
Adaptation of the Analysability Metric for the
Automotive Domain

Yanja Dajsuren∗, Eric Bouwers†, Harald Altinger‡
∗Eindhoven University of Technology, Eindhoven, The Netherlands

†Squla, Utrecht, The Netherlands
‡Audi Electronics Venture GmbH, Gaimersheim, Germany

y.dajsuren@tue.nl, e.bouwers@squla.nl, harald.altinger@audi.de

Abstract—MATLAB/Simulink is a popular model-based devel-
opment language for the automotive domain. When developing a
software system in Simulink, subsystems are used to decompose
a (sub-) system to improve its analysability. However, it has not
been investigated if decomposing a system into particular number
of subsystems has impact on the analysability of the Simulink
models. Existing metric known as Component Balance (CB) was
designed to define the optimal decomposition of a system into top-
level components. The CB metric was used to evaluate software
architecture of industrial and open source software systems.
Therefore, in this paper we adapt the CB metric for Simulink
models. The preliminary results indicate that the CB metric
provides useful input to the analysis of the Simulink analysability
and the unbalanced (sub-) systems are fault-prone.

I. INTRODUCTION

During software development both project managers and
software engineers use software metrics to assess the current
situation of their projects and products. There are literally
hundreds of software metrics available for general purpose
languages, with a varying degree of validation and usage
reports. A wide range of software metrics is in use to perform
software analysis, e.g. fault prediction. They gained popularity
in industry e.g. Curtis et.al. [8], Graves et.al [12] and in
research e.g. Zhang et.al [19]. Industry related research such
as Zimmermann et.al [20] and Boehm [4] claimed the need
for software metrics due to 80% of bugs are contained in 20%
of the files which drives a high demand to find them. Model-
based development methods such as MATLAB/Simulink drive
the need for new metrics preserving knowledge gained during
the existing research such as [8], [19], [20].

When validation or usage reports are missing, it becomes
harder to determine in which situations a software metric
is useful and even whether it is useful at all. Moreover, it
becomes impossible to assess whether the software metric can
be ported from its original domain, usually the domain of
general purpose languages to a more specific domain such
as Simulink. Model-based software development has been
adapted in the automotive industry to tackle the increasing
complexity and to decrease the software development effort
and cost [3]. Altinger et.al [2] reported in a recent survey that
model-based development method mainly MATLAB/Simulink
is widely used across automotive development stages. Simulink
is a visual model design language that is widely used to enable
the model-based software development of control software in
the automotive industry [3].

Although many advantages of the visual model design

languages exist, some of the traditional software development
features lack in these languages, in particular in Simulink.
For example, model analysability (comprehension and effec-
tive use/reuse of subsystems) are considered problematic in
automotive Simulink models [3]. A subsystem is one of the
popular techniques to enable reuse and to tackle increasing
complexity and size. Subsystems are broadly used to de-
compose the system to increase the model comprehension
and maintainability. Although subsystems can be of different
types, e.g., enabled, triggered, virtual, and atomic subsystems,
they in general consist of a set of (related) blocks/operations
and may contain other subsystems. Thus large models can
contain big number of subsystems at one level and significant
hierarchies of subsystems as well. The main characteristic
of having a subsystem as a virtual element (except e.g.,
an atomic subsystem) may cause an ad-hoc distribution and
decomposition of subsystems in Simulink models. An atomic
subsystem can be reused similar to a library method.

Therefore, we explore in this paper the applicability of
the CB metric for the Simulink domain. The CB metric is
defined to address the decomposition of a system by taking
into account both the number of components (subsystems) and
their relative sizes [6]. This study would benefit the automotive
software engineering community to have an objective view
when decomposing the system into subsystems and eventually
would help model comprehension and maintainability as well.
Curtis et.al [8] performed a test with students how they are
able to find bugs easily and showed that the size and structure
of the program (as well as the coding style and the amount
of documentation) influences the ability to understand the
program and locate bugs. Eric et.al [6] made a similar claim
for traditional languages. In this paper, the relation between
the CB and comprehension/maintenance for Simulink models
is investigated. The main contribution of this paper is the
application of the CB metric to Simulink as an indicator of
the ease of comprehension and maintainability.

In the following sections, we present the relevant Simulink
concepts and briefly introduce the CB metric. Then we map
CB to Simulink domain. We report on the preliminary results
of the CB metric evaluation and discuss the next steps we
plan to take on improving the metric and evaluation.

II. PROBLEM STATEMENT

Although Simulink is a popular model-based develop-
ment language in automotive development stages [2], ‘proper’
decomposition of a system into subsystems have not been

INTERNATIONAL JOURNAL OF COMPUTERS Volume 11, 2017

ISSN: 1998-4308 139

analysed. To illustrate this problem, Figure 1 shows examples
of a system decomposition alternatives. The system consists of
10 blocks. In Figure 1a, the system is not decomposed into any
subsystems and simply contains 10 blocks. In Figure 1b, the
system consists of one block (in orange color) and a subsystem,
which consists of two other subsystems each consisting of five
and four blocks. In Figure 1c, the system is decomposed into
two subsystems, which contain four and six blocks.

The following research question is defined:
How to adapt the Component Balance metric as an indicator
for the success of decomposition of Simulink systems?

III. SIMULINK MODEL AND METRICS

Simulink is a visual model design language and tool for
developing, simulating and analysing multi-domain dynamic
systems [16]. A Simulink model contains a Simulink diagram,
which consists of different kinds of blocks. Subsystems can be

(a) Alternative A

(b) Alternative B

(c) Alternative C

Fig. 1: Example decomposition alternatives

included as blocks, they contain again a Simulink diagram,
which contains a set of blocks [14]. The subsystem concept
enables hierarchical model design, i.e., subsystems can contain
other subsystems. The subsystem block can represent a virtual
subsystem or a non-virtual subsystem. A subsystem is virtual
if the subsystem is used for grouping a set of blocks visually
and does not execute as a single execution unit. A subsystem is
non-virtual, if the execution of the contents of the subsystem
can be controlled1 by using a triggered transition (triggered
subsystem), a function-call (function-call subsystem), an action
(action subsystem), or an enabling input (enabled subsystem).
A subsystem can become an atomic subsystem, if its parameter
“Treat as atomic unit” is selected. An atomic subsystem is
a subsystem that can contain a contract [5], which means
blocks within an atomic subsystem are grouped together in
the execution order (non-virtual).

We defined a special kind of subsystem as a BasicSubsys-
tem in [9], if it does not contain other subsystems. Blocks, basic
elements of a Simulink diagram, communicate via input (In-
Port) and output (OutPort) ports. A block can be connected to
another block by a Signal via its ports. For the sake of diagram
readability signals are frequently grouped in buses.Simulink
models are directed graphs, following the data flow. In and
Out define the direction.

A. Simulink Metrics

The objective is to define an indicator of the analysability
and ease of comprehension of Simulink models. There are
several measurement mechanisms and tools included within
Simulink, one of them being sldiagnostics2. It displays
diagnostic information associated with the model or subsystem,
providing measurements on number of each type of block,
number of each type of Stateflow object, number of states,
outputs, inputs, and sample times of the root model, names of
libraries referenced and instances of the referenced blocks, as
well as time and additional memory used for each compilation
phase of the root model [15]. However, all of them are do not
indicate if the decomposition of Simulink models are adequate
with respect to ease of comprehension.

In the Simulink Verification and Validation toolbox the doc-
umentation provides several mechanisms for model coverage,
herein cyclomatic complexity. It is defined as a measure of
the complexity of a software module based on the number of
nodes, edges and components within a diagram [13]. For anal-
ysis purposes, each subsystem counts as a single component.

Finally, as one of the mechanism for reducing the complex-
ity of a model Mathworks provided the MAAB guidelines [17].
However, these contribute to creating visually-good design,
rather than serve for evaluation purposes.

IV. ADAPTING CB METRIC

To tailor a more general software metric to a specific
domain, several questions need to be answered:

• Which attribute and property in the specific domain
do we want to measure?

1http://www.mathworks.com/help/simulink/slref/subsystem.html
2see the Simulink documentation

INTERNATIONAL JOURNAL OF COMPUTERS Volume 11, 2017

ISSN: 1998-4308 140

• Which general software metric can be tailored for this?

• Which characteristics of the specific domain hinder us
from directly using the software metric?

After answering these questions, the general software metric
can be tailored by taking into account the specific charac-
teristics of the domain. Based on this definition, the tailored
software metric needs to be evaluated within the domain using
widely known evaluation techniques for software metrics. In
the following sections, we present the answer to the questions
posed above to come to a tailored software metric for the
Simulink domain.

A. Defining the measurement

It is essential to clearly define the attribute or property that
is to be measured, since the design of a measurement method
and metric heavily depends on it. Fenton et.al [10] uses IEEE
Standard on measurement to derive a guideline on developing
software metrics to measure software. Pfleeger et.al [18] re-
ports on usage of software metrics, but state that practitioner
will use whatever they have a standard spreadsheet, even if the
method is not correct.

In this work, we want to quantify the analysability of
a Simulink (sub)system. As a quantification of analysability,
we look at the way in which the Simulink (sub)system is
decomposed into subsystems. Ideally, a Simulink system is
composed of a limited number of subsystems which reside on
a similar level of abstraction, making it easy to understand the
system as a whole. The aforementioned observation considers
aspects related to design modularity and analysability of a
system, as well as some views on the system related to how
it is perceived by humans (visual representation of the models
in Simulink). Our goal is not only to include the structure of
the system and data flow view, but also interrelations between
(sub)systems (meaning subsystems and signals).

In this work we mostly focus on the issues related to
decomposition, i.e. system’s structure and interrelations, as
opposed to the cognitive aspects, which are considered as a
future work.

B. Basics on CB Metric in general

We have identified the CB metric as a viable candidate
for measuring the analysability of a system. The CB metric
varies between 0 and 1 in which higher is better. The metric
takes into account the number of components and their relative
sizes [6], assigning a higher score to systems decomposed into
a reasonable number of components of similar size. In this
metric, the size measurement is used as a proxy for the level
of abstraction of the components. The usefulness of this metric
has been assessed before, with positive results [7].

Although the metric is defined for software architec-
tural/design models, it is language independent and designed
to be adapted. In the Simulink model design, there is currently
no metric which can provide insight to engineers whether the
decomposition of their (sub)system is proper, i.e., there is no
indication if it is good to have a subsystem containing hundreds
of blocks or hundreds of subsystems containing a few number
of blocks.

The CB is defined as the product of System Breakdown
Optimality and Component Size Uniformity, see Equation 1.
Both of these metrics are shortly explained below, more details
can be found elsewhere [6], [7].

CB(S) = SBO(|C|)× CSU(C) (1)

SBO measures how far the number of components deviates
from the “ideal” number of components using the Equation 2.
In order to instantiate this metric two values need to be
established, the “ideal” number of components µ and the
maximum number of components ω. Since there is currently
no way to determine these numbers objectively, earlier research
used a benchmark based approach to approximate these values.

SBO(n) =


n−1
µ−1 if n ≤ µ

1− n−µ
ω−µ if µ < n < ω

0 if n ≥ ω
(2)

CSU quantifies whether the components are roughly equal
in size, as defined by the Equation 3. As mentioned before,
size is used as an proxy for the level of abstraction of the
components, in practice we observe that components on the
same level of abstraction are of roughly equal size.

CSU(C) = 1−Gini({volume(c) : c ∈ C}) (3)

C. Tailoring the CB Metric

Two characteristics of the particular domain of Simulink
models hinders us from applying the CB metric directly. First
of all, the names of the concepts used within the domain clash
with the concepts used to define CB, there these concepts first
need to be mapped to the particular domain. Secondly, the
values for µ and ω need to be established to instantiate the
CB metric for this domain.

We first map the concepts between the design model and
Simulink model in Table I. The definitions of the design model
elements are provided here from [6]. In the design model,
a system consists of a set of components. A component can
be divided into modules (e.g., components can be top-level
packages or the collection of files). A module is decomposed
into units (e.g., modules can represent classes in Java or
files in a working project). A unit is the finest level of the
decomposition (e.g., units can be methods in Java or functions
in C).

TABLE I: Mapping elements to Simulink domain

Design model elements Simulink elements
System Model
Component (e.g., top-level packages or
the collection of files)

Subsystem (which are decom-
posed into subsystems, basic
subsystems and/or blocks.)

Module (e.g., classes in Java or files in
a working project)

Subsystem (e.g. enabled, trig-
gered, virtual, and function-
call subsystems)

Unit (e.g., methods in Java or functions
in C)

Simulink blocks or operations

We presented the main Simulink model design elements
in Section III. A system of the design model is mapped to

INTERNATIONAL JOURNAL OF COMPUTERS Volume 11, 2017

ISSN: 1998-4308 141

the Simulink model concept. A Simulink model represents
the system into a diagram, which contains a set of blocks. A
component concept is mapped to a subsystem concept, because
subsystems are unit of decomposition in Simulink models. A
module concept is mapped to the subsystem concept as well,
because subsystems are only model design element, which
can be decomposed further in Simulink. The unit concept is
mapped to the Simulink blocks or operations, because blocks
and operations do not contain other model design elements.

As a second step we use a benchmark to establish the
values for µ (the ideal number of components) and ω (the
maximum number of allowed components). Following the
guidelines for the CB metric, we use the central tendency
(e.g., the median) of the benchmark values for µ and the 95th
percentile for ω. The benchmark data to extract these numbers
is derived from a mixed set of public and proprietary Simulink
models. This benchmark contains a total of 460 subsystems,
with a central tendency µ = 7, and a 95th percentile ω = 21.

V. PRELIMINARY EVALUATION

After tailoring the CB metric for the Simulink domain, we
carried out a correlation analysis on an industrial application
to detect if there is a relation between CB metric and the
presence of faults. Its purpose is to detect if unbalanced
(sub)systems hinder quality of Simulink models.

We reused the data collected from the industrial application
consisting of 41 subsystems [9]. The faults are traced to the
top-level subsystems of the models and 20 subsystems contain
faults. We use the Kendall’s τ correlation test [11], since
there are a number of tied values and we are interested in
establishing whether any CB metric and the presence of faults
are statistically dependent rather than measuring the degree of
the relationship between linear related variables.

The significance (Sig.) points to a probability for a coinci-
dence, and a common significance level of 0.05 is accepted for
our analysis.According to the Kendall’s τ correlation analysis,
the CB metric has a negative relation with the presence of
faults. Although this analysis is preliminary, it may imply that
the (sub)system with a high value of the CB metric (i.e., well-
balanced (sub)system) is less fault-prone.

We further evaluated the CB metric by interviewing
automotive domain experts. An automotive architect and a
control designer measured the CB metrics on a series of real-
life automotive Simulink models. They randomly selected the
subsystems with different CB values from different versions
of the selected models and compared the CB values to their
perception of what a balanced (sub)system is.

The results of these interviews showed that measuring
the number of blocks contained in the subsystems makes the
metric non-transparent to the architect and designer. This is
because a Simulink user concentrates on the selected hier-
archical level when looking at the models. Thus using the
number of blocks as a measurement of size of the underlying
subsystem creates a conflicting impression of the balanced and
unbalanced subsystems.

VI. CONCLUSION AND FUTURE WORK

In this paper we have discussed the steps to adapt the
CB metric to Simulink models. The tailored metric has been
evaluated using proprietary models, as well as interviews with
domain experts.

Analyzing the data from the evaluations we observe that:

1) the tailored CB metric provides useful input
to a structured discussion about the balance of
(sub)systems

2) there is some evidence of a negative correlation
between the presence of faults and the CB values

3) using the number of blocks as a measurement of size
of a (sub)system is confusing for metric users in this
domain

Given the limited number of (sub)systems used to establish the
correlation for observation, we stress that this is preliminary
result. It is interesting to see that even though this positive
result exists, the domain experts have difficulties to interpret
the metric, which hinders the effectiveness of the metric.

To remedy the last observation we plan to quantify the
volume of a (sub)system by counting the number of input
signals instead of the blocks it contains. This measurement
seems to be more aligned by the empirical measure of size
used by the domain experts. Validating both the predictive
power and usefulness of this revised metrics is planned as
future work.

Regarding the tailoring of the metric we observe that it is
not sufficient to map the concepts used to define the metric,
but that the attribute to be measured should be aligned with
the domain experts as well. This experience shows that the
involvement of domain experts is an important factor in the
tailoring of software metrics to specialized domains.

We plan to present the correlation analysis among the other
metrics defined on the automotive dataset [1]. We aim also to
analyze further the correlation between the CB metric and
the number of faults. This could be of benefit to the fault-
prediction analysis.

REFERENCES

[1] H. Altinger, S. Siegl, Y. Dajsuren, and F. Wotawa. A novel industry
grade dataset for fault prediction based on model-driven developed
automotive embedded software. In Proceedings of the 12th Working
Conference on Mining Software Repositories, Florence, Italy, May 2015.
IEEE.

[2] H. Altinger, F. Wotawa, and M. Schurius. Testing methods used in the
automotive industry: Results from a survey. In Proc.\ JAMAICA, pages
1–6, San Jose, CA, July 2014. ACM.

[3] M. Bender, K. Laurin, M. Lawford, J. Ong, S. Postma, and V. Pantelic.
Signature required-making simulink data flow and interfaces explicit.
In MODELSWARD, pages 119–131, 2014.

[4] B. Boehm. Industrial software metrics top 10 list. IEEE COMPUTER
SOC 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMI-
TOS, CA 90720-1264, 1987.

[5] P. Boström, R. Grönblom, T. Huotari, and J. Wiik. An approach to
contract-based verification of Simulink models. Technical Report 985,
Turku Centre for Computer Science, 2010.

[6] E. Bouwers, J. Correia, A. van Deursen, and J. Visser. Quantifying
the analyzability of software architectures. In Software Architecture
(WICSA), 2011 9th Working IEEE/IFIP Conference on, pages 83–92.
IEEE, 2011.

INTERNATIONAL JOURNAL OF COMPUTERS Volume 11, 2017

ISSN: 1998-4308 142

[7] E. Bouwers, A. van Deursen, and J. Visser. Evaluating usefulness of
software metrics: An industrial experience report. In Proceedings of the
35th International Conference on Software Engineering (ICSE 2013),
2013.

[8] B. Curtis, S. B. Sheppard, and P. Milliman. Third time charm:
Stronger prediction of programmer performance by software complexity
metrics. In Proceedings of the 4th international conference on Software
engineering, page 356360, 1979.

[9] Y. Dajsuren, M. van den Brand, A. Serebrenik, and S. Roubtsov.
Simulink models are also software: Modularity assessment. In Proceed-
ings of the 9th international ACM SIGSOFT conference on Quality of
Software Architectures, pages 99–106. ACM, 2013.

[10] N. Fenton. Software measurement: A necessary scientific basis. Soft-
ware Engineering, IEEE Transactions on, 20(3):199–206, 1994.

[11] A. Field. Discovering Statistics Using SPSS.
[12] T. L. Graves, A. F. Karr, J. S. Marron, and H. Siy. Predicting fault

incidence using software change history. Software Engineering, IEEE
Transactions on, 26(7):653661, 2000.

[13] MathWorks. 2014a documentation, types of model coverage - MATLAB
and Simulink, 2014.

[14] MathWorks. Componentization guidelines, 2014.
[15] MathWorks. Matlab sldiagnostics – display diagnostic information

about Simulink system, 2014.
[16] Mathworks. Simulink. http://www.mathworks.com/products/simulink,

2015.
[17] MathWorks Automotive Advisory Board (MAAB). Control Algorithm

Modelling Guidelines Using MATLAB, Simulink, and Stateflow Version
3.0. MathWorks, 2012.

[18] S. L. Pfleeger, R. Jeffery, B. Curtis, and B. Kitchenham. Status report
on software measurement. IEEE software, (2):33–43, 1997.

[19] M. Zhang and N. Baddoo. Performance comparison of software
complexity metrics in an open source project. In Software Process
Improvement, page 160174. Springer, 2007.

[20] T. Zimmermann, N. Nagappan, H. Gall, E. Giger, and B. Murphy.
Cross-project defect prediction: a large scale experiment on data vs.
domain vs. process. In Proceedings of the the 7th joint meeting of
the European software engineering conference and the ACM SIGSOFT
symposium on The foundations of software engineering, page 91100,
2009.

INTERNATIONAL JOURNAL OF COMPUTERS Volume 11, 2017

ISSN: 1998-4308 143

