Unordered Access View buffer.

The notion of chromaticity is important and it basically
represents a normalized RGB value. Maximum chromaticity is
the normalized maximum color component (R, G, or B).

A new space is introduced, called the maximum
chromaticity intensity space, where the maximum chromaticity
is plotted on the horizontal axis and the maximum intensity of
the color components on the vertical axis. It is observed that in

INTERNATIONAL JOURNAL OF COMPUTERS Volume 10, 2016

ISSN: 1998-4308 26

this space, the specular pixels' chromaticities are lower than
the diffuse pixels' chromaticities. Thus, converting a specular
pixel to a diffuse pixel is similar to shifting its chromaticity
with respect to a certain larger diffuse chromaticity. This is
called the specular-to-diffuse mechanism and it is a one-pixel
operation, used to both generate the specular-free image, as
well as to reduce the specularity of the input image.

The basic idea of the method is illustrated in figure 1.

Given a normalized input image, firstly a specular-free

image is generated as mentioned above. Based on these two
images, a diffuse verification process is run. It basically
verifies if the input image has diffuse-only pixels. If it does,
the process terminates. Otherwise, specular reduction is
applied, decreasing the intensity of the specular pixels until
they become diffuse pixels. Specularity reduction and diffuse
verification are both done iteratively until there is no more
specularity in the input image.

A. Specular-Free Image
The specular-free image is generated on the GPU using a

pixel shader. The operations used by the specular- to-diffuse
mechanism map perfectly to HLSL functions used to
manipulate pixel data. The image is rendered to a texture that
is then bound to the following passes as a Shader Resource
View.

B. Pixel Flag Initialization
This pass actually represents the diffuse verification

process. It runs a pixel shader that samples the normalized
input image by loading pixel data from the image buffer UAV
and the specular-free image render target texture. Two
neighbors are sampled from each image also, the vertical
neighbor below and the horizontal neighbor to the right of the
current pixel.

To determine the type of pixel and initialize the flag
accordingly, intensity logarithmic differentiation is used. A
pixel can either represent a specular highlight running in
horizontal direction or vertical direction, or it can be a diffuse
pixel. The flags are properly set for the current pixel by
writing to the structured buffer UAV.

This shader also counts the number of specular pixels. This
number is used as a termination condition for the loop that
runs the specular reduction iterations. This is done by using a
buffer with a single element bound as an UAV to the pixel

shader output. Whenever a pixel is flagged as specular, an
atomic increment is performed on the single element in this
buffer. Then, the UAV buffer is copied to a second buffer built
as a staging resource. This means it can be memory mapped
and its contents can be read by the CPU code.

C. Specular Reduction
This pass runs two pixel shaders. Since a given pixel can

apply the specular-to-diffuse mechanism either on itself, or on
one of its neighbors, and pixel shader code is run in parallel on
multiple threads, we need to determine which pixels need to
execute code. The first shader does this, it checks whether a
pixel is “specular” or not, then using data from its neighbors,
the shader code determines which of the pixels needs to be
shifted with respect to the other (based on their maximum
chromaticities). Then the pixel is flagged, either as modifying
itself, or one of its neighbors.

The second shader reads these flags and runs specular-to-
diffuse shader code only on the pixels that are flagged for
execution.

If run inside a single shader, the fact that a pixel thread is
not aware if it was modified by a neighbor (due to the fact that
it is run in parallel), it means that read-after-write hazards may
appear. This generates undefined behavior, but usually the
reduction process still converges to a mostly correct result,
because the specular-to-diffuse mechanism generates spatially
coherent results. However, if the algorithm is run in its entirety
during a single frame, the visual result varies slightly from
frame to frame. This is why two passes are necessary.

The rendering loop was written in such a way, that an
iteration of specular reduction is executed during a frame. This
allows one to view the reduction over multiple frames, clearly
seeing how the specular highlights are removed.

V. RESULTS
The GPU algorithm runs in about 250 milliseconds on a

Radeon 7950 with 1792 stream processors running at 900
MHz, for the fish image in figure 2 (with a resolution of
640x480 pixels), and 50 seconds on one i5 CPU core running
at 1.9 GHz, if all the iterations are executed in a single frame.
The speedup is very large (200:1), however, we also want to
point out that the CPU code was written just for validating
GPU results and not having optimization in mind. An
optimized CPU code may decrease the time by an order of
magnitude, but not make real time. The results are presented in
the following and include:
1) Dinosaur image (Fig. 2): a comparison with the original

algorithm. Strong JPEG compression artifacts are visible
in our result because we started from the compressed
image offered in the original PDF paper. These are not
visible when images with normal compression ratios are
offered at the input.

2) Fish image (Fig. 3): showing the input, the specular free
image constructed during single pixel processing, that
generates a recolored specular free result, and the final
output generated during the iterative phase that diminishes

Fig. 1 Processing flow. Image taken from [1].

INTERNATIONAL JOURNAL OF COMPUTERS Volume 10, 2016

ISSN: 1998-4308 27

the specular light at every iteration.
3) Various computer generated and real images: for testing the

robustness and how the algorithm fails (Fig. 4, Fig. 5, and
Fig. 6). The last test (Fig. 6) contains numerous grey
regions, which Tan and Ikeuchi mentioned that are not
suitable for this specularity removal algorithm [1].

Fig. 2 Comparison to Tan and Ikeuchi [1] results. The tiles

observed on our results are most likely the result of using the highly
compressed, small resolution image copied from the source paper as
input image. The following tests don’t show those artifacts. Despite

these, the specular removal gives similar results

Fig. 3 Fish image: Normalized input image; Specular-free image;

Final output image with no specular highlights

INTERNATIONAL JOURNAL OF COMPUTERS Volume 10, 2016

ISSN: 1998-4308 28

A segmentation test was made with the original images and

the images with specular light removal. The results are
presented in Fig. 7.

Specific-purpose segmentation algorithms that will fully
benefit from the specularity removal phase may be found in
[9][10].

In our examples, the object count difference is not that high,

but the important observation is that the specular object
element will not remain in the same position during the
movement of the camera, thus an object delimitation is much
harder.

Even more, frame matching can be disturbed by the moving
light elements.

Another processing that will improve segmentation results is

Fig. 4 Results for a computer generated scene. The black regions

are the cause of clipping in the original image.

Fig. 5 Results for a real scene. Problems can be seen in the bottom

left corner where an object with small chrominance is visible.

Fig. 6 Results for a real scene containing non-colored objects.

INTERNATIONAL JOURNAL OF COMPUTERS Volume 10, 2016

ISSN: 1998-4308 29

the homomorphic filter. This will minimize the differences in
diffuse lighting, thus generating far less elements in the final

result.

VI. CONCLUSIONS
In this paper we offer the results of porting an existing

specular removal algorithm to the GPU for reducing the
computation time.

Our implementation of the algorithm works on most of the
images, but it seems to be influenced by high compression
noise in small images. One category of images on which it fails
is on the ones containing non-colored objects. Tan and Ikeuchi
mentioned this issue at the beginning of their paper [1], and
the cause is obvious: the deduction of the specularity of each
pixel is done on the basis of its color. If the object has no
color, it is assumed to be highly specular. We mentioned at the
beginning that we wanted to choose a robust algorithm that
does not fail when offered improper input data. Even though

the grey objects become darker, this will not become an issue
of more importance for most computer vision algorithms than
the specular light itself. The rest of the objects remain
unchanged, so the algorithm can be safely used in the
preprocessing phase.

Some quality loss is obvious in the output result because of
minor simplifications in order to split the algorithm, but the
overall gain in speed from the order of tens of seconds (on our
implementation on the CPU) to less than a second is important.

Finally, this paper shows that there could be a large number
of algorithms, that were overlooked in the past because of
large running times but could benefit from today’s technology
for being incorporated in existing processing phases for
robotic viewing.

Fig. 7 Segmentation results with and without specular light.

INTERNATIONAL JOURNAL OF COMPUTERS Volume 10, 2016

ISSN: 1998-4308 30

VII. FUTURE WORK
The specular reduction process can be implemented as a

single-pass by using a compute shader. Immediately after
marking the pixels that change with specific flags, a barrier is
placed for synchronization. After that, only the flagged pixels
execute code.

It is also recommended for the image to be split into tiles,
each tile representing a thread group. The tiles need to overlap
each other with 1-pixel borders to ensure no tears are visible.

Even higher speeds can be achieved by utilizing multiple
devices, each for a different image. [6]

As from the processing itself, a homomorphic filter applied
on top of the specular free image could reduce the number of
segments generated by most of the segmentation algorithms
running in any computer vision processing pipeline.

REFERENCES
[1] R. T. Tan, K. Ikeuchi, "Separating reflection components of textured

surfaces using a single image", Pattern Analysis and Machine
Intelligence, IEEE Transactions on, vol. 27, no. 2, pp. 178,193, Feb.
2005.

[2] J. H. Lambert, “Photometria Sive de Mensura de Gratibus Luminis”,

Colorum et Umbrae. Augsberg, Germany: Eberhard Klett, 1760.
[3] K. E. Torrance, E. M. Sparrow, “Theory for Off-Specular Reflection

from Roughened Surfaces,” J. Optics Soc. Am., vol. 57, pp. 1105-1114,
1966.

[4] S. Shafer, “Using Color to Separate Reflection Components,” Color
Research and Applications, vol. 10, pp. 210-218, 1985.

[5] Q. Yang, S. Wang, N. Ahuja, “Real-time specular highlight removal
using bilateral filtering”, Proceedings of the 11th European conference
on Computer vision: Part IV (ECCV'10), Springer-Verlag, Berlin,
Heidelberg, 87-100, 2010.

[6] A. Artusi, F. Banterle and D. Chetverikov, “A Survey of Specularity
Removal Methods”, Computer Graphics forum vol. 30, number 8 pp.
2208–2230, 2011.

[7] S. N. Tica, C. A. Boiangiu, A. Tigora, "Automatic Coin Classification",
International Journal of Computers, NAUN, vol. 8, pp. 82-89, 2014.

[8] C. A. Boiangiu, R. M. Oiţă, M. Zaharescu, “Single-Image Specular
Highlight Removal on the GPU”, Proceedings of the 6th International
Conference on Applied Informatics and Computing Theory (AICT '15),
Salerno, Italy, June 27-29, 2015, WSEAS Press, pp. 152-157.

[9] S. Basar, A. Adnan, N. H. Khan, S. Haider, “Color Image Segmentation
Using K-Means Classification on RGB Histogram”, Proceedings of the
13th International Conference on Telecommunications and Informatics
(TELE-INFO '14) Istanbul, Turkey, December 15-17, 2014, WSEAS
Press, pp. 257-263.

[10] C. Fares, “Hybrid Algorithm for Image Segmentation”, Proceedings of
the 13th International Conference on Applications of Computer
Engineering (ACE '14), Lisbon, Portugal, October 30 - November 1,
2014, WSEAS Press, pp. 146-149.

INTERNATIONAL JOURNAL OF COMPUTERS Volume 10, 2016

ISSN: 1998-4308 31

