


Abstract—For large existing body of automatically detected
security events, be it honeypot machines or IDS systems,
golden mine of netflow data or log data of production
machines, manual distribution is infeasible. The Warden
project is a platform for automated sharing detected security
events among security teams. Involved parties can expand
their own detected threat stream by events from other
members, and vastly improve their security threat evasion and
knowledge about network health. Clients, connected to
Warden, can use incoming data as early warning systems, data
mining and analysis engines, reputation databases, blacklist or
firewall rule generators or just a data storage pools for history
and trend analysis. This paper describes the design and
implementation of Warden 3, the fundamental rewrite of
previous version, taking advantage of nowadays technologies,
using flexible JSON based Intrusion Detection Extensible
Alert (IDEA) format, and aiming for robustness and solid
performance.

Keywords—alert, security event, incident response, ids, event
exchange, honeypot, json

I. INTRODUCTION

arden is a system for efficient sharing information
about detected threats, available under 3-clause BSD

license. The system mimics the behaviour of the queue with
multiple producers and multiple consumers – the detection
probes push security events to the hub, and clients – analysers,
blacklist generators, storage and aggregators can pull the new

W



The work has been supported by the CESNET association and the operator
of the Czech National Research and Education Network referred to as
CESNET2 within its “Large Infrastructure” (LM2010005) research
programme, running within 2010–2015 timeframe.

Pavel Kácha, Michal Kostěnec and Andrea Kropáčová work in
CESNET,, a. o. l. e., Zikova 4, Prague, Czech Republic (e-mails:
ph@cesnet.cz, kostenec@cesnet.cz, andrea@cesnet.cz).

events at will. However, to take some burden out of clients
and network, the server provides means for basic filtering.

It is safe to say that venerable Warden 2 [16] was ambitious
project and vast improvement in security incident sharing in
CESNET network – the identification of new requirements
and need for new directions is itself a proof that it is useful
and project itself was a great achievement.

Warden improved security incident handling speed in
CESNET NREN and helped to reach healthier network state.
Its vast body of incident data – be it from internal detectors, or
from third party sources [15] – allowed for interesting data
processing and correlation projects, such as [1] and [9].

II. REQUIREMENTS

However, based on several years of life with previous
version of Warden, real world experience and also taking into
account current state of the art, let us identify possible
improvements, suitable changes, and new requirements.

A. Previous Warden version review

Warden 2 used RPC calls for sending and receiving events
using SOAP over HTTPS. While HTTPS shows its utility,
SOAP with its complete XML (de)marshalling stack bites into
performance and brings in large tree of library dependences.
There is a need for lighter and more maintainable approach.

Events were represented as number of RPC call arguments
(name, time, type, attack source IP and type, attack destination
port, attack volume and free text note). That has shown as
insufficient for many of security events nowadays in the wild
(complex phishing attacks as a notable example). We need to
find more flexible and extensible representation.

Also, code for validation of events must have been written
by hand, specifically for our defined fields. Some standard
solution would be more robust.

Warden 2 server provided basic event filtering for receiving
clients, based on event type, and on simplistic notion of “own”
events. This proved insufficient, users are calling for filtering
based on detector type (honeypots provide greater certainty
than portscan detectors, for example). Also, “own” means
something different for various users, especially in
organisations with complicated internal hierarchy – we need
to use better representation.

Event type and detector description type was represented by
loose set of categories (tags), which were added on “as
needed” basis. We need to use some more standard and
structured solution.

Sending API was designed to push only one event at a time,

Pavel Kácha, Michal Kostěnec, Andrea Kropáčová

Warden 3: Internet Threat Sharing Platform

Fig. 1: Warden architecture

INTERNATIONAL JOURNAL OF COMPUTERS Volume 10, 2016

ISSN: 1998-4308 101

severely limiting throughput and overall sender performance.
Clients needed to save state – while this is good feature to

have for complex receiving clients workflow, there is no need
for simple pull-process-forget clients to be stateful.
 In Warden 2, clients get authenticated by server certificate,
however server certificate is usually same for the whole
machine, so individual clients are differentiated only by telling
its own name. However, client name is widely known, so this
allows for client impersonation within one machine. We
should introduce more tamper proof solution.

Last but not least – Warden 2 server was written in Perl.
While it was logical choice when the project started,
nowadays, when Perl 3 (and necessary ported libraries) is
nowhere near to finish, number of skilled Perl programmers is
on the decline, and stability and quality and compatibility of
requisite libraries for Warden 2 varies wildly, even language
and platform is worth reconsideration.

III. DESIGN

Lets now elaborate on stated requirements and make
implementation decisions.

A. Protocols

Warden RPC calls essentially consist of parametrised event
pull, unconditional event push and service calls for getting
information from server. Pull can be realised by standard bare
HTTP call, however as HTTP notion of return data are general
“documents”, we will have to choose some way to serialise. In
push direction, sending event data through HTTP GET
parameters is impractical due to encoding concerns and size
limits, so POST with the same serialisation format would be
feasible. While we can consider XML (which is driving
engine SOAP in previous Warden version), there exists much
lighter solution, which gained widespread recognition, is able
to directly represent fundamental data structures from various
programming languages, and is often used together with
various HTTP technologies – JSON.

B. Formats

The serialisation protocol closely relates to format of
security events. We have already (originally for Mentat project
[9]) created structured and extensible format – IDEA [5],
which already uses JSON as main representation.

With IDEA we also get mature incident categorization
(based on MkII [14]) and expressive set of detector
description tags for free [6].

Also, there are already tools in place for IDEA, which
provide validation according to JSON schema definition,
solving yet another requirement.

C. Filtering

Based on experience, we don't need overly complex
filtering, Warden should serve mostly as reliable transport
mechanism, not data-mining store or security event search
engine. IDEA gives us notion of categories and detector tags,
so we will allow for positive (“has category”) and negative
(“does not have category”) filters on these fields. That will
satisfy both use for searching by type (all portscans will have
category Recon.Scanning) and for searching by detector type

(if we want to get only confirmed attacks, we can filter out
only detectors, based on successful attack – by for example
Honeypot tag).

D. Organisational hierarchy filtering

We are still facing problem with notion of “own” events.
Two administrators from one organisation may have their own
reasons to either accept each others detectors data as “own”
(they already have the data internally), or to understand each
others detectors data as foreign (they want the data to arrive
through Warden). As we cannot force any kind of rigid
resolution onto them, we have to provide solution, which
allows to project their notion onto the system and use it for
filtering of “own” wanted/unwanted events.

Logical solution would be using hierarchy of DNS names.
However, keeping more complicated structure in DNS servers
gets inconvenient very quickly, and also may unwillingly
disclose addresses of the detectors or honeypots. As we do not
need complete distributed name infrastructure, we can use
hierarchical IDEA Node names as the base and allow
organisations to define identifiers inner structure themselves.
So, modelled after Java class names, client name is dot
separated list of labels, with significance from left to right –
leftmost denoting largest containing realm, rightmost denoting
single entity. So if we have name realm scheme akin to
"org.example.csirt.honey2", we can allow to filter based on
prefixes and it is than completely responsibility of
organisation, what hierarchy and names it will use and how it
will filter incoming events.

We can also allow both positive and negative filters.

E. Bulk send/receive

Pull API is able to provide client with requested number of
events on one call, however here server is at command at
maximum limit of events it is willing to send. If we allow bulk
transfer for push API, server may receive arbitrary number of
events – even very large number – in one call. As server has to
balance throughput and responsiveness, it also has to do some
limiting. We will thus let server to present client with limit
constants (for both directions) in initial handshake
communication, and also in error message structures, should
the client overflow these constants.

F. Authentication

To mitigate possibility of impersonation among clients on
one machine, clients will have to supplement shared secret
(instead of their publicly known name) during queries. As the
connection is always encrypted over HTTPS and shared secret
is distributed only once on client registration over secure
channel, there is no need to complicate things with additional
encryption or handshake scheme. However note that this
mechanism is only for transition phase to specifically tailored
certificates, which will contain client (not only machine)
identifier directly.

Clients will also have to have server authority certificate (or
chain) at their disposal to be able to verify server authenticity.

INTERNATIONAL JOURNAL OF COMPUTERS Volume 10, 2016

ISSN: 1998-4308 102

G. State

At the server, each event gets assigned integer serial
number. These numbers are sequential, so we can keep track
of the last event "id" each client have received and next time
provide him only with yet unseen events.

Server will also keep state of the last downloaded event for
each client, thus freeing clients from necessity to keep
permanent state themselves – however clients are free to
provide their own notion of state id for each query and saving
it on their own, should the need arise – for example while
using more sophisticated filtering schemas.

H. Logging/Debugging

Sometimes administrators need to debug problems, which
arise only when using
specific client or specific setup. Errors like these are hard to
hunt both from client and server side. We should try provide
administrators with enough information and tools to simplify
hunting of problems like these.

Usual attempt is to use logging. Good lesson to learn comes
from Postfix MTA. Each mail message, entering the system,
receives sufficiently unique identifier, which gets propagated
to all log messages, appears in SMTP communication and
ends up even in Received headers of the mail messages. In
Warden, each query can also acquire unique identifier to get
written into all related log messages at various parts of the
system, and this id can get returned in the case of errors.

Also, server should provide some call to acquire basic
information about server, its capabilities and limits.

I. Platform

Experience shows that Perl is not ideal choice anymore,
however we would like to stay with flexibility, rapid
prototyping and deployment speed of dynamic scripting
language. We need solid library support for JSON and HTTPS
on client side and support for high performance data based
(non HTML) web application, along with good database
support.

As Warden client library is only a communication channel,
on which other third party data processing applications will be
based, we also have to consider user base scope, libraries and
frameworks support.

Our choice fell naturally to Python, based also on
experiences on other projects. Python standard library already
provides HTTP and HTTPS support, work with X509
certificates for authentication, WSGI support for connectors to
powerful web server software, solid database support, and
also handful of scientific frameworks (namely NumPy [11],
SciPy [13] and Matplotlib [10]).

We also need the high-performance communication
channel. Python brings in WSGI [4], the interface API web
servers. There exist WSGI connectors to various web server
software, among others to venerable Apache HTTP server, to
which we can trustfully offload the performance burden of
HTTP(S) implementation.

IV. HTTP API DESIGN

Leaving SOAP creates possibilities for arguments and
results representation. We can identify two three classes of
transferred data – structured event data (transferred both
directions), error explanations (only from server to client) and
query modification arguments (only from client to server).

Considering modification arguments, such as authentication
tokens, filtering and first event ID, the well understood and
widely used notion of URL parameters suits well – both sides
know the type of the value, so we only need to transfer
key/value pairs of strings. Repeated arguments can easily
mimic multivalues/arrays.

For structured data in push direction POST data can be used
and for pull direction we can send resulting data directly.
However, we will have to settle for structure.

The examples are provided as calls to command line HTTP
client utility curl [3], which also shows that by using this
design we are able to access server methods even without
client library, which is very useful for debugging, and can be
also used as a base for very lightweight clients.

A. Error handling

If HTTPS call succeeds (200 OK), method returns JSON
object containing requested data.

Should the call fail, server returns HTTP status code,
together with JSON object, describing the errors (there may be
multiple ones, especially when sending events). The keys of
the object, which may be available, are:

• method – name of the called method
• req_id – unique identifier or the request (for

troubleshooting, Warden administrator can also uniquely
identify related log lines)

• errors – always present list of JSON objects, which
contain:
◦ error – HTTP status code
◦ events – list if indices of events, affected by this

particular error. If there is error object without events
key, caller must consider all events affected

◦ message – human readable error description

Other context dependent fields may appear, see particular
method description.

Client errors (4xx) are considered permanent – client must
not try to send same event again as it will get always rejected
– client administrator will need to inspect logs and rectify the
cause.

Server errors (5xx) may be considered by client as
temporary and client is advised to try again after reasonable
recess.

B. Common arguments

• secret – shared secret, assigned to client during registration
• client – client name, optional, can be used to mimic

Warden 2 authentication behaviour if explicitly allowed
for this client by server administrator

INTERNATIONAL JOURNAL OF COMPUTERS Volume 10, 2016

ISSN: 1998-4308 103

C. getEvents method

Fetches outstanding events, that means events with id
higher, than last downloaded, from server.

1) Arguments
• count – number of requested events
• id – starting serial number requested, id of all received

events will be greater
• cat, nocat – selects only events with categories, which

are/are not present in the event Category field (mutually
exclusive)

• group, nogroup – selects only events originated/not
originated from this realms and/or client names, as denoted
in the event Node.Name field (mutually exclusive)

• tag, notag – selects only events with/without this client
description tags, as denoted in the event Node.Type field
(mutually exclusive)

2) Returns
• lastid – serial number of the last received event
• events – array of IDEA events

3) Example

$ curl \
 --key key.pem \
 --cert cert.pem \
 --cacert ca.pem \
 --request POST \
 \
"https://warden.example.org/getEvents?\
secret=SeCrEt\
&count=1\
&nogroup=org.example\
&cat=Abusive.Spam\
&cat=Fraud.Phishing"

{"lastid": 581,
 "events": [{
 "Format": "IDEA0",
 "DetectTime": "2015-02-03T09:55:21.563638Z",
 "Target": [{"URL": ["http://example.com/"]}],
 "Category": ["Fraud.Phishing"],
 "Note": "Example event"}]}

D. sendEvents method

Uploads events to server.
1) Arguments

• POST data – JSON array of Idea events
2) Returns
Object with number of saved messages in saved attribute.

3) Example:
$ eventid=$RANDOM$RANDOM$RANDOM$RANDOM$RANDOM
$ detecttime=$(\
 date --rfc-3339=seconds|tr " " "T")
$ client="cz.example.warden.test"
$ printf '
[
 {
 "Format": "IDEA0",
 "ID": "%s",
 "DetectTime": "%s",
 "Category": ["Test"],
 "Node": [{"Name": "%s"}]
 }
]' $eventid $detecttime $client |\
curl \
 --key $keyfile \
 --cert $certfile \
 --cacert $cafile \
 --request POST \
 --data-binary "@-" \
 "https://warden.example.org/sendEvents?"\
 "client=$client&secret=SeCrEt"

{"saved":1}

4) Example with error:

$ curl \
 --key $keyfile \
 --cert $certfile \
 --cacert $cafile \
 --connect-timeout 3 \
 --request POST \
 --data-binary '[{"Format":'\
 '"IDEA0","ID":"ASDF","Category":[],'\
 '"DetectTime":"asdf"}]' \
 "https://warden.example.org/sendEvents?"\
 "client=cz.example.warden.test&secret=SeCrEt"

{"errors":
 [
 {"message": "Validation error:
key \"DetectTime\", value \"asdf\", expected
- RFC3339 timestamp.",
 "events": [0],
 "error": 460
 }
],
 "method": "sendEvents",
 "req_id": 3726454025
}

E. getInfo method

Provides client with basic server information.
1) Returns

• version – Warden server version string
• description – server greeting
• send_events_limit – sendEvents will be rejected if client

sends more events in one call
• get_events_limit – getEvents will return at most that much

events

INTERNATIONAL JOURNAL OF COMPUTERS Volume 10, 2016

ISSN: 1998-4308 104

2) Example

$ curl \
 --key key.pem \
 --cert cert.pem \
 --cacert ca.pem \
 --connect-timeout 3 \
 --request POST \
 "https://warden.example.org/getInfo?
secret=SeCrEt"

{"version": "3.0-beta1",
 "send_events_limit": 500,
 "get_events_limit": 1000,
 "description": "Warden 3 server"}

V. DATABASE DESIGN

A. Essential queries

Lets take a look at the queries, which will create focus of
the server work.

Each pull query is based on id, provided by client,
signalling which events it has already received. Clients may
also require to filter events according to category, detector
tags and trailing part of detector name (“realm”).

Push queries are nothing special, they will just have to
update all potential auxiliary structures accordingly – but the
backend database engine must provide enough locking
granularity to be able to cope with continuous stream of writes
along with continuous stream of reads.

Each query has to be authenticated by client shared secret
and/or client name, and we should be able to differentiate
between clients, which are allowed to send, clients, which are
allowed only to receive, and new, unverified clients, which are
able to send only events marked with specific “Test” category.

B. Discussion

It is clear that we need the table of events and table of
clients and positive relation between them.

Concerning events table, the only information we need to
parse out from arriving JSON events are the filtering fields, so
we do not need to try to represent the whole IDEA structure in
database. However, this is in fact mainly Category array,
which means we have one to many relation and we will have
to split these into separate table. The same applies to the
detector tags.

Both tags and categories are transferred as free text strings,
which shows as a performance and space intensive way to
represent them in relations. We have also tried conversion to
hashed fixed length strings, which lessened impact, however
we have still felt, that there is a margin. However database
itself does not need to work with text identifiers directly in the
queries, so we will create mapping of these finite sets to
integer sequence and use these quite short integers in the
database representation.

Interesting situation arises in connection with detector
names – we have to be able to filter by prefix substring –
“org”, “org.example”, “org.example.honeypot” can all be
used as patterns. One possibility is to create auxiliary table
with all possible prefixes, however that shows very bad
performance in negative queries, where database is forced to
generate large list of all non matching prefixes on which it

consequently filters event data. However database indices are
indeed prefix based, so correctly used anchored LIKE operator
is enough.

Next complication we have to solve is saving last pull ids of
accessing clients – straightforward solution would be to store
it in the table of clients. However, table of clients is mostly
immutable, and from administration point of view it would be
wise to leave access to it only to human operator, avoiding
frequent changes by server itself, we will thus split this
information into last_events table in the form of client
identifier, last event id and login timestamp.

Concerning database engine itself – we prefer raw
performance over capabilities – we can miss a few security
events in case of outage if server is able to withstand large
number of concurrently accessing client connections. Our first
choice points to MySQL, whose InnoDB engine supports
reasonable number of database capabilities and fine grained
line based locking (necessary for concurrent read/write
access) together with decent performance.

C. Final schema
CREATE TABLE events (
 id int(11) NOT NULL AUTO_INCREMENT,
 received timestamp NOT NULL,
 client_id int(11) NOT NULL,
 `data` longtext NOT NULL,
 valid tinyint(1) NOT NULL DEFAULT 1,
 PRIMARY KEY (id),
 KEY id (id, client_id)
);

CREATE TABLE event_category_mapping (
 event_id int(11) NOT NULL,
 category_id int(11) NOT NULL,
 KEY event_id_2 (event_id, category_id)
);

CREATE TABLE event_tag_mapping (
 event_id int(11) NOT NULL,
 tag_id int(11) NOT NULL,
 KEY event_id_2 (event_id, tag_id)
);

CREATE TABLE clients (
 id int(11) NOT NULL AUTO_INCREMENT,
 registered timestamp NOT NULL,
 requestor varchar(256) NOT NULL,
 hostname varchar(256) NOT NULL,
 note text NULL,
 valid tinyint(1) NOT NULL DEFAULT 1,
 name varchar(64) NOT NULL,
 secret varchar(16) NULL,
 `read` tinyint(1) NOT NULL DEFAULT 1,
 `write` tinyint(1) NOT NULL DEFAULT 0,
 test int(11) NOT NULL DEFAULT 0,
 PRIMARY KEY (id)
);

CREATE TABLE last_events (
 id int(11) NOT NULL AUTO_INCREMENT,
 client_id int(11) NOT NULL,
 event_id int(11) NOT NULL,
 `timestamp` timestamp NOT NULL,
 PRIMARY KEY (id),
 KEY client_id (client_id, event_id)
);

INTERNATIONAL JOURNAL OF COMPUTERS Volume 10, 2016

ISSN: 1998-4308 105

VI. PYTHON WRAPPER API

Python API tries to abstract from raw HTTPS/URL/JSON
details. User instantiates Client class with necessary settings
(certificates, secret, client name, logging, limits, ...) and then
uses its method to access server.

A. Client constructor

wclient = warden.Client(
 url,
 certfile=None,
 keyfile=None,
 cafile=None,
 timeout=60,
 retry=3,
 pause=5,
 get_events_limit=6000,
 send_events_limit=500,
 errlog={},
 syslog=None,
 filelog=None,
 idstore=None,
 name="org.example.warden_client",
 secret=None)

1) Arguments
• url – Warden server base URL
• certfile, keyfile, cafile – paths to X509 material
• timeout – network timeout value in seconds
• retry – number retries on transitional errors during sending

events
• pause – wait time in seconds between transitional error

retries
• get_events_limit – maximum number of events to receive

(note that server may have its own notion)
• send_events_limit – when sending, event lists will be split

and sent by chunks of at most this size (note that used
value will get adjusted according to the limit reported by
server)

• errlog – stderr logging configuration dict
◦ level – most verbose loglevel to log

• syslog – syslog logging configuration dict
◦ level – most verbose loglevel to log
◦ socket – syslog socket path (defaults to

"/dev/log")
◦ facility – syslog facility (defaults to "local7")

• filelog – file logging configuration dict
◦ level – most verbose loglevel to log
◦ file – path to log file

• idstore – path to simple text file, in which last received
event ID gets stored. If None, server notion is used

• name – client name
• secret – authentication secret

2) Returns
Client object, which provides methods, exposing and

simplifying Warden HTTP API.

B. Configuration file helper

warden.read_cfg(cfgfile)

read_cfg allows for object to get initialized from JSON
like configuration file. It's essentially JSON, but full line
comments, starting with "#" or "//", are allowed. read_cfg

reads the configuration file and returns dict suitable for
passing as Client constructor arguments.

1) Arguments
• cfgfile – path to JSON configuration file, relative to base

script position

2) Returns
Dict, prepared from read JSON data.

3) Example

wclient = warden.Client(
 **warden.read_cfg("warden_client.cfg"))

C. warden.Client.getEvents

wclient.getEvents(
 id=None,
 idstore=None,
 count=1,
 cat=None, nocat=None,
 tag=None, notag=None,
 group=None, nogroup=None)

Gets outstanding events from server by getEvents HTTP
call.

1) Arguments
• id – can be used to explicitly override value from idstore

file; corresponds to id in HTTP API
• idstore – can be used to explicitly override idstore for this

request
• count, cat, nocat, group, nogroup, tag, notag – correspond

to their HTTP API counterparts
2) Returns

List of IDEA events from queue greater than id.

D. warden.Client.sendEvents

wclient.sendEvents(
 self, events=[], retry=None, pause=None)

1) Arguments
• events – list of events to be sent to server
• retry, pause – use this values just for this call instead of the

value from constructor
2) Returns

Dict with number of sent events under "saved" key.
3) Notes
Events list length is limited only by available resources,

sendEvents will split it and send separately in at most
send_events_limit long chunks (however note that sendEvents
will also need additional memory for its internal data
structures).

Server errors (5xx) are considered transitional and
sendEvents will do retry number of attempts to deliver
corresponding events, delayed by pause seconds.

Should the call fail because of errors, particular errors may
contain "events" list. Values of the list are then indexes into
POST data array. If no "events" list is present, all events
attempted to send must be considered as failed (with this
particular error). See also IV.A Error handling.

Errors may also contain event IDs from Idea messages in
"events_id" list.

INTERNATIONAL JOURNAL OF COMPUTERS Volume 10, 2016

ISSN: 1998-4308 106

This is primarily for logging – client administrator may
identify offending messages by stable identifiers.

E. warden.Client.getInfo

wclient.getInfo()

Returns dictionary of server related information from
getInfo call.

F. Error class

Error(
 message,
 logger=None,
 error=None,
 prio="error",
 method=None,
 req_id=None,
 detail=None,
 exc=None)

Class, which gets returned in case of client or server error.
Caller can test whether it received data or error by checking:

isinstance(res, Error).

 However if he does not want to deal with errors altogether,
this error object also returns False value if used in Bool
context and acts as an empty iterator – in following examples
do_stuff() is not evaluated:

if res:
 do_stuff(res)

for e in res:
 do_stuff(e)

str(Error_Instance) outputs formatted error, info_str() and
debug_str() output increasingly more detailed info.

VII. PERFORMANCE

Nowadays there is 36 millions of events in the Warden
database of average event size 786.3 B. Clients produce on
average 7 events per connection, however bunches of 1000
events (selected as reasonable maximum) are not rare.
However median is 2 events per connection, so we will have
to make sure final Warden 3 performs well both on many
small accesses and on bulk uploads.

Indicative testing of prototype, based on this design, shows
that practical limit may be somewhere about 40 000 incoming
events per second on single event per connections, however
throughput seems to be able to raise at least up to 110 000
events per seconds when clients use 100 events per connection
– this indicative test was made using up to 80 simultaneously
accessing clients and shows that outlined design is worth
pursuing.

VIII.CONCLUSION

Warden 3 is complete redesign, based on the identified
shortcomings emerged during several years of Warden 2.X
operation. Which is not to lessen merit of Warden 2, it is

necessary to note that without it, Warden 3 wouldn't most
probably exist.

New Warden uses flexible and descriptive event format,
based on JSON. Warden 3 protocol is based on plain HTTPS
queries with help of JSON (Warden 2 SOAP is heavyweight,
outdated and draws in many dependencies). Clients can be
multilanguage, unlike SOAP/HTTPS, plain HTTPS and JSON
is mature in many mainstream programming languages.

Server is written in Python – mature language with
consistent and coherent libraries and many skilled developers,
and uses MySQL as efficient data storage. The Python WSGI
layer is run under venerable Apache web server.

The performance characteristics show, that despite
providing more features and working with much more
complex event format, Warden 3 outperforms previous
version in orders of magnitude, and should be able to
withstand very significant peak loads.

IX. FUTURE WORK

Some of the Warden 2 clients were already converted to
prototype Warden 3 instance with superb results, however
turning the prototype into full production state along with
subsequent transferring of existing clients will still need a lot
of work.

However, family of tools, based on Warden client library,
will be able to emerge, namely connectors for Kippo and
Dionaea honeypots, connectors to storage and data mining
tools and many others – able to work with much wider pool of
information, accessible in Warden's new extensive security
event format.

X. ACKNOWLEDGMENT

The access to computing and storage facilities owned by
parties and projects contributing to the National Grid
Infrastructure MetaCentrum (http://www.metacentrum.cz/en/),
provided under aforementioned programme, is highly
appreciated.

REFERENCES

[1] V. Bartoš, M. Žádník, An Analysis of Correlations of Intrusion Alerts in
an NREN. 19th International Workshop on Computer-Aided Modeling
Analysis and Design of Communication Links and Networks (CAMAD).
IEEE, Athens, December 2014. ISBN: 978-1-4799-7134-3.

[2] D. J. Bernstein, Using Maildir format (original specification), Cited 3
Sep 2015. Available: http://cr.yp.to/proto/maildir.html

[3] cURL. Cited 29 May 2015. Available: http://curl.haxx.se/
[4] P. J. Eby, Python Web Server Gateway Interface v1.0.1, 26 Sep 2010.

Available: https://www.python.org/dev/peps/pep-3333/
[5] P. Kácha, IDEA: Designing the Data Model for Security Event

Exchange, 17th International Conference on Computers: Recent
Advances in Computer Science, Rhodos, 16 July 2013, ISBN: 978-960-
474-311-7, ISSN: 1790-5109.

[6] P. Kácha, IDEA: Security Event Taxonomy Mapping, 18th International
Conference on Circuits, Systems, Communications and Computers:
Advanced Information Science and Applications, Santorini, 17 July
2014, ISBN: 978-1-61804-236-1, ISSN: 1790-5109.

[7] P. Kácha, Incident Classification Comparison (with eCSIRT.net mkII as
main reference), CESNET, 10 January 2014. Available:
https://csirt.cesnet.cz/_media/
en/idea/incident_classification_comparison.ods

[8] Postfix. Cited 23 Sep 2015. Available: http://www.postfix.org/
[9] J. Mach, Expert system Mentat, CESNET 9 December 2013. Available:

http://www.cesnet.cz/wp-content/
uploads/2013/12/mentat-paper.pdf

INTERNATIONAL JOURNAL OF COMPUTERS Volume 10, 2016

ISSN: 1998-4308 107

[10] matplotlib. Cited 29 May 2015. Available: http://matplotlib.org/
[11] NumPy. Cited 29 May 2015. Available: http://www.numpy.org/
[12] J. Safarik, M. Voznak, J. Slachta, L. Macura, F. Rezac and J. Rozhon,

Modular system for gathering and classification of SIP attacks, 19th
International Conference on Circuits, Systems, Communications and
Computers 2015: Recent Advances in Computer Science, Zakynthos,
July 2015. ISBN: 978-1-61804-320-7.

[13] SciPy. Cited 29 May 2015. Available: http://www.scipy.org/
[14] D. Stikvoort, Incident Classification. 23 May 2013. Available:

http://www.terena.org/activities/tf-csirt/
meeting39/20130523-DV1.pdf

[15] P. Vachek, CESNET CSU System, 16th WSEAS International
Conference on Computers 2012: Recent Researches in Communications
and Computers, Kos Island, July 2012, ISBN:
978-1-61804-109-8.

[16] Warden. CESNET. Copyright 2010-1013. Last updated 17 April 2013.
Available: https://wardenw.cesnet.cz/en/index

Pavel Kácha (CESNET) has worked in computer security, software
development and system administration over 12 years. He is a member of the
CSIRT team of the CESNET association where he is responsible for several
security incident handling related projects. He also participated in establishing
CSIRT.CZ – the Czech national CSIRT team. He specialises in timely security
incident detection and information dissemination and enhancing a general
security awareness.

Michal Kostěnec (CESNET) focuses mainly on computer networks and
security. Since 2009 he is a network specialist at the University of West
Bohemia, where he also participates on increasing of MAN WEBnet security
and develops network oriented tools. Nowadays he is a member of the
CESNET-CERTS security team, where he is responsible for honeypot
administration, development and distributed software testing. He is also a
member of the Forensic Laboratory team (FLAB), where he conducts
penetration and performance tests.

Andrea Kropáčová (CESNET) specialises in computer network security and
security of services operated on the network, with the emphasis on the
handling of security incidents, their detection and prevention. She is the head
of the CESNET-CERTS security team, the first officially established CSIRT-
type team in the Czech Republic (in 2004), operating above the CESNET2
network. In the framework of the grant of the Czech Ministry of Interior, she
and the CESNET-CERTS members established the CSIRT.CZ team, which
currently serves at the Czech National CSIRT.

INTERNATIONAL JOURNAL OF COMPUTERS Volume 10, 2016

ISSN: 1998-4308 108

