

Abstract— In the environment of Internet of Things (IoT) sensor

data are generated and collected in very large scale. We should store
the data in databases for later analysis or data mining. Sensor data
consist of measured date and time as well as fractional seconds
information. Because the interval of sensor data gathering is usually
very narrow and a lot of sensor data are generated in a short period of
time, it is highly possible that the data contain a lot of redundant
measurement time or date information. As a result, the redundant data
consume a large portion of storage space. In order to use the storage
space more efficiently, we suggest a database structure consisting of
key and time or date information to store the redundant part of time
information separately. We also suggest related functions that will
split time or date part from the original time format and merge the split
data together for later retrieval. Because computing resource becomes
cheaper and cheaper and in-memory database technology that can
allow database operations cheaper becomes more popular, the expense
for the additional database operations may be ignored. As a result, we
may save significant amount of storage space by the expense of the
additional database tables and related database operations.

Keywords—Sensor databases, timestamp data, key structure, data
storage.

I. INTRODUCTION
ENSOR data collection and storage is one of the major task in
the tasks of Internet of Things (IoT). IoT technology has

wide range of applications including healthcare [1], robotics [2],
wireless sensor networks [3], and environment monitoring [4],
etc. Wide applications of IoT technology generates and stores a
lot data in storage so that we are confronting the era of big data.
In big data environment storing large amount of data is one of
major concern [5, 6, 7] so that saving storage as much as
possible is important [8, 9, 10]. Sensor data has the information
consisting of time or date and sensor data. For later analysis we
should store the data in databases. Because sensors are used to
detect some change as time elapses, time information is stored
with the change. The following is an example of sensor data
consisting of Unix time [11] and room temperature:

{1522122416, 341}
{1522122421, 342}
{1522122426, 343}
{1522122431, 342}

H. Sug is with the Division of Computer and Information Engineering,
Dongseo University, Busan, 617-716 Korea (phone: +82-51-320-1733; fax:
+82-51-327-8955; e-mail: sht@ gdsu.dongseo.ac.kr).

 The standard Unix time data type that represents a point in time
is a signed integer. Usually it occupies 32 bits. Using 32 bits to
represent time covers a range of only about 136 years. The
earliest time is 1901-12-13, and the latest time is Tuesday
2038-01-19. Because of its limitation in time range, some
operating systems use 64 bits to represent time. Anyway, as you
can see in the time data, there are many redundant numbers in
representing the Unix time, because the temperatures were
measured regularly and frequently.
 On the other hand, many sensor systems store sensor data in
conventional databases, and data in databases last long time.
But, because date and time data type of databases use more
bytes than sensor data to store the information, reducing the
redundant information is important to save storage.
 There are many database management systems that can store
the sensor data. Among them Oracle and MySQL database
management system (DBMS) can be two representatives in
mostly used database management systems [12, 13, 14]. Both of
Oracle and MySQL use their own internal format to store date
and time information. Oracle DBMS uses seven bytes to store
date and time information. MySQL DBMS uses five bytes to
store the same information. But, additional bytes are needed in
both DBMSs to store fractional seconds data which are essential
for sensor data.
 Date data in Oracle is stored in fixed-length fields of seven
bytes each, corresponding to century, year, month, day, hour,
minute, and second. Because one byte can represents 256
different symbols, Oracle can represent up to 256 different
centuries. In other words, Oracle can represent 25,600 years
theoretically, and actual range of date information begins from
January 1, 4712BC and ends December 31, 9999AD. On the
other hand, MySQL can represent in the range from January 1,
1000AD to December 31, 9999AD only. Oracle also uses
timestamp data type to store event time in nanosecond. In order
to store timestamp data, Oracle needs additional five bytes.
Similar format is used to store timestamp data n MySQL.
Therefore, if we store event time using timestamp in Oracle,
each time data needs twelve bytes. But, because sensor data can
be generated very frequently and regularly, these bytes for time
information can occupy a lot of storage redundantly, especially
for date part. Therefore, we need some mechanism that may
reduce the redundant date and time information in the databases.
In section 2 backgrounds like the related data format of MySQL
and Oracle and problem formation will be presented, and in
section 3 suggested method will be presented, and finally

 A Timestamp Database Structure of Efficiency
for Big Data Generated from Sensors

Hyontai Sug

S

INTERNATIONAL JOURNAL OF COMPUTERS Volume 10, 2016

ISSN: 1998-4308 69

conclusion will be provided in section 4. This paper is the
modified and extended version of previously presented paper at
ACE'15[15].

II. BACKGROUD AND PROBLEM FORMATION

A. Time Format of MySQL
MySQL has five different data types to store date and time

information; YEAR, DATE, TIME, DATETIME, and
TIMESTAMP data type.

The YEAR type is used for values with a year part but no
other part.

The DATE type is used for data values with a date part but no
time part. MySQL displays DATE values in 'YYYY-MM-DD'
format. The supported date range is '1000-01-01' to
'9999-12-31'.

The TIME type is used for data values with a time part
possibly with fractional seconds part but no date part.

The DATETIME type is used for data values containing both
date and time parts. MySQL displays DATETIME values in
'YYYY-MM-DD HH:MM:SS' format. The supported
DATETIME range is '1000-01-01 00:00:00' to '9999-12-31
23:59:59'.

The TIMESTAMP data type is used for data values
containing both date and time parts. TIMESTAMP has a range
of '1970-01-01 00:00:01' UTC to '2038-01-19 03:14:07' UTC.
So, the range is more restricted than that of DATETIME.
MySQL DBMS converts TIMESTAMP values from the current
time zone to UTC for storage, and back from UTC to the current
time zone for retrieval. By default, the current time zone for
each connection is the server's time. Note that other time types
such as DATETIME are not in UTC time format.

UTC is the time standard across the world. The time scales
are closely synchronized by international atomic time and
coordinated by universal time (UT1) also known as
astronomical time or solar time referring to the rotation of the
earth. It is known that English speaking people wanted to use the
name Coordinated Universal Time (CUT), while French
speaking people wanted to use the name Temps Universel
Coordonné(UTC) so that both people agreed to use the name
UTC [16].
 A TIME, DATETIME, and TIMESTAMP value can include
a trailing fractional seconds part in up to 6 digits of precision so
that the fractional seconds can be represented in microseconds.
The fractional part is separated by a decimal point. With the
fractional part included, the format for these values is
'YYYY-MM-DD HH:MM:SS.999999', the range for TIME
values is '00:00:00.000000' to '23:59:59.999999', and the range
for DATETIME values is '1000-01-01 00:00:00.000000' to
'9999-12-31 23:59:59.999999', and the range for TIMESTAMP
values is '1970-01-01 00:00:01.000000' to '2038-01-19
03:14:07.999999'. Because of the short range of years in
TIMESTAMP data type, DATETIME is often recommended.
 MySQL attempts to save storage as much as possible by
allowing the fractional part in different length if needed. Before
MySQL 5.6.4 each time data type has fixed length. For

example, YEAR type used 1 byte, DATE type used 3 bytes,
TIME type used 3 bytes, DATETIME uses 8 bytes, and
TIMESTAMP uses 4 bytes. But, as of MYSQL 5.6.4 fractional
seconds part is included in different length as needed for TIME,
DATETIME, and TIMESTAMP type as in table 1 and table 2.
The fractional part requires from 0 to 3 bytes.

Table 1. Storage requirement in MySQL
Data type Storage required

YEAR 1 byte
DATE 3 bytes
TIME 3 bytes + fractional seconds storage

DATETIME 5 bytes + fractional seconds storage
TIMESTAMP 4 bytes + fractional seconds storage

As you see in table 1 storage requirement for YEAR and

DATE type is unchanged. But, the other three types like TIME,
DATETIME, and TIMESTAMP uses different formats and
DATETIME is packed more efficiently using 5 bytes for
non-fractional part and 0 to 3 bytes for fractional part,
depending on the precision of fractional seconds of stored
values.

Table 2. Storage requirement for fractional seconds in MySQL

Precision of fractional seconds Storage required
0 0 bytes

1 ~ 2 1 byte
3 ~ 4 2 bytes
5 ~ 6 3 bytes

The TIME, DATETIME, and TIMESTAMP types can have

a fractional part. Storage structure for these types is big endian
[17] with the non-fractional part followed by the fractional part.

Table 3 shows TIME data type encoding for
non-fractional part. The negative sign bit is reserved for
future.

Table 3. TIME data type encoding

Usage Bits Remarks
sign 1 1: nonnegative,

0: negative
- 1 Reserved for future
hour 10 0-838
minute 6 0-59
second 6 0-59
total 24

Table 4 shows DATETIME data type encoding for

non-fractional part. The negative sign bit is reserved for
future.

Table 4. DATETIME data type encoding
Usage Bits Remarks
sign 1 1: nonnegative,

0: negative

INTERNATIONAL JOURNAL OF COMPUTERS Volume 10, 2016

ISSN: 1998-4308 70

Year &
month

17 year: 0-9999
month: 0-12

day 5 0-31
hour 5 0-23

minute 6 0-59
second 6 0-59

total 40

Table 5 shows TIMESTAMP data type encoding for

non-fractional part. The negative sign bit is reserved for
future.

Table 5. TIMESTAMP data type encoding

Usage Bits Remarks
sign 1 1: nonnegative,

0: negative
Year &
month

11 year: 1970-2038
month: 0-12

day 5 0-31
hour 5 0-23

minute 6 0-59
second 6 0-59

total 32

B. Time Format of Oracle
Oracle uses five different data types to store time data; DATE,
TIME, TIMESTAMP, TT_DATE, TT_TIMESTAMP.
TT_DATE and TT_TIMESTAMP are shorter and faster
version of DATE and TIMESTAMP data type respectively.
 The DATE data type stores the century and year, the month,
the day, the hours, the minutes, and the seconds. Oracle uses
seven bytes to store dates in the Julian era, ranging from
January 1, 4712 BC through December 31, 9999 AD. The
fixed-length fields of seven bytes each corresponds to century,
year, month, day, hour, minute, and second. There are no
fractional seconds in DATE type. Oracle stores time in
24-hour format like HH:MI:SS. By default, the time in a date
field is 00:00:00 A.M. if no time portion is entered. In a
time-only entry, the date portion defaults to the first day of the
current month.
 Julian dates allow continuous dating by the number of days
from a reference. The reference is 01-01-4712 years BC, so
Oracle uses integer values in seven digits to refer to a specific
date. You can use TO_NUMBER function if you want to use
Julian dates in calculations. You can also use the TO_DATE
function to enter Julian dates with the seven digit numbers.
 The TIME type is used for data values containing time only
without date data so that eight bytes are enough. TIME values
can be stored in 'HH:MM:SS' format ranging from 00:00:00 to
23:59:59. The fractional part of precision up to 9 digits can be
stored in the TIME data type.
 The TIMESTAMP data type is used for data values
containing both date and time parts. TIMESTAMP has a
range of '4712-01-01' BC to '9999-12-31' AD. The

TIMESTAMP type needs 12 bytes of storage, and the
fractional seconds precision range is up to 9.
 The TT_DATE data type is used for data values containing
date part only with reduced range of date range to use less
amount of storage. It has a range of '1753-01-01' AD to
'9999-12-31' AD. The TT_DATE type needs four bytes of
storage.
 The TT_TIMESTAMP data type is used for data values
containing both date and time part with reduced range of date
range to use less amount of storage. It has a range of
'1753-01-01' AD to '9999-12-31' AD, and the fractional
seconds precision range is up to 6. The TT_TIMESTAMP
type needs eight bytes of storage.
 As we understand the storage structure of MySQL and
Oracle DBMS to represent time and fractional seconds, we
can find that more attention is given to store the macro time
information rather than the micro time information. This fact
is originated from the fact that the traditional usage of
databases is to store business data. Because most business
data cover human business activities, the amount of ‘micro’
time information is relatively smaller than that of ‘macro’ time
information.

C. Problem Formation
Lets’ see how the date and time information are stored in the
databases. The following data in table 6 and table 7 are some
example of sensor data for acceleration measurements [18].
Table 6 shows the first half of the data.

Table 6. The first half of sensor data
63 209 2014-10-22 19:30:07.624000000
63 209 2014-10-22 19:30:07.644000000
63 209 2014-10-22 19:30:07.664000000
63 209 2014-10-22 19:30:07.684000000
63 209 2014-10-22 19:30:07.704000000

Table 7 shows the second half of the data.

Table 7. The second half of sensor data
-0.01928711 0.03955078 1.245605
-0.02612305 0.04418945 1.251465
-0.02172852 0.0378418 1.244629
-0.02954102 0.04052734 1.251953
-0.02392578 0.04003906 1.249023

 If the time information in the table is stored in character
format, it needs 27 bytes as we can see in the table. So, using 12
bytes to store timestamp information is economic choice as in
Oracle. But, as we can see in the time data in table 6, there are
many redundant time information of year, month, day, hour,
minute, as well as second.
 Let’s see how we may save storage roughly, if we use some
other structures to store the date or time information. In order to
make the problem simple, assume that we want to store
timestamp information in the database of Oracle so that we
make a table to store century, year, month, day among the seven
bytes that represent a timestamp. The (century, year, month,

INTERNATIONAL JOURNAL OF COMPUTERS Volume 10, 2016

ISSN: 1998-4308 71

day) information for a specific sensor data will be stored in this
new table. The table has two attributes, {sequence_number,
century_year_month_day}. Note that the following facts:

• Sequence number of 1 byte can store up to 256 different
numbers.

• Sequence number of 9 bits can store up to 512 different
numbers.

• One day consists of 3600 × 24 = 86,400 seconds.

 So, if we use 9 bits for the sequence number in the table, we
can store up to 512 different numbers. Therefore, instead of
using the original timestamp format, if we use the new database
structure and we measure the sensor data for up to 512 days, we
can save 32 – 9 = 23 bits for each timestamp data. Let’s see how
much storage we can save by the above scheme.
 As a simple example, let’s assume that one sensor generates
one data for each second and we want to gather the sensor data
for 512 days, and also assume that we have sensor networks
consisting of 10,000 sensors. So, for each day we can have
86,400 × 10,000 = 864,000,000 timestamp data. Conventional
timestamp format requires 12 bytes × 864,000,000 ≈ 9.7 GB.
But, in our new format, because we use the 9 bits and 8 bytes for
(hour, minute, second, fractional seconds) data for each
timestamp information, we need only about 75% storage
excluding the additional table. Note that the size of the
additional table is very small so that it’s almost ignorable.
Therefore, we can save storage about 25%.

Because we may have a lot of sensors and each sensor may
send sensing data frequently and regularly, we may store more
information in the new table. For example, we may store
(century, year, month, day, hour) information in the new table so
that we can save database storage more. Depending on the
measuring period, the size of the sequence number can be
determined. Saving about more than 25% storage for date or
time information will be significant.

III. SUGGESTED METHOD

A. Oracle’s Case
In order to split timestamp data in Oracle’s format, we need a
new function that can split a timestamp information into two
parts; the first part that will have the left part of the timestamp
information, for example, like (century, year, month, day), and
the second part that will have right part of the timestamp
information, for example, like (hour, minute, second, fractional
seconds). The head of the function looks like the following:

split_timestamp(arg1, arg2, arg3, arg4)

 The first parameter, arg1, corresponds to the original
timestamp information, and

 The second parameter, arg2, is an integer to indicate the
location of split.

 The third parameter, arg3, will be used to return the first
part of the timestamp information after split, and

 The fourth parameter, arg4, will be used to return the
second part of the timestamp information after split.

 Let’s see an example on how the split_timestamp function
can be used. Assume that arg2 is 4, then a timestamp
information will be split into two parts, (century, year, month,
day) and (hour, minute, second, fractional seconds). The arg3
that has (century, year, month, day) part of the timestamp
information, and will be stored in a table, so called CYMD table
as in Fig. 1, where the first part of the timestamp information is
stored. The arg4 that has (hour, minute, second, fractional
seconds) part of timestamp information and will be stored in
SensorT table as in Fig. 2, where the measured sensor data and
sensorID are also stored.
 For our previous example CYMD table has the information
of century, year, month, and day. SensorT table has the
information of hour, minute, and second as well as sensor data
including sensor ID and measured data. The primary key of
SensorT table is composite key, {Sequence_number,
hour_minute_second_fractional_seconds, sensorID}. Because
the attribute century_year_month_day in CYMD table is
defined as the primary key, we can check that a new input will
need new sequence number or not right away. That is, if we
cannot find a century_year_month_day in the CYMD table, we
have to generate the next sequence number. In CYMD table and
sensorT table underlined attributes are primary keys of each
table. Note that depending on the frequency of measurement, we
may use more parts in the timestamp format, and use more bits
to represent the sequence number in the CYMD table. The
corresponding change must be made in the sensorT table also.

Sequence_number century_year_month_day
9 bits 4 bytes (PK)

Fig. 1. The structure of CYMD table

Sequence
_number

hour_minute_s
econd_fraction
al_seconds

sensor
ID

Attribute1 .
..
AttributeN

9 bits 8 bytes … Sensor
data . . .

Fig. 2. The structure of sensorT table

Because the size of CYMD table will be relatively small,
we may take advantage of in memory database technology for
efficiency [19].

Therefore, if we store century, year, month, day in a
separate table, a possible SQL statement to recover the original
timestamp data can be based on equijoin operation.

SELECT original_timestamp(century_year_month_day,
hour_minute_second_fractional_seconds), sensorID,
Attribute1,…,AttributeN
FROM CYMD, sensorT

 WHERE CYMD. Sequence_number = SensorT.
 Sequence_number;

INTERNATIONAL JOURNAL OF COMPUTERS Volume 10, 2016

ISSN: 1998-4308 72

 The function original_timestamp(arg1, arg2) accepts two
parameters, arg1 and arg2 that represents the separated
timestamp information, and the function returns recovered
timestamp information. Moreover, if we define the above query
as a view, we can access sensor data without worrying about the
physical structure of the table. The following is the
corresponding view definition.

 CREATE VIEW sensorD
 AS

SELECT original_timestamp(century_year_month_day,
hour_minute_second_ fractional_seconds), sensorID,
Attribute1,…,AttributeN
FROM CYMD, sensorT

 WHERE CYMD. Sequence_number = SensorT.
 Sequence_number;

B. MySQL’s Case
Let’s see how we can apply our idea for Datetime data in
MySQL’s format. Datetime uses 5 bytes to store year, month,
day, hour, minute, and second. Additional 2 bytes are used for
the storage of fractional seconds if we want to store the
precision of 4 digits below the decimal point. Note that the
sensor data will have smaller precision than that of Oracle’s.
Table 8 shows an example of similar sensor data with the less
precision.

Table 8. The first half of sensor data
63 209 2014-10-22 19:30:07.6240
63 209 2014-10-22 19:30:07.6440
63 209 2014-10-22 19:30:07.6640
63 209 2014-10-22 19:30:07.6840
63 209 2014-10-22 19:30:07.7040

 Let’s assume that sensor generates data for every 1/100
second, and we want to split a datetime data into two parts; the
first part that will have the left part of the datetime information
like (year, month, day, hour), and the second part that will have
right part of the timestamp information like (minute, second,
fractional seconds), because the sensor data are gathered more
frequently. The head of the function looks like the following:

split_datetime(arg1, arg2, arg3, arg4)

 The first parameter, arg1, corresponds to the original
datetime information, and

 The second parameter, arg2, is an integer to indicate the
location of split.

 The third parameter, arg3, will be used to return the first
part of the datetime information after split, and

 The fourth parameter, arg4, will be used to return the
second part of the datetime information after split.

 Let’s see an example on how the split_datetime function can
be used. Assume that arg2 is 4, then a datetime information will
be split into two parts, (year, month, day, hour) and (minute,
second, fractional seconds). The arg3 that has (year, month, day,

hour) part of the datetime information, and will be stored in a
table, so called YMDH table as in Fig. 3, where the first part of
the datetime information is stored. The arg4 that has (minute,
second, fractional seconds) part of datetime information will be
stored in SensorTP table as in Fig. 4, where sensor data like
sensorID and measured data are stored also.
 For our example YMDH table has the information of year,
month, day, and hour. SensorTP table has the information of
minute, second, and fractional seconds as well as sensorId and
measured sensor data. The primary key of SensorTP table is
composite key, {Sequence_number,
minute_second_fractional_seconds, sensorID}. Because the
attribute year_month_day_hour in YMDH table is defined as
the primary key, we can check that a new input will need new
sequence number or not right away. That is, if we cannot find a
year_month_day_hour in the YMDH table, we have to generate
the next sequence number. In YMDH table and sensorTP table
underlined attributes are primary keys of each table. Because
our sensor generates signal every 1/100 second and we store
hour data in YMDH table, we need more bits for the sequence
number. Assume that we want to collect sensor data for 10 years.
Because we store up to hours in YMDH table and sore up to 10
years, we need 10 × 365 × 24 = 87600 different numbers to
distinguish each hour for ten years. Therefore, 17 bits are
enough for the sequence number.

Sequence_number year_month_day_hour
17 bits 28 bits (PK)

Fig. 3. The structure of YMDH table

Sequence
_number

Hour_minute_s
econd_fractiona
l_seconds

sensorI
D

Attribute1 ..
. AttributeN

17 bits 28 bits … Sensor
data . . .

Fig. 4. The structure of sensorTP table

If we store century, year, month, day, and hour in a
separate table, a possible SQL statement to recover the original
datetime data can be based on equijoin operation.

SELECT original_datetime(century_year_month_day_hour,
minute_second_fractional_seconds), sensorID,
Attribute1,…,AttributeN
FROM YMDH, sensorTP

 WHERE YMDH. Sequence_number = SensorTP.
 Sequence_number;

 The function original_datetime(arg1, arg2) accepts two
parameters, arg1 and arg2 that represents the separated datetime
information, and the function returns recovered datetime
information. Moreover, if we define the above query as a view,
we can access sensor data without worrying about the physical
structure of the table. The following is corresponding view
definition.

 CREATE VIEW sensorD

INTERNATIONAL JOURNAL OF COMPUTERS Volume 10, 2016

ISSN: 1998-4308 73

 AS
SELECT original_datetime(century_year_month_day_hour,
minute_second_ fractional_seconds), sensorID,
Attribute1,…,AttributeN
FROM YMDH, sensorTP

 WHERE YMDH. Sequence_number = SensorTP.
 Sequence_number;

 By using the structure we can save storage about 20%. If you
want to save some storage for sensor data, you may use
TIMESTAMP type in MySQL, or TT_TIMESTAMP type in
Oracle. The saving is 8 bits and 4 bytes for MySQL and Oracle
respectively compared to the DATETIME and TIMESTAMP
type. Anyway, similar procedures can be applied to these data
types also to save storage.

Even though other date and time data type in different
DBMSs uses some different storage formats, depending on the
data redundancy and how much space we want to save, similar
procedure and method as the previous examples can be applied
to the other date and time data types also.

IV. CONCLUSION
Sensor data has the information consisting of time or date and

measured data. For later analysis we should store the data in
databases. Sensor data are gathered regularly and very
frequently but not for very long period. Therefore, because the
measurement interval is usually very short, it is highly possible
that there is a lot of redundant information of measurement time
or date, so that the information occupies a large portion of
storage space in the databases extravagantly. In order to save the
space, we suggest a key and time data structure to store the
redundant part of time or date information in the database
separately. Because of the separation two additional functions
are suggested. The first function splits time or date information
to store separately, and the second function merges the split time
or date information together for later data retrieval. Rough
counting about storage saving is about more than 20% for date
or time information by the expense of additional table and
database operations. The expense for the additional operation
may be small compared to the waste of storage, because
computing resource becomes cheaper and cheaper.

REFERENCES
[1] I. Chiuchisan, O. Geman, "An approach of a decision support and home

monitoring system for patients with neurological disorders using internet
of things concents," WSEAS Transactions on Systems, vol. 13, 2014, pp.
460-469.

[2] C. Turcu, C. Turcu, V. Gaitan, "Merging the internet of things and
robotics," Proceedings of the 16th WSEAS International Conference on
Systems, 2012, pp. 499-504.

[3] Z. Bojkovic, B. Bakmaz, M. Bakmaz, "Some challenging issues for
internet of things realizations," Recent Advances in Telecommunications,
Signals and Systems, 2013, pp. 63-70.

[4] S. Shanmuganthan, A. Ghobakhilou, P. Sallis, "Sensor data acquisition
for climate change modelling," WSEAS Transactions on Circuits &
Systems, vol. 7, issue 7, 2008, pp. 942-952.

[5] S. Kaisler, F. Armour, J.A. Espinosa, W. Money, “Big Data: Issues and
Challenges Moving Forward,” Proceedings of 2013 46th Hawaii
International Conference on System Sciences, pp. 995-1004, 2013.

[6] T. Plunkett, B. Macdonald, B. Nelson, M. Hornick, H. Sun, K.
Mohiuddin, D. Harding, G. Mishra, R. Stackowiak, K. Laker, D. Segleau,
Oracle Big Data Handbook, McGraw-Hill, Oracle press, 2013.

[7] Y. Li, L. Guo, Y. Guo, "An Efficient and Performance-Aware Big Data
Storage System," Cloud Computing and Services Science, I.I. Ivanov, M.
Sinderen, F. Leymann, T. Shan, eds., Communications in Computer and
Information Science, Vol. 367, 2013, pp.102-116.

[8] J.S. Veen, B. Waaij, R.J. Meijer, “Sensor Data Storage Performance: SQL
or NoSQL, Physical or Virtual,” Proceedings of 2012 IEEE Fifth
International Conference on Cloud Computing, 2012, pp. 431-438.

[9] J. Zhang, Y. Yang, L.J. Chen, M. Wang, T. Moscibroda, Z. Jhamg,
“Impression Store: Compressive Sensing-based Storage for Big Data
Analytics,” Proceeding of HotCloud 2014, USENIX – Advanced
Computing Systems Association,
http://research.microsoft.com/apps/pubs/default.aspx?id=219982.

[10] G. Aceto, A. Botta, A. Pescape, C. Westphal, "Efficient Storage and
Processing High-Volume Network Monitoring Data," IEEE Transactions
on Network and Service Management, Vol. 10, Issue 2, 2013, pp.
162-175.

[11] Unixtimestamp.com, http://www.unixtimestamp.com/index.php
[12] As DBMS wars continue, PostgreSQL shows most momentum,

http://www.zdnet.com/article/as-dbms-wars-continue-postgresql-shows-
most-momentum/

[13] R. Greenwald, R. Stackowiak, Oracle Essentials: Oracle Database 12c,
O’Reilly, 2013.

[14] P. DuBois, MySQL Cookbook: Solutions for Database Developers and
Administrators, O'Reilly Media, 3rd ed., 2014.

[15] H. Sug, K. Cha, "An efficient database structure to store sensor data,"
Proceedings of the 14th International Conference on Applications of
Computer Engineering (ACE '15), 2015, pp. 116-119.

[16] NIST, Frequently Asked Questions,
http://www.nist.gov/pml/div688/utcnist.cfm

[17] Big and Little Endian,
https://www.cs.umd.edu/class/sum2003/cmsc311/Notes/Data/endian.ht
ml

[18] B.B. Graham, Using an Accelerometer Sensor to Measure Human hand
Motion, BS and ME thesis, Massachusetts Institute of Technology, 2000.

[19] H. Zhang, G. Chen, B.C. Choi, K. Tan, M.Z. Zhang, "In-Memory Big
Data Management and Processing: A Survey," IEEE Transactions On
Knowledge and Data Engineering, Vol. 27, No. 7, 2015, pp. 1920-1948.

Hyontai Sug received BS degree in computer science and statistics from Busan
national university, Korea, in 1983, and MS degree in computer science from
Hankuk university of foreign studies, Korea, in 1986, and Ph.D. degree in
computer and information science and engineering from university of Florida,
USA in 1998. He was a researcher of Agency for Defense Development, Korea
from 1986 to 1992, and a full time lecturer of Pusan university of foreign
studies, Korea from 1999 to 2001. Currently, he is a professor of Dongseo
university, Korea since 2001. His research interests include data mining and
database applications.

INTERNATIONAL JOURNAL OF COMPUTERS Volume 10, 2016

ISSN: 1998-4308 74

