

Abstract—Domain-driven design (DDD) is a software

development approach that focuses on the development of a complete
model of the software system domain. The model itself can then be
used to generate system components. Unlike traditional software
development approaches focus of DDD is on the process experts and,
in the case of business applications, on business experts’ knowledge
about business processes. In order to bring the development process
closer to business experts that are usually non-IT experts or
programmers new software tool or platform is required. One such
platform is DSL Platform.

DSL Platform is an infrastructure that can be used to develop and
maintain critical complex software systems that supports DDD
approach in higher extent than other available software solutions.

In this paper we will examine and analyze available benchmarks of
the DSL Platform in comparison to leading software development
tools, methodologies and techniques. The results will show the
benefits and advantages in implementation of this tool both for the
development of complex software systems and even more importantly
the maintenance of existing complex software systems.

Keywords— Software development, Software value, Software

maintenance, Domain-driven design, Software engineering, Software
refactoring, Legacy systems.

I. INTRODUCTION
OMPLEX software systems are software systems that for
their proper operation rely on a number of different,

usually, incompatible technologies, that are usually the results
of prolonged software system life cycle, high scale of
transactions or they perform critical core business tasks.
Prolonged software system life cycle may lead to using and
relining on legacy technologies and technologies that are no
longer supported by their developers. On the other hand once
critical core business processes risk is well covered by current
software system, top management becomes reluctant to make
changes if it is not absolutely necessary i.e. if the risk of
discontinuation of business process does not become
immediate threat for the company. Finally, over time the
maintenance of this type of system becomes very expensive
and inefficient. Current software development methodologies
and software approaches cannot cope with this type of systems

N. Vlahovic is the associate professor at the Informatics Department of the
Faculty of Economics and Business, University of Zagreb in Croatia. Trg. J.F.
Kennedyja 6, 10000 Zagreb, Croatia (phone: +385-1-238 3220; fax: +385-1-
233 5633; e-mail: nvlahovic@ efzg.hr).

in an efficient way. This is why there is a constant need for the
development of novel software development methodologies
and approaches. Practitioners are developing and presenting
new frameworks and technologies as well as new approaches
to software development altogether, while only a limited
number of these developments enter the mainstream adoption
by software or even non-software companies. In this way a
software approach called Domain driven design has been
developed. This approach presents properties that have the
capabilities to cope with coupled heterogeneous software
systems while improving maintenance efficiency in current
dynamic business and technological environment. At the same
time it tries to offer solutions for bridging the gap between
business experts and software experts that is main drawback in
traditional approaches that additionally decreases the
efficiency in maintenance of complex software systems.

 Agile methodologies are more successful in coping with
this gap for reasonably limited and small-scale software
systems. When it comes to complex business systems only
approaches with traditional core principles are available,
mostly with increased inefficiency and additional development
and maintenance costs [19].

Domain driven design has fostered new tools that are
available to broader community of practitioners. One such tool
based on DDD is DSL Platform.

In this paper we will analyze the main properties of DSL
Platform as a DDD based tool and compare it to other
available tools in terms of features and capabilities as well as
appropriateness to different software system development and
maintenance. The analysis will include both technical aspects
as well as economical aspects of application implications. Also
available independently conducted benchmarks will be present
and analyzed in order to compare DSL Platform to other
available software developing and maintenance tools. Based
on the comparison results we will propose enhancements to
currently available classifications and models that can improve
the understanding of available software development
methodologies and also improve models of assessing
economic metrics for software systems, primarily estimation of
software asset value and maintenance costs.

Goal of this paper is to estimate performance level of DDD
based tool DSL Platform and identify its position in current
classifications of software development approaches. After that

Domain-driven Design: Overview of
Performance Benchmarks and Feasibility

Assessment for DSL Platform
Nikola Vlahovic

C

INTERNATIONAL JOURNAL OF COMPUTERS Volume 10, 2016

ISSN: 1998-4308 32

we will be able to extrapolate its influence on software
production costs and software value estimation using currently
most comprehensive estimation models.

The structure of the rest of this paper is as follows: In
Section II domain driven design with its key features will be
described. Currently available classification of software
approaches will be considered to identify DDD’s position and
role in this classification. Also advantages and disadvantages
will be presented in this Section. In Section III DSL Platform
will be presented. It is a software development tool that is
based on the DDD principle as well as some of the most
efficient principles, techniques and methodologies available in
software development. The second part of this Section
available benchmarks will be presented and analyzed. First
two Sections deal with technical aspects of software
development and maintenance, while the rest of the paper will
move focus to economic and social aspects of software
development and maintenance efforts. Section IV will present
most important software management issues that are
determined by the technical aspects of software development
and management tools. Here software assets will be explained
along with their properties. Next software development effort
will be defined as well as maintenance tasks. After that we will
parent some approaches to software value estimation that takes
into account all of the properties and other requirements into
account (such as legislation and International Accounting
Standards…). In Section V we will compare, analyze and
discuss presented information and estimate possible impacts of
domain driven design within the software development process
for complex coupled heterogeneous systems, if this approach
is fully integrated into business process throughout the
software process life cycle. Here we will present a SWOT
analysis that will be used to extrapolate the benefits and issues
that the management should be aware when considering
introduction of domain driven design. Finally in Section V.
conclusions will be given and an outline for future work.

II. OVERVIEW OF DOMAIN DRIVEN DESIGN
Domain driven design (DDD) is a software development

approach. Unlike most of other software approaches that
analytically organize the software development effort and use
conceptual, modeling, programming and implementation tools,

domain driven design is focused on the software model itself.
DDD strives to make a complete model of the problem domain
moving the focus of the development effort away from tools,
techniques and methodologies used.

In the most general terms software development approaches
can be divided into two diametrically contrasted classes and
one intermediary class that draws on some of the concepts
from either of the two main classes [1]. This classification of
software approaches is given in Figure 1.
1) Class of structured approaches. This is a group of

software development methodologies that are based on a
process that recognizes distinct phases of the software
development process. These phases usually align with
particular stages of the software development life cycle
(SDLC). Depending on the particular methodology each
phase can be associated with a stage in SDLC either,
planning, creating, testing or deploying of the software
system. Some methodologies can have several phases
associated with one stage of the SDLC, and others can
have one phase spanning over or overlapping with two
stages of the SDLC. The main characteristic of
methodologies in this group is that each phase needs to be
completed with some final result, a software artifact,
before next phase of the process can begin. Some of the
most common methodologies that belong to this group are
waterfall software development model, prototyping,
incremental development, iterative incremental
development, Boehm’s spiral model, etc. but also object
oriented approaches.

2) Class of behavioral approaches. This group of
methodologies relies on the soft systems approach that
takes a more relaxed definition of development process.
Behavioral approaches take a holistic view of the
organizational systems and social nature of software
systems (both in development and deployment stages).
This is why these methodologies promote participation of
system users and customers during the creation phases of
the system. Also the development process may return to
earlier phases as required by the current perspective of the
software system and even different development activities
may overlap. Along with soft systems approach we can
find characteristics of the behavioral approach in agent

Fig. 1 classification of software approaches

INTERNATIONAL JOURNAL OF COMPUTERS Volume 10, 2016

ISSN: 1998-4308 33

based software engineering [3], [4] as well as in the
behavior-driven design [5].

3) Intermediary and transitional approaches. This class of
approaches to software development shares some of the
characteristics with the structured approaches and some of
the characteristics with the behavioral approaches. These
methodologies represent the synthesis of traditional rigid
structure and softer humanist elements of the behavioral
approaches. Agile methodologies represent the most
typical example of a transitional approach due to their
strive to capture the human aspects of organization for all
stakeholders involved, especially during the analysis and
planning stages, while still retaining structure in design
and implementations stages [6], [1], [19].

Domain driven design (DDD) as a somewhat recent novel
software development approach tries to change the traditional
focus from the project methodologies and tools towards the
core of the problem at hand. DDD goes even beyond a
particular technology or methodology, or even a framework. It
is a way of thinking and a set of priorities aimed at
accelerating software projects that have to deal with
complicated domains [7]. As such it is very close to behavioral
approaches, but as it strongly relies on hierarchies of priorities
and concepts typical for structured approaches, it can be
regarded as a transitional approach to software development.

 Still, unlike agile methodologies that are focused on a
limited, small to medium sized software projects, DDD is
primarily concerned with complex and coupled software
systems. Due to its platform-independency, it is an
encompassing approach to highly coupled systems that use
different, even inconsistent, technologies and platforms as well
as development methodologies or practices. This types of
systems cannot be successfully developed using original agile
principles. Usually these types of coupled complex software
systems are developed using more traditional structured
approaches, simply in order to be able to manage the
complexity of the system, tolerating the inefficiencies of most
of the other aspects of the software life cycle management
process.

This is why DDD is an appropriate candidate to cover this
type of software systems, since it improves the efficiency of
the development and maintenance of coupled complex
software systems using principles similar to agile development,
while at the same time enables the development team to
successfully manage all of the steps of the development and
maintenance effort as if structured approach is used. This is
why DDD is defined as an intermediary approach in Figure 1,
that completes the given classification.

In order to understand how DDD can connect all of the
varieties of concepts into a consistent and unified one, we will
take a look at how previous methodologies and frameworks
represent software projects. Most of them treat a software
project as an entity that has to be described using a number of
different perspectives. Since there are a lot of different
stakeholders involved in the development of any software

project, a variety of perspectives is used to promote better
communication and understanding between stakeholders. In
practice Unified Modelling Language (UML) is mostly used
for static and dynamic representation of these perspectives.
Before the beginning of software development, introductory
and preparatory phases are conducted where all of these
perspectives are defined (as seen in Figure 2.a).

At this stage UML covers all of the relevant views of the
software system, its surroundings and dependencies using
three groups of dedicated diagrams, structure diagrams,
behavioral diagrams and interaction diagrams [8]. Inevitably,
different perspectives may not be entirely compatible and this
may present a challenge for the development team in
continuation with the development of the project. After this
additional effort in reconciling differences and
incompatibilities between different models, product
development begins and finally working version of the
software system is produced (Figure 2.b).

 Unlike UML that takes on a number of perspectives of the
model, DDD tries to describe the model by describing its
domain as a whole and complete model (Figure 3.a). In this
way, model itself represents the system being developed and
there are no variations dependent on the perspective. In this
way there are no compatibility issues with different view point
over the entire software systems. Preparatory stages of the
software system development are much shorter since no a
posteriori negotiation is required. Consequence of this
approach to development of the software system model is that
programming code is the representation of the model. During
the development stage instance of the created model is
generated that represents a run-time version of the system that
can readily be put into production (Figure 3.b).

a) b)

Fig. 2 model and perspectives of the model a) in the preparatory stage
where only models exist and (b) during development of software system

where a working software system is produced

a) b)

Fig. 3 DDD model and software product a) in the preparatory stage
where model is programmed and (b) during development where a
working software system is instantiated from the developed model

INTERNATIONAL JOURNAL OF COMPUTERS Volume 10, 2016

ISSN: 1998-4308 34

As we can see the importance of the programming code is
emphasized in DDD. This is why it is crucial to understand the
requirements and features that are essential for the
programming language that is used to model final software
system. Inappropriate, platform-dependent technical
programming code would cause lock-out effect for diversity of
technologies, platforms, methodologies as well as a number of
stakeholders, especially business experts with no programming
skills. In order to avoid these lock-out effects specific
requirements are expected from the team communication
facilities.

Firstly, a domain specific language (DSL) is required to
describe the model of the software project. Secondly, a
ubiquitous language for team communication should be used
and evolved during the development of the project. Consistent
communication between business domain experts and
developers expressing their views of the system in terms of
model concepts will evolve into a ubiquitous language. The
team understanding of software artefacts will express itself in
the source code of the system as it represents the model of the
system (through DSL). Any change in the model will change
the model and these changes are clearly visible to all of the
project participants, both business experts and developers [9].
DDD is an ongoing process of expressing ubiquitous domain
language in code [10].

In the following Section we will present a DDD based tool
called DSL Platform in order to explain the implementation of
DDD principles with special focus on the formalization of a
language used for the creation of a domain specific language.

III. CHARACTERISTICS OF DSL PLATFORM AND BENCHMARKS
DSL Platform is one of the most comprehensive

implementations that are based on DDD and that provide tools
for modeling domain specific applications as intended by the
DDD software approach. In this way DSL Platform represents
a unified platform for development and evolution of complex

software systems. It can be considered a service that helps in
designing, building and maintaining business applications
while providing the development team with tools to create
their own ubiquitous language through the development of
DDD model while automating various steps in the business
application development process and maintenance processes of
the developed business application.

Essentially, platform uses specific business model as input
and outputs finished components for corresponding business
software system. Since DSL platform draws on the strengths of
the DDD approach, business model is described in
understandable language for both business experts and
development team while this description is also a formal
specification of the system (Figure 4). Declarative
specification of a software system is defined using industry
standard concepts and terminology for client domain. This
results in understandable documentation which is also a formal
specification of the system. Supported compilers use that
specification to build code or web pages and maintain or
migrate database depending on the current state of the project.
Once software solution is built various features become
available for automatic maintenance of the model. Developers
can focus on important parts, such as specific features and user
experience while more technical and manual, time consuming
tasks are taken care of by the platform functionalities. Unlike
with other comparable tools, advanced features, such as event
sourcing or OLAP analytics are available with a fewer lines of
code.

True value of DDD approach becomes apparent during the
maintenance and evolution of the system. Any changes made
to the business model are automatically translated by the
platform into Client code or Databases (as shown in Figure 4).
This functionality alleviates programmers’ efforts and moves
focus of their work to specific functionalities and user
experience rather than code optimization, refactoring or
similar technical tasks.

Fig. 4 DSL Platform concept

Fig. 5 Modeling business domain with resulting typesafe code, database
and application server

INTERNATIONAL JOURNAL OF COMPUTERS Volume 10, 2016

ISSN: 1998-4308 35

Modeling a business domain using DDD within the DSL
Platform is conducted using language specialized for such task
(Figure 5). Properties of the language are created in such a
way that even domain experts can read such descriptions. On
the other hand this specialized language has all the technical
properties that allow it to conduct efficient serialization of the
model, parsing and other features that ensure model
consistency. It is a functional specification for compilers, so
that the described model can be checked for errors. Type
safety is integrated into targets, even when they don't support
it. Resulting program classes have type safety embedded
within them (Figure 5). In this way programming errors are
caught as early as possible. Another important part of the
software system are databases (Figure 5). Their specification
also originates in the described domain model, and is also
checked by the compiler. DSL Platform uses object-relational
database in an advanced way. As it relies on the results of the
domain model there is no need for ORM tools because object-
relational impedance mismatch doesn't exists at the stage of
creation or migration of database. Finally, compiled code and
database are stored on a server in order to synchronize any
further changes to the system as domain model may be
changed iteratively during the evolution stages of the system
(Figure 5). Stateless application server can be added as
required. Reporting, data analytics, event sourcing or any other
custom feature can be consumed through various
communication protocols, requests or electronic exchange
standards such as JSON, XML or Protobuf.

Finally, having described the tasks and components of
domain specification development we can take a look at
potential benefits and additional functionalities that can greatly
improve efficiency of the software development and
maintenance efforts (Figure 6).

There are five different elements that provide additional
benefits:
1) DSL domain model. Once developed domain model can

be reused in different technologies without friction. There
is no need to re-write same model for different
technologies (which is often the case in coupled complex
systems).

2) Extensible compilers will take care of converting DSL
domain model to various languages using best practices.
This helps with maintaining high level of quality since
extensive programming experience is provided in
compiled libraries.

3) Programming language support. Support for various
languages allow the creation of parallel variants of
programming code based on the same model: .NET/JVM
for the backend, dynamic languages for the frontend or
Java for Android, etc…

4) Databases. Automatically maintained stored procedures
optimize data access for best performance. LINQ
conversions to database functions and expressions at
compile time are available, as well as cache invalidation
from messaging system. Combining multiple database
request in a single call by using reports and similar
concepts makes access and communication with the
database more streamlined and efficient.

5) App server. Extensive knowledge implemented as various
patterns and concepts provide additional benefits. Instead
of mixing generated and hand written code, available
compiled libraries can be consumed as standard REST-
like API or pass-through to backend services.

As we can see two main challenges that can be effectively

solved using DSL Platform and underlying DDD approach is
the elimination of miscommunication between clients and
contractors or even among developers within developer teams.
The other is the elimination of non-creative and repetitive
work done by developers by automating repetitive tasks of the
development process.

A. Team communication
Teams are formed for each software project. Also for each

software project there are additional stakeholders that all need
to communicate with each other. They need to communicate
their views, ideas and concepts between themselves. Due to
different backgrounds (business backgrounds or engineering
backgrounds) as well as different perspectives of the project
sometimes this communication can be misinterpreted. Due to
high volume of interactions between different groups of
stakeholders development process may misinterpret customer
needs, and finally end up with a product that does not fulfill
contractors’ expectations. This is why DSL platform uses a

Fig. 6 Additional benefits from code reuse, scalability and compatibility

of the platform towards other technologies

INTERNATIONAL JOURNAL OF COMPUTERS Volume 10, 2016

ISSN: 1998-4308 36

specific language dedicated to describing business problem
domains. Having a model discussed and represented using the
unified language with unified meanings and understanding of
concepts, team communication is significantly improved,
resulting in a software that meets user need better.
Documentation that is generated in this manner better specifies
the software project, promotes consensus among team
members and has overall higher quality. DSL Platform takes
the documentation even one step further, since the
documentation itself represents a full formal system
specification that can be readily used for rapid prototype
system validation.

B. Source code automations and efficiency
The formal specification of the business system can be used

as a solid basis for improvement of code generation and
manipulation. Dedicated compiler of DSL Platform can use
this formal description of functional specifications to create
any of the components for the finalized business software
system. These can be libraries targeted for a particular
programming language or framework or database artifacts for
any relational or object-oriented database system. During the
creation of the software artifacts, due to formal specifications,
additional improvements of code can be automatized creating
faster and more reliant execution of system tasks as well as
creating more maintainable source code for the project. Finally
a number of database maintenance and administration tasks
can be performed using DDD model and then implementing
them by simply migrating changes into a particular database
system.

C. Relevant benchmarks
In order to evaluate performance of DSL Platform a number

of benchmarks are conducted. For the purpose of this paper we
will concentrate on testing the efficiency of serialization of
data and data access using DSL Platform in terms of volume
i.e. size of running code and time i.e. time required for the
serialization process to create data access objects and remove
them i.e. deserialize them.

Due to the characteristics of DSL Platform that we
described earlier, it is inevitable that the architecture of this
tool is multilayered. This may imply that the serialization will
be more time consuming than other comparable tools. DSL
Platform tries to compensate its unfavorable architecture by
applying innovative algorithms with the goal of improving its
serialization efficiency.

For the purpose of this test, test platform with following
characteristics was used:

Operating system: Linux
Java Virtual Machine: Oracle Corporation 1.7.0_76
CPU Cores: 4

Test focused on encoding/decoding cycle-free data

structure. Limitations of this test apply since different
technologies and tools cope with serialization in different ways

and some of them have additional capabilities that are
convenient during this task The test was based on generating
cycle free tree data structure where multiple object reference
serializes that object multiple times; there are no manual
optimizations but the scheme is known in advance.

As we can see in Figure 7, DSL Platform is at the top of the
results with low time consumption and increased efficiency in
both serialization and deserialization tasks in comparison to
other programming architectures. The size of code is
somewhat larger in comparison to other relevant technologies
and this is due to multilayered architecture of DSL Platform.
Nonetheless, the size is still in medium tier of the results. Only
best results are shown in Figure 8.

The best values obtained through test for serialization were
1145 ns for serializations, 1588 ns for deserialization, total
time 2733 and compressed size in bytes 437.

For the repeated test using text format based data with inline

scheme only XML/JSON serializers were compared. DSL
Platform performs as the fastest serilizator (Figure 9). The size
of code is also favorable (Figure 10).

Fig. 7 Benchmark: Serialization test in nanoseconds

Fig. 8 Benchmark: Serialization test in compressed size in bytes

INTERNATIONAL JOURNAL OF COMPUTERS Volume 10, 2016

ISSN: 1998-4308 37

Overall we can conclude that DSL Platform performance is
comparable to best available serialization tools while in its
own class of tools (XML/JSON Serializators) it creates best
results and has the best performance.

IV. OVERVIEW OF RELEVANT SOFTWARE MANAGEMENT
ISSUES

Technical aspects of software development are main
perquisite for the development of a software system. Efficient
algorithms, technologies and methodologies such as we
described in the first part of this paper also influence the
efficiency and quality of the final systems. But nevertheless,
non-technical aspects of software development play as
important and sometimes even more important role in software
development. These aspects determine whether the software
system will be created, how long it will be maintained, how
well it will perform its intendent tasks and also how profitable
the system will be for the interested parties and stakeholders.

This is why this Section will be used to overview most
critical non-technical aspects of software development. These
aspects are concerned with managing the software project,
economic constraints and decision making. Before we review
these issues, we need to define what are the specific properties
of software from economic point of view. Here we will see that
the final cost of software system is more complex issues that

the technical feasibility since the quality of software
determines its cost but also its values as an asses and most
importantly for coupled complex systems – maintenance
procedure and costs.

A. Software asset
Software as an asset has some of the properties that

differentiate it from any other asset, tangible or not [11]:
1) Indestructibility. Using software over time does not degrade

its quality notwithstanding the length of usage or number of
uses. Consequently this property reinforces the internal
quality of software asset and its durability, so that the
change in its value is solely determined by external factors.
In this respect software value may deteriorate over time
[13], especially with the technological advancements that
change the working environment of the software.

2) Transmutability. Personalization, customization,
modification and other altering practices of existing
software systems are easily achieved which results in cost-
effective production of software variants. This is
particularly important for customer segmentation and price
discrimination market targeting strategies [12].

3) Reproducibility. Since high-quality copies of the original
software can be produced at low cost may authors agree
that the marginal cost of production is almost zero [14].
Structure of production cost for software products contains
primarily fixed cost for the software provider. Production
of each additional unit does not significantly increase the
total cost. In this respect the potential reproducibility
deliver to software assets also significantly improves its
value.

Along with this features software assets may take advantage
of different economics phenomena that can also influence the
estimation of its value. We will mention just a few examples.
The network effect that the use of final product or services
may produce in the targeted market segment can create lock-in
effects promoting customer loyalty and stabile customer base.
The wider the customer base the more valuable software asset
becomes according to Metcalf’s law. Consequently the value
of customer product and services that are based on that
software asset increases proportionally. Distribution of
software using corresponsive Internet services reduces or even
eradicates the costs of logistic and inventory. Internet services
also may transform software products into services. Many
desktop applications now are available as online services
(SaaS) that allow for more effective pricing strategies through
pricing discrimination.

B. Software development issues
Software assets are obtained through the process of software

development. Some of the software assets are internally
developed software systems that are used either to offer
services on the customer markets or to sell the software itself
on the customer market. Sometimes retail software either
generic or tailor-made is used with the same purpose. Either
way developments issues will be reflected in the final product.

Fig. 9 Benchmark: XML/JSON test in nanoseconds

Fig. 10 Benchmark: XML/JSON test in compressed size in bytes

INTERNATIONAL JOURNAL OF COMPUTERS Volume 10, 2016

ISSN: 1998-4308 38

Most generally development issues can be divided into several
groups of issues: technical issues, process issues, people
issues, project issues and holistic issues. Technical issues
primarily include problems of complexity, conformity,
changeability and invisibility. Some of the most important
issues relate to refinement of user requirements when deciding
and defining what is supposed to be developed. Also design of
user interface may pose a challenge as it is not an engineering
discipline but more of a creative non-systematic process.
Process issues include the decision on using agile or structured
approaches to software development. As we already mentioned
for different types of project different approaches may be
applicable, but the team management need to decide what
approach will be used. People issues include communication
problems and adequate levels of competency in the dynamic
technological landscape. Project issues are concerned with
different estimations of software, such as software value which
will be discussed in more detail in the remainder of this
Section. Finally, holistic issues refer to all other issues that
relate to software system but that are determined during the
development stage, such as quality issues.

C. Software maintenance issues
In the focus of software maintenance issues is software

continuation or discontinuation of software maintenance and
evolution. The decision is iteratively re-estimated periodically.
Each decision during the maintenance can influence the
current value of the software system, either improving it or,
more usually, decreasing it. The approach to estimating the
value of the software system is crucial during these decision
making processes. This is why we will take more detail look at
estimating software value in the following Section.

D. Estimating software value
In strategic management one of the most important basis for

decision making is the assessment of economic value assets.
Even more importance for appropriate decision making is the
precision in assessing the economic value of intangible assets
as their value may be harder to realistically judge.

All of the described features of software assets should be
taken into account during the estimation of software value.

Currently, software value estimation in practice is based on
three possible approaches [15]: (1) cost-based; (2) demand-
driven or value-based and (3) competition-oriented.

The cost-based approach is widely used as it is covered by
the International Accounting Standard 38 – Intangible Assets
(IAS 38). Main purpose of IAS is to standardize financial
reports for all countries that accept the standard in order to
make their financial statements comparable, basic accounting
principles are adopted. For asset measurement this means that
there is a preference for underestimating the asset value rather
than overestimate it. This is why most of the value estimates
are based on historical value which is usually lower than
current value, or market value, especially for intangible assets.

Computer software is treated as an Intangible asset as it is a
non-monetary asset, without physical substance and
identifiable. Standard defines that its value is initially

measured with cost, subsequently measured at cost or using
revaluation model. Also, it takes into account future economic
benefits that the asset may yield. Even though these benefits
may significantly influence the value of software assets, they
are usually overlooked in practice, so that during the
estimation of software asset only production costs is taken into
account. Even production cost does not necessarily translate
into software value, since during the development of software
a number of software functionalities may be developed that
never make it into the final product [2], or increase in project
costs that do not directly increase the value of software being
developed (i.e. expensive overheads, accommodation and
travel costs for team members, etc.). Poor project management
practices are not taken into account during current estimation
approaches as well as the quality level of software asset. All
these elements may lead to overestimation of software assets
which in turn is contrary to basic accounting principles.

Accounting value used for financial reporting, therefore,
does not reflect the true potential of software assets, honoring
the specific properties that we described earlier, for the
purpose of strategic decision making. Using accounting value
will either underestimate or overestimate capitalization on the
balance sheet or inevitably misrepresent due diligence before
possible acquisitions. Strategic decision making requires better
estimation of the potential of software assets that takes into
account specific properties and potential software assets offer.

This is why new approaches are developed in order to make
the estimation of software value more reliable. In the
remainder of this Section we will present an estimation model
based on the notion of technical debt and interest as described
by Groot et al.

E. Software Valuation based on Technical Debt and
Technical Interest

Technical debt is a type of opportunity cost defined as a set
of quality issues or problems in software that will cost the
organization that owns the software greater expanses if they
are not resolved [16]. Furthermore, there are two major
components of technical debt [18]:

1) principle, as cost to repair a software system in order to

achieve ideal level of quality and
2) interest, as additional maintenance cost due to the lack of

quality.

Technical debt increases over time if the quality issues of

software are not resolved due to maintenance costs that
increase as additional effort to negotiate quality issues is called
for [17]. According to financial economics principle of
technical debt is a cost that increases over time by the rate of
interest (Figure 11).

INTERNATIONAL JOURNAL OF COMPUTERS Volume 10, 2016

ISSN: 1998-4308 39

Due to this increase of technical debt over time, it is feasible
to pay the initial cost to repair software system and bring it to
the ideal level of quality. At this level lower maintenance cost
are required for the operation of the system in the future. In
Figure 12 we can see that future benefits from software system
operating at the ideal level of quality yielding significant
savings.

In order to include technical debt in the estimation of
software value [2] have proposed a layered Software Valuation
Pyramid model. This model relies on SIG Maintainability
model (SIG) to determine the software development level and
conclude the ideal level of software quality. On top of
development level estimates they propose metrics that help
estimate the operational costs of developed software systems
with three key measures: rebuild effort, repair effort and
maintenance effort (Figure 13).

Rebuild effort (RbE) is defined as technology-neutral
measure of technical volume, based on the technology used
and volume of produced source lines of code (SLOC). Repair
effort (RpE) is equal to the technical debt of the software
system which is primarily determined by the quality of
software development process. This means that only a part of
the software system needs to be rebuilt and this part is referred
to as the rework fraction (RF). Maintenance effort (ME) is the
yearly effort estimated to be required for regular maintenance
of the system, including bug fixes and small enhancements.

Based on the above defined metrics [2] propose tree
different models of estimating software asset value.

F. Software Asset Estimation Models
For the purpose of this paper we will consider three models

of estimating production value of software assets, which will
be bases of analyzing impact of DDD approach to software
asset development. All of the models are based on the
assumptions that (1) there is a known level of software asset
quality based on SIC metrics described earlier and (2) there is
an ideal level of quality for software asset at hand that is
higher than the current level of quality as previous empirical
studies suggested. Even if the ideal level of quality is lower
than the current level of quality these models of value
estimations may apply.

First model is based on Repair effort (RbE). According to
this model estimated value V is equal to rebuild effort
discounted by the repair effort (RpE) required to bring the
quality of software asset to ideal level.

Second model is based on the Rework fraction (RF). If
bringing software system to ideal level requires the
replacement of complete component or set of components that
the estimated value of the system V is equal to the value of the
part of the system that does not require any improvements (i.e.
the value of the fraction that ought not to be reworked).

Third model is based on Technical interest. Here rebuild
value (RV) is discounted by the value of technical interest
during the working lifespan of the software system. Technical
interest is the increase of maintenance cost that occurs if the
system is running in its current level of quality. The amount of
additional maintenance cost is given in Figure 4 as dotted line,
representing the possible increase of present value of software
system if it were upgraded to its ideal level of quality before its
introduction into production phase.

For further details refer to the paper [2].

V. DISUCSSION

A. Impact of DSL Platform on Software value and
Maintenance costs
As we can see in the proposed models of estimating value of

software assets, all of them heavily rely on the costs that the
exploitation of software asset incurs. Therefore, we may infer
that software assets that are not used tend to lose their value,
since there are no maintenance costs except storage costs. The

Fig. 11 Structure of Technical debt over time

Fig. 13 Software Valuation Pyramid (Groot et al, 2012)

Fig. 12 Benefits from maintaining software system at the ideal level of

quality

INTERNATIONAL JOURNAL OF COMPUTERS Volume 10, 2016

ISSN: 1998-4308 40

value of these assets decreases until it reaches the value of
acquisition as defined in IAS 38.

For software assets that are activated and operational in the
production system, estimation of its value can be executed
using described models. The main determinant of the
estimation level will be related to the quality of software
development approach. This is inevitable as the Rebuild effort
(RbE) relies not only on the volume of the system (i.e. SLOC)
but also the characteristics of the technology used. The
technological measure includes the properties of software
development environments, programming languages and
practices, as well as project management principles and
software approaches which results in corresponding level of
software quality.

On the other hand Repair effort (RpE) takes into account the
maintenance costs that heavily rely on the chosen software
approach to software development life cycle (SDLC)[21].

All of the three models benefit from the efficient software
approach as the estimated value of software asset increases. If
software approach allows for higher technological coefficient
the final RbV will be higher resulting in higher value
estimates.

In the first model lowering the Repair effort estimate also
increases the value of the value estimate. Since RpE is equal to
technical debt we can see that more efficient software
approach such as DDD results in increased value estimates of
software asset.

In the second model lowering the Rework fraction RF
increased the value estimate. This means that if more
optimized source code is used smaller part of it will have to be
reworked in order to increase its quality [22].

Finally, in the third model it is even suggested that if more
efficient software development approach is adopted in later
stages of software development life cycle (SDLC) it may
partially improve software value of the system, as the technical
interest will be discounting the rebuild value RV at a lower
rate.

All of the described models can be applied to complex
software systems that are composed of various development
frameworks, programing paradigms and languages, database
frameworks and technologies. Interconnecting this type of
complex systems generates substantial additional development
and maintenance costs.

If these connections can be negotiated from a single
centralized programing concept represented by a unified
model of the complete system the effort required to maintain
the system would decrease. This is why the approach to
complex software system using domain driven design may
effectively influence the value of complex systems and
software assets. This influence can be observed during the
early development stages, but also during later stages i.e.
during the production stage and maintenance of the system.

As we described earlier, DDD is focused on describing the
domain. For complex systems (such as business software
systems) this means that only business processes have to be

described without the concern with technical details.
Business experts can communicate their understanding of

business processes to system development teams using a
unified ubiquitous language that also represents the formal
specifications of the system. In the end, model represents the
business domain at hand, with no regard to what part of the
complex system it refers to (particular functionalities, external
systems and data sources or databases).
Further tools that draw on DDD approach can use this formal
descriptions and using compilers dedicated to particular
properties of the model create system components in a flexible
and yet automated way, producing optimized and maintainable
source code resulting with increased software quality.

Particularly, tool DSL Platform contains a number of
compilers that translate the source code of the DDD model
into different segments of coupled complex heterogeneous
software systems, building on top of various frameworks,
languages, libraries and platforms. In this way it synchronizes
the complete systems and migrates data between database and
the model and vice versa. Workload for the development team
is alleviated so that team members can spend more time on
designing the domain model itself in cooperation with business
experts.

Benefits from moving the focus of the development team
form technical issues to business logic, as well as the
improvement of the communication between team members
improves the quality of software systems developed.
Additional saving obtained through lower maintenance cost
and increased quality of source code through better
performance of execution and improved manageability of code
can significantly improve the value of complex business
software systems. However, DDD does not seem to be widely
spread and accepted in practice.

B. Implementation obstacles and limitations for Software
Management
The disadvantage of introducing DDD in software

development is the additional effort required to adopt this
software development approach. As software system grows
alternative software development approaches usually tend to
increase maintenance cost and decrease quality of code and the
system gradually degrades. With software system growth DDD
establishes better management over the complexity of system
with little degradation of system quality making initial entry
cost feasible. Also, additional effort and time is needed to
create a substantial model of the business domain before
positive effects on the development process become apparent.

In order to verify the findings in this paper, several
interviews were conducted with various team members from
two software development companies and two financial
institutions that develop their own software solutions. Based
on the responses gathered during interviews SWOT analysis
was conducted. Results are given in Figure 14.

The advantages were concluded based on the evidence
described in this paper while the disadvantages needed further

INTERNATIONAL JOURNAL OF COMPUTERS Volume 10, 2016

ISSN: 1998-4308 41

assessment and data collection obtained through interviews.
Interviews were largely used to identify weaknesses and
threats of adoption DDD approach for development and
maintenance of complex business systems.

As we can see in Figure 14 strengths refer to core
advantages of DDD with high emphasis on software
management issues and especially business management
aspects of software management, such as focus on business
logic, unifying business domain for all team members
regardless of their background and benefits in software quality
and, particularly important for in-house development,
increased software asset value.

On the other hand weaknesses of adopting DDD pertain to
initial cost of adopting this approach as well as the risk of
overestimating final system complexity as DDD is highly cost
inefficient for simple software system.

The most important weakness is the current state top
management awareness which represent the main limitation to
wider adoption of this approach. The highest benefits can be
achieved in large-scale non-software companies that develop
in-house software solutions, such as financial institutions and
banks, where the focus of core business is not on software
development. These are also the companies where awareness
and understanding of potential benefits seems to be at a
comparatively low level as well as the priority in managing
software development approaches. The main obstacle
preventing the higher acceptance of the domain driven design
in practice is the lack of understanding the benefits of DDD
and potential tools it provides by top level management. As the
bottom-line in risk management is to prevent potential risks,
additional adjustments of value estimations of software
systems does not justify adoption of DDD in companies that
were interviewed. Additionally, successful adoption requires
business domain experts to adjust to the domain specific
language which is characterized by high level of isolation and
encapsulation which is more familiar to software experts.

External elements of the SWOT analysis describe the
potentials of adopting DDD where positive potentials
represent opportunities to be gained. As we can see in Figure 6
improved valuations of software assets can be achieved and in
turn promote better strategic decision making. Also, reduction
of maintenance cost during production phase improves internal
rate of return on investment while at the same time extending
the lifespan of software asset. Equally important is the
potential of preserving business logic in legacy systems which
would be otherwise either lost after the discontinuation of
legacy systems or retained through expensive process of
reengineering.

Prolonged lifespan may also lead to one of two most
important threats in adopting DDD. This is the incentive to
maintain legacy systems that rely on old technologies,
programing languages, paradigms or frameworks while
maintaining high software asset value which may expose the
company to additional risks such as self-exclusion from trends
in software developments and increase of inefficiency resulting
in loss of competitive advantages. Additional threat that can
be detected is the possible increase of the importance of
human error factors since the software model is directly related
to the system itself, so that any change is readily implemented
in software components in the production phase.

VI. CONCLUSION
Domain driven design is a more recent approach to software

development that fundamentally changes key aspects in
software development by changing the nature of the
relationship between a model and the final product. It moves
the focus from methodologies, tools and project management
to the core of software system being developed and the expert
domain it will engage with. This radical perspective of domain
driven design while it offers substantial benefits, stayed out of
mainstream implementations in practice and also limited
sources in academic and scientific literature is available.

 In this paper we have presented key determinants of domain
driven design (DDD) and assessed its implications on software
management process through impact on software value
estimation and changes in maintenance efficiency. While
overviewing recent classification of software approaches, we
have detected a missing approach aimed at fast and efficient
development and maintenance of coupled complex software
systems. It is author’s opinion that DDD is the missing
approach best suited for this type of software projects.

In order to support this thesis further comparison with
behavioral approaches was conducted and analyzed.
Recognizing the new role of modelling we have confirmed two
major points that DDD copes well with. Firstly, it improves
team communication while increasing the speed of modelling
and developing system prototype since the domain code itself
is model but also a representation of final software system.
Consequently and secondly this allows for the implementation
of number of automation tasks in developing and maintaining
final software system. This is one of major reasons why DDD

SWOT
matrix advantages disadvantages

Internal

STRENGHTS
• better team communication
• focus on business logic
• automation of particular

development & maintenance
tasks

• unified domain model
• increased level of quality
• increased software value

WEAKNESESS
• high entry costs
• cost inefficiency for simple

software systems
• top management resistance
• high level of isolation and

encapsulation in domain
model may present a
challenge for business
domain experts

External

OPPORUNITIES
• improved estimation of value

for developed software assets
• reduction of maintenance

costs during production phase
of software system

• prolonged lifespan of software
systems

• sustaining business logic of
legacy systems

THREATS
• incentive to maintain legacy

technologies and
programming languages while
maintaining high software
value

• as changes in domain model
are reflected in system
components risk of human
error increases

Fig. 14 SWOT analysis of DDD approach to complex business software

systems

INTERNATIONAL JOURNAL OF COMPUTERS Volume 10, 2016

ISSN: 1998-4308 42

approach improves the efficiency and reduces cost of
development of coupled complex systems which development
heavily depends on knowledge of multiple domain experts and
also provides similar benefits during the maintenance stage of
the software system. In order to better understand the main
principles of DDD a broader introduction to a specific
implementation of this software approach was given. Resulting
tool is therefore considered an unique platform that
encompasses tools, methodologies and technologies. This tool
is called DSL Platform and is primarily based on a domain
specific language development. Once domain is modeled
transition of the model into working code is provided by the
platform and its serialization capabilities. Recent benchmarks,
presented in this paper show high performance of this tool that
are comparable to other leading serialzators, and even the best
XML/JSON serializer available.

 As technical properties of DSL Platform exhibit such
positive properties non-technical circumstances should be also
evaluated As this approach is still to see its wider adoption in
practice.

For the purpose of this paper we took two main benefits
from DDD describing their practical implementations through
an existing tool DSL Platform. We estimated the impact of
these features on two major issues in software management –
software value estimation and maintenance cost effectiveness.
We have shown that due to specific properties of software
products, and from the economic point of view - software
assets, level of quality of software can be greatly improved.
Various development issues may benefit from the
implementation of DDD approach, either technical issues,
process issues, people issues, project issues or more general
class of holistic issues during software development. Similar
effects can be observed during the maintenance stage of
software development production, where greater focus is on
the decision process whether to continue maintenance or
discontinue the system use.

In this paper we have observed that all of the changes in the
software development life cycle somehow reflect on the value
of software system at hand. This is why we suggest that
software value estimation plays an important role in assessing
benefits from adoption of DDD tools such as DSL Platform.
We have therefore presented a software asset value estimation
models and analyzed how the estimation value changes under
influence of DDD approach.

Finally we have conducted interviews with information
officers and managers in software companies and banks to
obtain data and create a SWOT analysis of adopting DDD in
companies that manage in-house complex heterogeneous
software assets. The analysis showed that main obstacle for
adoption of DDD is lack of understanding the economic
benefits by the top management.

This is an important confirmation of current limitations to
adoption of DDD in mainstream software industry and
software departments of large companies that should be taken
into account. In further studies top management should be

taken into consideration while assessing the applicability of
DDD approach in practice. Additional benchmarks and
research results should be made available to top managers in
order to provide them with adequate information while making
decision on adopting DDD approach for their software
development needs.

ACKNOWLEDGMENT
I would like to thank Rikard Pavelic and company Nova

Generacija Softvera d.o.o. for their cooperation during
research of this topic, donating free access to DSL Platform
(http://dsl-platform.com) for the purpose of evaluation and
invaluable information that improved the quality of the
research results presented in this paper.

REFERENCES
[1] N. Mavetra and J. Kroeze, “Guiding Principles for Developing Adaptive

Software Products” in Communications of IBIMA, vol. 2010, IBIMA
Publishing, 2010, pp. 1 – 15.

[2] J. de Groot, A. Nugroho, T. Back and J. Visser, “What is the value of
your software?” in Proceedings of the Third International Workshop on
Managing Technical Debt (MTD), 5th June 2012, Zurich: IEEE, 2012,
pp. 37–44.

[3] N. R. Jennings, “On Agent-based Software Engineering” in Artificial
Intelligence, vol. 117, Elsevier Science, B.V., 2000, pp. 277 – 296.

[4] D. Sharma, W. Ma, D. Tran and M. Anderson, “A Novel Approach to
Programming: Agent Based Software Engineering” in Knowslege-based
Intelligent Information and Engineering Systems, Lecture Notes in
Computer Science, vol. 4253, Berlin: Springer Verlag, 2006, pp. 1184
– 1191.

[5] D. North, “Behavior Modification: The evolution of behavior-driven
development”, in Better Software, vol.-issue 2006-03, Techwell Corp.

[6] R. Brown, S. Nerur and C. Slinkman, “The philosophical Shifts in
Software Development” in Proceedings in the 10th Americas
Conference on Information Systems, New York, August 2004, pp. 4136
– 4143.

[7] E. Evans, Domain-Driven Design: Tackling Complexity in the Heart of
Software, Addison-Wesley, 2004.

[8] G. Booch, J. Rumbaugh and I. Jacobson, The Unified Modelling
Language User Guide, 2nd Ed., Addison-Wesley, 2005.

[9] J. S. Cuadrado and J. G. Molina, “Building Domain-Specific Languages
for Model-Driven Development” in IEEE Software, vol. 24, Issue No. 5.
IEEE Computer Society, September/October 2007, pp. 48 – 55.

[10] R. J. Wirfs-Brock, “Driven to… Discovering Your Design Values” in
IEEE Software, vol. 24, Issue No. 1. IEEE Computer Society,
January/February 2007, pp. 9 – 11.

[11] S. Y. Choi, D. O. Stahl and A. B. Whinston, The economics of
electronic commerce: the essential of doing business in the electronic
marketplace. Indianapolis: Macmillan, 1997.

[12] S. Lehmann and P. Buxmann, “Pricing Strategies of Software Vendors”
in Business & Information Systems Engineering, vol. 6, Heidelsberg:
Springer Verlag, 2009, pp. 452 – 462.

[13] J. Zhang and A. Seidmann, “The optimal software licencing policy
under quality uncertainty”, in The Proceedings of the 5th international
conference on electronic commerce, New York: ACM Press, 2003, pp.
276–286.

[14] S. Royer, Strategic Management and Online Selling: Creating
competitive advantage with intangible web goods, New York: Routlege,
2005.

[15] C. Homburg and H. Krohmer, Marketing Managment: Strategy –
Instruments – Implementation – Governance, 2nd Ed. (in German),
Wiesbaden: Gebler, 2006.

[16] W. Cunningham, “The WyCash portfolio management system,” ACM
SIGPLAN OOPS Messenger, vol. 4, no. 2, 1993., pp. 29–30.

[17] A. Nugroho, J. Visser, and T. Kuipers, “An empirical model of technical
debt and interest,” in Proceeding of the 2nd International Workshop on
Managing Technical Debt., ACM, 2011, pp. 1–8.

INTERNATIONAL JOURNAL OF COMPUTERS Volume 10, 2016

ISSN: 1998-4308 43

http://dsl-platform.com/

[18] B. Curtis, J. Sappidi and A. Szynkarski, “Estimating the Size, Cost, and
Types of Technical Debt”, in The Proceedings of the International
Workshop on Managing Technical Debt, 2012, Zurich, Switzerland.

[19] F. Dumitriu, D. Oprea, and G. Mesnita, “Issues and Strategy for Agile
Global Software Development Adoption”, in Recent researches in
Applied Economics, WSEAS, 2011, pp. 37-42.

[20] A. Spiteri, “Modeling UML software design patterns using fundamental
modeling concepts (FMC)”, in ECC'08 Proceedings of the 2nd
conference on European computing conference, WSEAS, 2008., pp
192-197.

[21] A. Bassam Al-Badareen, Z. Muda, M. A. Jabar, J. Din, S. Turaev,
“Software quality evaluation through maintenance processes”, in:
Proceedings of the European conference of systems, and European
conference of circuits technology and devices, and European
conference of communications, and European conference on Computer
science, WSEAS, 2010, pp. 131-134.

[22] Lj. Lazic, A. Kolasinac and D. Avdic. “The software quality economics
model for software project optimization”, WSEAS Transactions on
Computers, Vol. 8, Issue. 1 (January 2009), WSEAS Press, 2009, pp.21-
47.

INTERNATIONAL JOURNAL OF COMPUTERS Volume 10, 2016

ISSN: 1998-4308 44

