
 

 

  
Abstract—The problem of designing of analog network for a 

minimal computer time has been formulated as the functional 
minimization problem of the control theory. The design process in 
this case is formulated as the controllable dynamic system. The 
optimal sequence of the control vector switch points was determined 
as a principal characteristic of the minimal-time system design 
algorithm. The conception of the Lyapunov function was proposed to 
analyze the behavior of the process of designing. The special function 
that is a combination of the Lyapunov function and its time derivative 
was proposed to predict the design time of any strategy by means of 
the analysis of initial time interval of the process of network 
optimization. Thus, analyzing and comparing the behavior of 
function of Lyapunov for various strategies of optimization, it is 
possible to draw conclusions about the perspective strategies, from 
the point of view of speed.  The parallel computing serves to compare 
the different strategies of optimization in real time and to select the 
best strategy that has the minimal computer time. This approach gives 
us the possibility to select the quasi optimal strategy of network 
optimization by analyzing the initial part of the total design process. 
Numerical results of optimization of various analog circuits confirm a 
possibility of the choice of the best, in sense of speed, strategy of the 
optimization allowing solving a problem of design in several orders 
of magnitude faster than traditional approach. 
 

Keywords—Minimal-time system designing, control theory 
application, network optimization, Lyapunov function.  

I. INTRODUCTION 
HE problem of the reduction of computer time for a large 
system designing is one of the essential problems of the 

total quality design improvement. Besides the traditionally 
used ideas of sparse matrix techniques and decomposition 
techniques [1-5] some another ways were proposed to reduce 
the total computer design time [6-7]. The above described 
ideas of system designing can be named as the traditional 
approach or the traditional strategy because the method of 
analysis is based on the Kirchhoff laws. 

The other formulation of the circuit optimization problem 
was developed on heuristic level some decades ago [8-9]. This 
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idea was based on the Kirchhoff’s laws ignoring for all the 
circuit or for the circuit part. The special cost function is 
minimized instead of the circuit equation solving. This idea 
was developed in practical aspect for the microwave circuit 
optimization [10] and for the synthesis of high-performance 
analog circuits [11] in extremely case, when the total system 
model was eliminated. 

The generalized approach for the analog system design on 
the basis of control theory formulation was elaborated in some 
previous works [12-14]. This approach serves for the 
definition of minimal-time algorithm of designing. On the 
other hand this approach gives the possibility to analyze with a 
great clearness the design process while moving along the 
trajectory curve into the design space. The main conception of 
this theory is the introduction of the special control functions, 
which, on the one hand generalize the design process and, on 
the other hand, they give the possibility to control design 
process to achieve the optimum of the cost function of 
designing for the minimal computer time. This possibility 
appears because practically an infinite number of the different 
design strategies that exist within the bounds of the theory. 
The different design strategies have the different operation 
number and different executed computer time. On the bounds 
of this conception, the traditional design strategy is only a one 
representative of the enormous set of different strategies of 
designing. As shown in [13] the potential computer time gain 
that can be obtained by the new design problem formulation 
increases when the size and complexity of the system increase. 
However it can be realized for optimal or quasi optimal 
algorithm only. 

We can define the formulation of the main properties of the 
quasi optimal design strategy as one of the first problems that 
needs to be solved for the optimal algorithm construction.  

The second section includes the problem formulation on 
mathematic level. The Lyapunov function is introduced in 
section III. The numerical analysis and discussion of results 
are provided in section IV.  

II. PROBLEM FORMULATION 
The designing process for any analog system design can be 

defined in discrete form [13] as the problem of the generalized 
cost function ( )UXF ,  minimization by means of the 
equation (1) with the constraints (2): 
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       ( ) ( )1 0− =u g Xj j , j M= 1 2, ,...,         (2)    
        
where NRX ∈ , ( )XXX ′′′= , , KRX ∈′  is the vector of the 

independent variables and the vector MRX ∈′′  is the vector 
of dependent variables ( MKN += ), ( )Xg j  for all  j 

presents the system model, s is the iterations number, st is 

the iteration parameter, 1Rts ∈ , H ≡ H(X,U) is the direction 

of the generalized cost function ( )UXF ,  decreasing, U is 
the vector of the special control functions 

( )U u u um= 1 2, ,..., , where uj ∈ Ω; { }Ω = 0 1; . The 

generalized cost function ( )UXF ,  is defined as: 
 

       ( ) ( ) ( )UXXCUXF ,, ψ+=          (3) 
 
where ( )XC  is the non negative cost function of the designing 

process, and ( )UX ,ψ  is the additional penalty function: 
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This formulation of the problem permits us to redistribute 

the computer time expense between the solution of problem 
(2) and the optimization procedure (1) for the function 

( )UXF , . The control vector U is the main tool for the 
redistribution process in this case. Practically an infinite 
number of the different design strategies are produced because 
the vector U depends on the optimization procedure current 
step. The problem of search of the optimal design strategy is 
formulated now as the typical problem for the functional 
minimization of the control theory. The functional that needs 
to minimize is the total CPU time T of the design process. This 
functional depends directly on the operations number and on 
the strategy of designing that has been realized. The main 
difficulty of this definition is unknown optimal dependencies 
of all control functions u j . 

The continuous form of the problem definition is more 
adequate for the control theory application. This form replaces 
Eq. (1) and can be defined by the next formula: 
 

( )dx
dt

f X Ui
i= , , Ni ,...,2,1=         (5)  

      
This system together with equations (2), (3) and (4) 

composes the continuous form of the design process. The 
structural basis of different design strategies that correspond to 
the fixed control vector U includes 2M design strategies. The 
functions of the right hand part of the system (5) can be 

determined for example for the gradient method as: 
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ix  is equal to ( )x t dti − ; ( )ηi X  is the implicit function 

( ( )x Xi i= η ) that is determined by system (2). 
The control variables u j  have the time dependency in 

general case. The equation number j is removed from (2) and 
the dependent variable xK j+  is transformed to the independent 

when u j =1. This independent parameter is defined by the 
formulas (5), (6'). In this case there is no difference between 
formulas (6) and (6'). On the other hand, the Eq. (5) with the 

right part (6') is transformed to the identity dx
dt

dx
dt

i i= , 

when u j =0, because ( ) ( ) ( ) iii
s
ii dxdttxtxxX =−−=−η . It 

means that at this time moment the parameter xi  is dependent 
one and the current value of this parameter can be obtained 
from the system (2) directly. This transformation of the vectors 

′X  and ′′X  can be done at any time moment. 
It is necessary to find the optimal behavior of the control 

functions u j  during the design process to minimize the total 

computer time of designing. The functions ( )f X Ui ,  are 
piecewise continued as the temporal functions and the optimal 
structure of these functions can be found by means of 
approximate methods of the control theory [15-16]. 

The idea of the system design problem formulation as the 
functional minimization problem of the control theory is not 
depend on the optimization method and can be embedded into 
any optimization procedures. In this paper the gradient method 
is used, nevertheless any optimization method can be used as 
shown in [13-14]. 

Now the analog system design process is formulated as a 
dynamic controllable system. The time-optimal design process 
can be defined as the dynamic system with the minimal 
transition time in this case. So we need to find the special 
conditions to minimize the transition time for this dynamic 
system. 

III. LYAPUNOV FUNCTION 
On the basis of the analysis in previous section we can 

conclude that the minimal-time algorithm has one or some 

INTERNATIONAL JOURNAL OF COMPUTERS Volume 10, 2016

ISSN: 1998-4308 140



 

 

switch points in control vector where the switching is realize 
among different design strategies. As shown in [17] it is 
necessary to switch the control vector from like modified 
traditional design strategy to like traditional design strategy 
with an additional adjusting. 

The main problem of the time-optimal algorithm 
construction is unknown optimal sequence of the switch points 
during the design process. We need to define a special 
criterion that permits to realize the optimal or quasi-optimal 
algorithm by means of the optimal switch points searching. On 
the other hand a Lyapunov function of dynamic system serves 
as a very informative object to any system analysis in the 
control theory. We suppose that the Lyapunov function can be 
used for the revelation of the optimal algorithm structure. First 
of all we can compare the behavior of the different design 
strategies by means of the Lyapunov function analysis. 

There is a freedom of the Lyapunov function choice because 
of a non-unique form of this function. Let us define the 
Lyapunov function of the process of designing (2)-(6) by 
means of the following expression: 
 

       ( ) ( )∑ −=
i

ii axXV 2 ,        (7)  

where ia  is the stationary value of the coordinate ix . In other 

words the set of all the coefficients ia  is the main objective 
of the process of designing. The function (7) satisfies all of 
the conditions of the standard Lyapunov function definition 
for the variables iii axy −= . In fact the function 

( ) ∑=
i

iyYV 2  is the piecewise continue. Besides there are 

three characteristics of this function: i) V(Y)>0, ii) V(0)=0, 
and  iii) ( ) ∞→YV  when ∞→Y . Inconvenience of the 

formula (7) is an unknown point a= ( )Naaa ,...,, 21 , because 
this point can be reached at the end of the design process 
only. We can use this form of the Lyapunov function if we 
already found the design solution someway. On the other 
hand, it is very important to control the stability of the design 
process during the optimization procedure. In this case we 
need to construct other form of the Lyapunov function that 
doesn’t depend on the unknown stationary point.  Let us 
define the Lyapunov function of the design process (2)-(6) by 
the following expression: 

 

          ( ) ( )[ ]rUXFUXV ,, =          (8) 

 

          ( ) ( )∑ 







∂

∂
=

i ix
UXFUXV

2
,,         (9) 

 

where F(X,U) is the generalized cost function of the design 
process. The formula (8) can be used when the general cost 

function is non-negative and has zero value at the stationary 
point a. Other formula (9) can be used always because all 
derivatives ixF ∂∂ /  are equal to zero in the stationary point a. 
  We can define now the design process as a transition 
process for controllable dynamic system that can provide the 
stationary point (optimal point of the design procedure) during 
some time. The problem of the construction of the time-
optimal design algorithm can be formulated now as the 
problem of the transition process searching with the minimal 
transition time. There is a well-known idea [18-19] to 
minimize the time of transition process by means of the 
special choice of the right hand part of the principal system of 
equations, in our case these are the functions ( )UXfi , . It is 

necessary to change the functions ( )UXfi ,  by means of the 
control vector U selection to obtain the maximum speed of the 
Lyapunov function decreasing (the maximum absolute value 

of the time derivative of Lyapunov function dtdVV /=
•

). 
Normally the time derivative of Lyapunov function is non-
positive for the stable processes. However we define more 
informative function as a relatively time derivative of the 

Lyapunov function: VVW /
•

= . In this case we can compare 
the different design strategies by means of the analysis of 
behavior of the function W(t). 

IV. ANALYSIS OF DIFFERENT STRATEGIES 
All examples have been analyzed for the continuous form of 

the optimization procedure (5). Lyapunov function V(t) and 
some other functions that been produced from V(t) were the 
main objects of the analysis. The behavior of all these 
functions have been analyzed for all strategies that compose 
the structural basis of the general design methodology. We 
need to analyze some special functions for the definition of the 
rigorous correlation between the CPU time and the properties 
of Lyapunov function. The cost function ( )C X  has been 
determined as the sum of the squared differences between 
beforehand-defined values and current values of the nodal 
voltages for some nodes. All results were obtained by parallel 
computing for different strategies of designing. This 
computing was emulated on PC. 

A. Example 1 
 The two-node network is shown in Fig. 1.  
 

 
 

Fig. 1 Two-node nonlinear passive network 
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The nonlinear element has the following dependency: 

( )2
2101 VVbyyn −+= . The vector X includes five 

components: 1
2
1 yx = , 2

2
2 yx = , 3

2
3 yx = , 14 Vx = , 25 Vx = . The 

model of this network (2) includes two equations (M=2) and 
the optimization procedure (5) includes five equations. The 
cost function ( )C X  has been determined by the formula 

( ) ( )2
15 mxXC −= , where 1m  is a beforehand-defined 

output voltage of the divider. This network is characterized by 
two dependent parameters (two nodal voltages) and the control 
vector includes two control functions: U= ( )21 ,uu . The 
structural basis of the design strategies includes four design 
strategies with the control vectors: (00), (01), (10), and (11). 
The Lyapunov function was calculated by formula (8) for 
r=0.5. 

The results of the analysis of complete structural basis of 
different strategies of designing for network in Fig. 1 and 
initial point 10 =ix , i = 1,2,…,5 are shown in Table I. 
 

Table I. Data of complete structural basis of designing strategies 

 
The behavior of the functions V(t) and W(t) for the network 

in Fig. 1 is shown in Fig. 2. 
 

  
 

Fig. 2 Behavior of the functions V(t) and W(t) for four design 
strategies during the design process for network in Fig.1 

 
As we can see from Fig. 2 the functions V(t) and W(t)  can  

give  an  exhaustive   explanation   for   the design process 
characteristics. A greater absolute value of the function W(t) 
corresponds to a more rapid decreasing of the function V(t). 
We can state that the greater absolute value of the function 
W(t) on initial part of the design process provoke the lesser 

computer time. On the other hand the function W(t) is a 
normalized derivative and for this reason it is very sensitive. 
The behavior of this function for various strategies is non 
monotonic, and there are some intersections between the 
functions belonging to different strategies as we can see in Fig. 
2. This complicates the identification of the best and the worst 
strategies. One of the strategies can be identified as the best for 
one time interval, and another strategy is the best for other 
time interval. We can assume that the area under the curve -
W(t) may be the best way to predict the CPU time, as 
important to the behavior of this function at a certain time 
range, rather than a specific point. In this case, it makes sense 
to introduce a new function defined by the integral of the 
function W(t), which will serve as a criterion for analyzing of 
dynamic properties for a Lyapunov function. 
 

 ( ) ( ) ( )
( )( )

( )

∫∫∫ −=−=⋅−=−=
tV

V

tt

V
tV

V
dVdt

Vdt
dVdttWtS

000 0
ln1   (10) 

 
The behavior of the function S(t) for all strategies of the 

Table 1 is presented in Fig. 3. 
 

 
 

Fig. 3 Behavior of the functions W(t) and S(t) for all strategies of 
structural basis during the design process for network in Fig. 1 

 
The curves of the functions W(t) are presented also in this 

figure for comparing both types of dependencies. The curves 
W(t) have intersections but the curves S(t) do not have 
intersections. We can see that all curves corresponding to the 
function S(t) are very well regulated as in design time and in 
absolute value of this function. There is a correlation between 
the function S(t) and a computer time. The strategy that has a 
lesser computer time of designing, at the same time it has a 
greater value of the function S(t) at any time moment. 

Hypothesis 1. There is a strong correlation between the 
behavior of the Lyapunov function of the process of designing 
and a full CPU time of designing. 

B. Example 2 
 Another passive nonlinear network with three nodes (Fig. 4) 
was analyzed below.   

N Control Iterations Total
vector number design

   time (sec)
1  (0 0) 406308         8.52 
2  (0 1) 455191         3.96 
3  (1 0) 226909         3.31 
4  (1 1) 451090         2.81 
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 The nonlinear elements have been defined by following 

dependencies: ( )2
21111 VVbay nnn −⋅+= , ( )2

32222 VVbay nnn −⋅+= . 

The vector X includes seven components: 1
2
1 yx = , 2

2
2 yx = , 

3
2
3 yx = , 4

2
4 yx = , 15 Vx = , 26 Vx = , 37 Vx = . 

 

 
 

Fig. 4 Three-node nonlinear passive network 
 
The model of this network (2) includes three equations 

(M=3) and the optimization procedure (1) includes seven 
equations. This network is characterized by three dependent 
parameters and the control vector includes three control 
functions: U= ( )321 ,, uuu . The cost function ( )C X  has 

been determined as: ( ) ( ) ( )2
26

2
17 mxmxXC −+−= , where 

1m  and 2m  are the beforehand-defined voltages of the circuit. 
The results of the analysis for a complete structural basis of 

the design strategies and for initial point 10 =ix , i = 
1,2,…,7 are shown in Table II. 
 
Table II. Data of complete structural basis of strategies of designing 

for network in Fig. 4 

 
The behavior of the functions W(t) and S(t) during the 

design process is shown in Fig. 5. 
There is a strong correspondence between the time of the 

designing shown in Table II and the dependencies S(t) in Fig. 
5. The less time is one or another strategy, the higher is its 
graph. One can note an important difference between the 
behavior of the function S(t) and the function W(t). The 
relative derivative W(t), corresponding to the different 
strategies have intersections, which prevents the unequivocal 
determination of the best strategy. Dependence of S(t) such 
intersections do not have. 

Consider the second option of designing the same circuit, 

 
 

Fig. 5 Behavior of the functions W(t) and S(t) for all strategies of 
structural basis during the design process for network in Fig. 4 

 
but with another initial approximation: 110 =x  and 

20 =ix , for i = 2, 3,..., 7. The results of the designing process 
for a complete structural basis of design strategies are 
presented in Table III. 
 
Table III. Data of complete structural basis of strategies of designing 

for network in Fig. 4 

 
The behavior of the functions W(t) and S(t) during the 

design process is shown in Fig. 6.  
 

 
 

Fig. 6 Behavior of the functions W(t) and S(t) for all strategies of 
structural basis during the design process for network in Fig. 4 

N Control Iterations Total
vector number design

   time (sec)
1   ( 0 0 0 ) 198989         10.61  
2   ( 0 0 1 ) 586750         10.71  
3   ( 0 1 0 ) 272611           5.87  
4   ( 0 1 1 ) 541099           6.11   
5   ( 1 0 0 ) 118901           2.64  
6   ( 1 0 1 ) 278663           4.72  
7   ( 1 1 0 ) 198162           3.35  
8   ( 1 1 1 ) 274751           2.14  

N Control Iterations Total
vector number design

   time (sec)
1   ( 0 0 0 ) 104961          5.72  0
2   ( 0 0 1 ) 270001          5.71  0
3   ( 0 1 0 ) 74428          1.65  0
4   ( 0 1 1 ) 80317          0.93
5   ( 1 0 0 ) 102500          2.53  0
6   ( 1 0 1 ) 253473          4.34  0
7   ( 1 1 0 ) 157583          2.63  0
8   ( 1 1 1 ) 246776          1.92  0
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It can be stated that the change in the initial approximation 
leads to a redistribution strategies required CPU time. On the 
role of the best strategies other strategy pretends now, than in 
the previous case. Nevertheless we can see a complete 
correspondence between the CPU time and the behavior of the 
function S(t). 

C. Example 3 
Other examples correspond to the designing of transistors’ 

networks. The cost function ( )C X  in these cases has been 
determined as the sum of the squared differences between 
beforehand-defined values of voltages on transistors’ junctions 
and the current values of these voltages. 

The first example corresponds to the designing of a single-
stage transistor amplifier shown in Fig. 7. 

 

 
 

Fig. 7 One-stage transistor amplifier 
 

The vector X includes six components: 1
2
1 yx = , 2

2
2 yx = , 

3
2
3 yx = , 14 Vx = , 25 Vx = , 36 Vx = . The model of this 

network (2) includes three equations (M=3). 
The optimization procedure (5) includes six equations. The 

total structural basis contains eight different design strategies. 
The control vector includes three control functions: 
U= ( )321 ,, uuu . The Ebers-Moll static model of the transistor 
has been used [20]. 

The results of the process of designing for all strategies of 
the complete structural basis are given in Table IV. 
 
Table IV. Data of complete structural basis of strategies of designing 

for one-stage transistor amplifier 

 
The corresponding dependences of the function S(t) during 

the design process are presented in Fig. 8.  

 
 

Fig. 8 Behavior of the functions S(t) for different design strategies of 
structural basis during the design process for one-stage transistor 

amplifier 
 

Comparing the behavior of S(t) during the design process in 
this figure and the behavior of W(t) for the same example in 
paper [21] shows the advantages of using the function S(t). 
The graphs of W(t) have many intersections, and the ranking 
of strategies for the best and the worst may be done from the 
data [21] only in average sense, but the analysis of  Fig. 8 
gives us the reasonably argued what of the strategies is the best 
or the worst directly. 
 

D. Example 4 
This example corresponds to the design of a two-stage 

transistor amplifier showed in Fig. 9.  
 

 
 

Fig. 9 Two-stage transistor amplifier 
 

The vector X includes ten components: 1
2
1 yx = , 2

2
2 yx = , 

3
2
3 yx = , 4

2
4 yx = , 5

2
5 yx = , 16 Vx = , 27 Vx = , 38 Vx = , 

49 Vx = , 510 Vx = . The model of this network (2) includes five 
equations (M=5) and the optimization procedure (5) includes 
ten equations. The total structural basis contains 32 different 
design strategies. The control vector includes five control 
functions: U= ( )54321 ,,,, uuuuu . 

The results of the process of designing for some strategies 
of the complete structural basis are given in Table. V. The 

N Control Iterations Total
vector number design

   time (sec)
1   ( 0 0 0 ) 418791      26.970
2   ( 0 0 1 ) 95396        5.051
3   ( 0 1 0 ) 615254      39.722
4   ( 0 1 1 ) 53218        2.581
5   ( 1 0 0 ) 393730      22.310
6   ( 1 0 1 ) 56821        2.913
7   ( 1 1 0 ) 292356      14.834
8   ( 1 1 1 ) 7234        0.111
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corresponding dependences of the function S(t) during the 
designing process are presented in Fig. 10 for all strategies of 
Table V. 

Comparing the behavior of curves corresponding to the 
function S(t) in this figure with the data of CPU time from the 
Table V can be stated a very strong correlation of two these 
characteristics. 

 
Table V. Data of some strategies of designing from total 

structural basis for two-stage transistor amplifier 
 

 

 
 
Fig. 10 Behavior of the functions S(t) for different design strategies 
of structural basis during the design process for two-stage transistor 

amplifier 
 

This example, as well as all the previous shows an 
unambiguous correlation between the behavior of the function 
S(t) and total CPU time required to optimize the circuit. 
Parallel computing gives us a possibility to compare all 
different strategies in real time and select the best strategies. 

Summarizing the results of the analysis can be argued that 
Hypothesis 1 is confirmed in full, that is, the behavior of the 
function, the derivative of Lyapunov function of the designing 
process and that is calculated as the logarithm of the Lyapunov 
function related to the total CPU time that is required to 
optimize the circuit. Knowledge of the behavior of this 
function at the initial stage of the optimization process serves 
to estimate the total CPU time of designing of the electronic 
system. 

V. CONCLUSION 
The problem of the construction of minimal-time algorithm 

of designing can be solved adequately on the basis of the 
control theory. The designing process in this case is 
formulated as the controllable dynamic system. The Lyapunov 
function and its time derivative include the sufficient 
information to select more perspective design strategies from 
infinite set of the different strategies of designing that exist 
into the general methodology of designing. The special 
functions W(t) and S(t) have been proposed to predict the 
better designing strategies with a minimal designing time. 
These functions can be used as the principal tool to the 
prediction of the optimal in time algorithm of designing. The 
successful solution of this problem permits us to select the best 
strategies for circuit optimization and to construct the 
algorithm with a minimal CPU time. The obtained results 
serve as a next step for the revelation of the properties of the 
best optimization strategy. We suppose that these results 
clarify the problem of circuit optimization and can be used for 
the future analysis to construct the optimal or quasi optimal 
design algorithm. 
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