
  
Abstract—In silico biological sequence processing is a key task 

in molecular biology. This scientific area requires powerful 
computing resources for exploring large sets of biological data. 
Parallel in silico simulations based on methods and algorithms for 
analysis of biological data using high-performance distributed 
computing is essential for accelerating the research and reducing the 
investment. Multiple sequence alignment is a widely used method for 
biological sequence processing. The paper focuses on performance 
investigation and improvement of multiple biological sequence 
alignment software MSA_BG on the BlueGene/Q supercomputer 
JUQUEEN. Experimental simulations on the basis of parallel 
implementation of MSA_BG algorithm for multiple sequences 
alignment have been carried out for the case study of the influenza 
virus variability investigation. The objectives of the investigation are 
code optimization, porting, scaling, profiling and performance 
evaluation of MSA_BG software. A hybrid MPI/OpenMP 
parallelization has been developed and the advantages of this 
approach through the results of benchmark tests, performed on 
JUQUEEN have been shown. The experimental results show that the 
hybrid parallel implementation provides considerably better 
performance than the MPI only implementation. 
 

Keywords—artificial bee colony, hybrid programming, high 
performance computing, multiple sequence alignment.  

I. INTRODUCTION 
HE fundamental scientific studies are in revolution era by 
the big files and flows of data. One of the fields of the 

fundamental science, strongly dependent from the 
development of big data, is the field of molecular and 
computational biology [1]. In the biological sciences there are 
very well established practices of collecting data in the public 
and generally accessible data bases, which are used by the 
scientists from all over the world, working on concrete 
subjects. The development of the bioinformatics stimulates in 
high extent the methods for processing and analyzes of 
collected data. The technological progress, as well the next 
generation sequencing, yielded to exponential grow of size and 
number of experimental data, and as a result the well-known 
methods and technologies became not applicable to the new 
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challenges of the big flows of data. Many scientific research 
teams are doing prognostics for the significance of big data, 
and most analyses for the period till 2025 list astronomy, 
molecular and computational biology, medicine and 
meteorology as directions of fundamental science, strongly 
dependent and influenced from the development of the big 
files and flows of data [2]. 

Multiple sequence alignment (MSA) is an important method 
for biological sequences analysis and involves more than two 
biological sequences, generally of the protein, DNA, or RNA 
type [3]. This method is computationally difficult and is 
classified as a NP-hard problem [4]-[6]. 

The innovative parallel algorithm MSA_BG for multiple 
alignment of biological sequences was proposed as a result of 
a previous study [7]. The MSA_BG algorithm is iterative and 
based on the concept of Artificial Bee Colony metaheuristics 
and the concept of algorithmic and architectural spaces 
correlation. The Artificial Bee Colony (ABC) algorithm is an 
optimization algorithm based on the intelligent foraging 
behavior of honey bee swarm [8]. In the ABC model, the 
colony consists of three groups of bees: employed bees, 
onlookers and scouts. The algorithmic framework of the 
designed parallel algorithm had already been constructed and 
the resulting parallel implementation used has been based on 
MPI only. 

Within this study we investigate the parallel performance of 
the MSA_BG algorithm. Optimization is achieved by applying 
hybrid MPI & OpenMP code development. The application 
was ported on the JUQUEEN supercomputer [9] and 
numerous experiments have been conducted. Profiling and 
benchmark tests were performed in order to evaluate the 
performance of the application.  

This paper is structured as follows. Section II explains the 
Artificial Bee Colony (ABC) algorithm. Section III is focused 
on the multiple sequence alignment method MSA_BG. Section 
IV presents the experimental framework. Profiling results of 
the MPI only implementation are presented in section V. The 
design of a hybrid MPI/OpenMP implementation is explained 
in Section VI. The experiments, performance evaluation and 
results analysis are discussed in Section VII. We present the 
conclusion and future work aspects in Section VIII. 

II. THE ABC ALGORITHM 
The Artificial Bee Colony (ABC) algorithm is based on 

populations [8]. The first step is to generate randomly a 
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partitioned initial population. The colony consists of employed 
bees, onlookers and scouts. After the initialization, the 
population repeats the cycle of seeking for food sources. 
Onlookers and employed bees carry out the exploitation 
process of food sources, while scouts control the exploration 
process. These two processes must be carried out together in 
the search space. 

The position of a food source represents a possible solution 
of the optimization problem and the amount of nectar 
represents the quality of the proposed solution. A food source 
is considered exploited and will be abandoned by the bees 
when a sufficient number of attempts to improve its quality has 
been reached. A control parameter called “limit” determines 
the number of times that the bees will try to improve a food 
source, before they abandon it. 

Employed bees are associated with a food source. They 
carry and share information regarding that particular food 
source. The number of employed bees is equal to the number 
of food sources around the hive. An employed bee becomes a 
scout, as soon as her food source has been exploited and is 
looking for any food source without any guidance.  

A scout modifies the positions of the food sources in his 
memory and remembers the new position of a food source. In 
case that a new source nectar amount is greater than the 
previous, the scout remembers the position of the new source 
and forgets the old one. Otherwise the scout remembers the 
position of the previous source in the memory. Once all the 
scouts complete the search process, they return to the hive and 
share information about the positions of food sources with 
onlookers through a dance. 

Regarding the exchange of information, an important part of 
the hive is the dancing area where communication among the 
bees takes place. This is how collective knowledge is formed. 
The dance of the bees is called a “waggle dance”. 

Each onlooker evaluates the information for the nectar 
according to the dance of scouts and then selects a food source 
according to the amount of food in the source. The onlooker 
compares quantities of nectar in the new source with that 
already stored. If the amount of the nectar is greater in the new 
source, the bee remembers the new position and forgets the old 
one. 

For the purposes of MSA_BG application two additional 
bee roles have been used, which do not exist in the original 
ABC algorithm: the mother bee of each beehive and the queen 
bee of the colony. After the cycle of seeking for food sources 
is complete, the mother bee of a hive will become aware of the 
best quality solution found in her own hive. Thereafter, each 
mother bee is responsible to give that solution to the queen bee 
of the colony. The queen bee determines the elite solution 
found between all the hives.  

III. MULTIPLE SEQUENCE ALIGNMENT ALGORITHM MSA_BG 
A new highly scalable and locality aware parallel algorithm 

MSA_BG for multiple alignment of biological sequences is 
presented in [7]. MSA_BG is a parallel iterative algorithm 

with a regular computational and communication system based 
on data parallelism and replica code, which is executed on all 
computing nodes. The parallel paradigm is Single Program 
Multiple Data (SPMD) and data decomposition. The 
granularity is hybrid - coarse granular computing for each 
node (multithreaded process) that runs multithreading (fine 
granular) of the cores within the computing node. In the case 
of hybrid granularity in order to effectively use the resources 
of supercomputers it is appropriate to use hybrid parallel 
implementations. The parallel algorithm is designed according 
to the methodology for the synthesis of parallel algorithms, 
which is based on the correlation of the parameters of the 
algorithmic and architectural spaces. The conceptual model of 
the MSA_BG method for parallel multiple alignment of 
biological sequences on the basis of the ABC algorithm is 
shown in Fig. 1. 

Artificial Bee Colony

REDUCE (MAX_HIVE)

REDUCE 
(MAX_COLONY)

Queen Bee of the 
Colony

Bee Hive Bee Swarm

Elite Solutions of the 
Swarms

Elite Solutions of the 
Hives in the Colony

Mother Bee of the 
Colony

Output – the Best 
Solution of the 

Colony  

Fig. 1. Conceptual model of the MSA_BG method for parallel multiple 
alignment of biological sequences on the basis of ABC algorithm. 

The allocation of computing resources is as follows: 
The entire system simulates the behavior of a colony of 

beehives, and the number of hives is equal to the number of 
computing nodes. Each computing node simulates the behavior 
of a hive. Within a hive q swarms are included, where q is the 
number of segments of the system. The OpenMP threads 
simulate the behavior of many bees in the swarm. The swarms 
within a hive work on common lists of best temporary 
solutions and elite solutions. Each hive has a mother bee, 
which gets the best quality decisions of all swarms in the hive. 
The number of mother bees is equal to the number of MPI 
processes. The queen bee of the colony (MPI process rank 0) 
finds the elite solution of all the hives in colony. 

An overview of the computational algorithm (Fig. 1) is the 
following: 
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• Scout 0 reads the sequences from an input file and stores 
them in the shared memory of the computational node 
(hive). Scout bees in the swarms round certain 
subregions in the searching space and construct a 
potential solution. Once the scout bees obtain possible 
(feasible) solution, they return to the hive and begin to 
dance. The better the quality of a solution generated by 
a scout is, the higher is possibility to include it in the 
list of elite solutions. The food source is presented by 
possible sequence alignments. Scouts generate initial 
solutions through sequence alignment including gaps. 
The random generator that is used is based on the 
Mersenne Twister pseudo random generator that uses a 
32-bit word length. 

• Onlookers watch the waggle dances, choose one of the 
possible solutions and evaluate it. The quality of 
obtained solutions is determined by the grade of 
sequences’ similarity. The higher the grade of the 
solution the better the quality of the obtained alignment, 
i.e., the criterion of optimality is a maximum similarity 
score. For the evaluation of the alignment quality, the 
following method is used: 

An assessment by columns is done – in case of nucleotide 
sequences the numbers of symbols – A, G, C and T are 
counted. The numbers of symbols are compared and the 
nucleotides that occur mostly in the different columns are 
selected. Afterwards, the calculation of assessments in 
columns is formed, the so-called sequence-favorite (fij), which 
contains in each position the respective favorite nucleotide in 
the column (Table 1).  

TABLE I.  SEQUENCE-FAVORITE 

sequence-favorite A G T C A A T 
sequence A A T C G A T 
sequence A G T C A T T 
sequence A G - G A A G 

 
The sequences are compared to the sequence-favorite. The 

higher is the similarity to the sequence-favorite, the greater is 
the grade of a sequence. A scoring matrix is built up which 
stores (in columns) the values of the evaluation function S for 
sequences (rows in the matrix). For the grade computation of a 
sequence (row) i in position j (column) the nucleotide aij and 
nucleotide–favorite fij are used: 

  Sij = 0 in case aij = gap 
Sij = 1 in case aij = fij 
Sij = -1 in case aij ≠ fij 

TABLE II.  SCORING MATRIX S - THE SCORING COLUMN CONSISTS OF 
SIMILARITY SCORES FOR EACH SEQUENCE AND THE SEQUENCE-FAVORITE. 

1 -1 1 1 -1 1 1 3 
1 1 1 1 1 -1 1 5 
1 1 0 -1 1 1 -1 2 

 
• The employed bees select one of the solutions and make 

attempts to improve it based on local search. An 
approach for the modification of the aligned working 
set of sequences is used: 

The column with counters of the scoring matrix S is 
reviewed and the row (sequence) with the lowest counter value 
is selected (sequence that differs most from the favorite). 
Using a random generator two indexes are selected: one for 
insertion of a gap (INS) and another for deletion of a gap 
(DEL) from the list of empty positions (DEL ≠ INS). The 
generated indexes are compared: 

o If DEL > INS, then all characters in positions between 
INS and DEL are shifted one position to the right 
(shift_right). 

o If DEL < INS the characters are shifted one position to 
the left (shift_left). 

After a number of modifications, employed bees suspend 
the processing of the current working set and write down the 
best solution in the list of elite solutions that is sorted in 
descending order. The condition for termination of the parallel 
algorithm is the number of iterations. 

• Finally, the mother bee shall inform the queen bee of the 
colony and send her the quality of the best solution 
(elite solution). The colony queen through collective 
communication reduction with the operation MAX gets 
the quality of the elite decisions by hives’ mother bees 
and determines the best one. Finally the queen bee 
sends messages to the mother bee holding the best 
solution to display the resultant sequences alignment. 

A description of the algorithmic framework for the parallel 
multiple sequence alignment in steps follows: 

1. Parse input file - Read the sequences 
Each MPI process reads the sequences from the input file 

and calculates the maximum sequence length. If the variety of 
sequence lengths is less than a limit, a number of variety gaps 
are added. 

2. Alignment of the sequences 
The sequences are aligned by adding gaps in random 

positions, so that their length is equal to the maximum 
sequence length. For each sequence (row) a dynamic data 
structure containing the indexes of the gaps in the sequences 
has been generated. Each MPI process iterates through the 
entire set of sequences. Therefore, the number of iterations is 
equal to the number of processes. This is a highly parallel task 
as there is no dependency between the sequences. 

3. The sequence-favorite is created 
Every MPI process iterates through each column on the 

array of the sequences in order to find the favorite nucleotides. 
The iterations are equal in number to the max sequence length. 
The calculations are independent for each genome. Therefore 
this is also a perfect task for parallel multithreaded execution. 

4. The grades of the genomes are calculated 
Each MPI process calculates the grade of every sequence in 

the working set. The grade calculation is independent for each 
sequence. The number of iterations is equal to the number of 
the sequences. 
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5. The sequences are sorted in descending order 
The scores of the working sets are stored in the list of 

solutions, which is sorted, in descending order by the total 
alignment scores. Each MPI process sorts its own working set 
of sequences. 

6. The quality of the solutions is improved 
Minor changes are made in the working set and the quality 

of the modified alignment is evaluated: the new sequence is 
compared with the sequence-favorite and a grade is calculated 
as described in step 4. In case of quality improvement, the new 
solution is accepted and is stored in the list of "best temporary 
solutions". Otherwise, the new alignment is ignored. This is an 
iterative process that can be executed in parallel. 

The number of iterations, which corresponds to the number 
of attempts to improve the quality of each sequence alignment, 
is split as a division over the number of MPI processes. The 
total number of iterations is given as an input to the program. 
In this study, the benchmark tests have been performed using 
10 million iterations. 

7. The total matrix grade is calculated 
After the process of working set improvement is completed, 

the matrix grade is calculated as the sum of each sequence 
grade and is stored along with the process rank. An MPI 
collective communication through reduction and operation 
MAX is performed in order to locate the best matrix grade, as 
well as the process that found the best solution. 

8. The best solution is written to the output file 
The root process (rank 0) communicates with all MPI 

processes and informs the process with the best quality 
solution working set to save the aligned sequences to a file. 

IV. EXPERIMENTAL FRAMEWORK 

A. IBM BlueGene/Q supercomputer 
The benchmark tests were run on JUQUEEN, an IBM 

BlueGene/Q supercomputer. JUQUEEN consists of 28 racks 
on which 28,672 nodes are installed in total. The processor 
that is used is IBM PowerPC A2, 1.6 GHz. There are 16 cores 
per node supporting additional 4-way SMT each. Memory per 
node is 16 GB. Additionally JUQUEEN hosts 248 I/O nodes.  

JUQUEEN provides interactive access and submission of 
batch jobs through two login nodes with processor architecture 
IBM Power 740. The front-end nodes have identical 
environments. The operating system is RedHat Linux (6.2) 
[10].  

B. MPI/OpenMP Configuration and Compilation  
The BlueGene/Q system has a distributed memory system 

and uses explicit message passing to communicate between 
tasks that are running on different nodes. Within each node a 
common (shared) memory of 16 GB may be used for 
threading. The Blue Gene/Q system supports shared-memory 
parallelism on single nodes [11].  

The BlueGene/Q MPI implementation is based on the 
MPICH2 standard [12] and uses the IBM Parallel Active 
Messaging Interface (PAMI) as a low-level messaging 
interface. The BlueGene/Q PAMI implementation directly 
accesses the BlueGene/Q hardware through the message unit 
system programming interface (MUSPI). 

The OpenMP API for shared-memory parallel programming 
in C/C++ and Fortran is supported by the IBM extensible 
language (XL) compilers and the GNU GCC compilers on the 
Blue Gene/Q system. The IBM XL compilers provide support 
for OpenMP v3.1. The GNU compilers provide support for 
OpenMP v3.0. 

The IBM XL MPI compiler wrapper for C++ has been used 
with the xl version of MPICH, PAMI and MUSPI libraries. 
Other compilation options that were tested on JUQUEEN for 
MSA_BG did not result in performance improvement. For the 
OpenMP implementation the thread safe version of the 
compiler was used [13] with the flags -qsmp=omp and -
qnosave. Additionally, compiler options -O3 -qstrict -
qarch=qp -qtune=qp were used for aggressive 
optimization with no impact on accuracy. Higher optimization 
levels did not result in further performance improvement. 

C. Execution Modes 
The smallest allocation unit on the JUQUEEN system is 32 

compute nodes (512 processor cores) and the maximum 
number of ranks per node is 64. The number of tasks (ranks 
per node) needs to be chosen as a power of 2. 

 

 

Fig. 2. Execution modes in BG/Q [11]. 

V. PROFILING RESULTS OF THE MPI ONLY IMPLEMENTATION 
Scalasca profiling tool for measuring and analyzing runtime 

behavior has been used for the initial profiling of the code 
[14]. 

The tests have shown that the routines that consume the 
highest amount of time are genNumber, calculateGrade and 
changeSeq. GenNumber implements the Mersenne Twister 
pseudo random generator, while changeSeq attempts to 
improve the solution by shifting the retrieved sequence. 
CalculateGrade is used to evaluate the new alignment each 
time a new modification of the alignment is proposed by 
changeSeq. The total amount of time consumed by these 
routines is approximately 95% of the overall execution time 
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(Fig. 3 and Fig. 4). The rate of time consumption by these 3 
routines is very similar using 512/1024 MPI processes and 
106/107 iterations as a termination condition. 

 

 
(a) 106 iterations 

 

 
(b) 107 iterations 

Fig. 3. Scalasca profiling results containing execution time percentages 
using 512 MPI processes on JUQUEEN. 

Important parts of the application, considering I/O, are steps 
1 and 8, as described in section III. At step 1 all MPI processes 
read the sequences from a common input file. The function 

getSequences is called by every process in order to parse the 
sequences from the input file and store them in their own 
memory space as the initial working set. At step 8 the best 
quality solution is written to the output file. The MPI process 
which holds the best solution, calls saveSequencesToFile to 
save the final solution.  

 

 

(a) 106 iterations 

 
(b) 107 iterations 

Fig. 4. Scalasca profiling results containing execution time percentages 
using 1024 MPI processes on JUQUEEN and 107 iterations. 
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As a result the total time spent at the getSequences calls is 
proportional to the number of MPI processes, while the time 
for the saveSequencesToFile call stays almost constant for the 
same problem size. However, in all cases the percentage of 
time spent for I/O is below 0.2% of the overall execution time. 

VI. HYBRID MPI/OPENMP IMPLEMENTATION 
The concept of hybrid parallelism that was implemented on 

MSA_BG is based on simple logic. Each MPI process forks 
multiple OpenMP threads to work in parallel with the 
sequences in the working set. The parallel hybrid 
MPI/OpenMP computational model of MSA_BG algorithm 
for multiple sequence alignment is presented in Fig. 5. 

Thread 0

Thread 11

Thread 2

Process Rank 2Process Rank 0 Process Rank 1

Thread 3 3

Thread 0

Thread 11

Thread 2

Thread 3 3

Thread 0

Thread 11

Thread 2

Thread 3 3

MPI

 

Fig. 5. Hybrid OpenMP/MPI parallel computational model of MSA_BG 
algorithm. 

A Hybrid MPI/OpenMP version of the code has been 
implemented in order to exploit more efficiently the whole 
shared/distributed memory hierarchy of the JUQUEEN system. 

The steps 2, 3, 4 and 6 of the algorithm described in section 
4 are performed in iterations until every sequence is processed. 
The initial MPI implementation was modified by including 
OpenMP directives in the source code of the MSA_BG 
application in steps 2, 3, 4 and 6. 

Initial benchmark tests have shown that increasing the 
number of threads for the same number of MPI processes and 
nodes decreases the execution time significantly. Within the 
Table III we have measured the execution time of step 6 (the 
most time consuming part of the code) when adding 2, 4, 8 and 
16 OpenMP threads per MPI process. We also measure the 
relative speedup (normalized to using only 2 OpenMP threads 
per MPI process). These results correspond to using 512 
processes allocating 4 MPI tasks per JUQUEEN node and for 
a total of 107 iterations. 

TABLE III.  RELATIVE SPEEDUP OF EXECUTION TIME OF STEP 6 USING 
OPENMP DIRECTIVES. 

#OpenMP threads Time for step 6 
(seconds) 

Relative speedup 

2 241.33 1.00 
4 122.65 1.96 
8 34.04 7.08 

16 27.57 8.75 

According to the initial results the performance of the 
overall code is significantly improved when the number of 
OpenMP threads is increased. Therefore, the set up that was 
used for benchmark tests using the hybrid MPI/OpenMP 
implementation has been chosen in accordance to the 
configurations listed in Table IV.   

TABLE IV.  CONFIGURATION ALTERNATIVES FOR BENCHMARKING THE 
HYBRID MPI/OPENMP IMPLEMENTATION. 

Configuration 
number 

#Ranks per node #OpenMP 
threads 

1 32 2 
2 16 4 
3 8 8 
4 4 16 

 
Benchmark tests have been conducted on the JUQUEEN 

supercomputer in order to measure and tune the performance 
of the application. Similarity searching between RNA 
segments of influenza viruses sequence has been carried out 
based on the parallel MPI only version and the hybrid 
MPI/OpenMP version of MSA_BG software. The experiments 
that are presented use various numbers of computing nodes, 
MPI processes and hybrid MPI/OpenMP configurations. The 
conditions of termination that were used are 106 and 107 
iterations which refer to attempts for improvement of each 
sequence alignment quality. The input file that was used for 
the benchmark tests contains 149 sequences with a maximum 
length of 1036 nucleotides. 

Table V presents the speedup achieved when allocating a 
constant number of nodes with a different set of MPI ranks per 
node and OpenMP threads. The speedup is normalized to the 
MPI only version corresponding wall time for the same 
number of nodes, using 64 MPI tasks per node (which is the 
maximum number of ranks per node). 

Scalasca profiling of the hybrid MPI/OpenMP 
implementation is shown in Fig. 6.  

TABLE V.  RELATIVE SPEEDUP OF HYBRID IMPLEMENTATION FOR 
PROBLEM SIZE OF 107 ITERATIONS. 

#Nodes #MPI 
processes 

#OpenMP 
threads 

Wall time 
(seconds) 

Relative 
speedup 

 2048 - 269.75 1.00 
 1024 2 127.22 2.12 

32 512 4 111.31 2.42 
 256 8 110.58 2.44 
 128 16 113.39 2.38 
 4096 - 138.44 1.00 
 2048 2 74.12 1.87 

64 1024 4 57.73 2.40 
 512 8 57.09 2.43 
 256 16 58.29 2.37 
 8192 - 75.23 1.00 
 4.96 2 48.79 1.54 

128 2048 4 31.05 2.42 
 1024 8 30.41 2.47 
 512 16 30.92 1.38 
 16384 - 42.71 1.00 
 4096 4 18.18 2.35 

256 2048 8 17.34 2.46 
 1024 16 17.24 2.48 
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(a) Call tree - cpu time percentages. 

 
(b) OpenMP parallel regions in detail 

Fig. 6. Scalasca screenshots corresponding to 1024 MPI processes with 16 
OpenMP threads per process. The problem size corresponds to 107 iterations.  

The 6th step of the algorithm that improves the sequences 
alignments consumes almost the most significant part of the 
total execution time. In Figure 5(b) the four OpenMP parallel 
regions are displayed in detail. The routines genNumber, 
changeSeq and calculateGrade still consume a large proportion 
of the overall execution time. However, in this case they are 
executed in parallel by a number of OpenMP threads. This 
results in a significant decrease of the total execution time. 

VII. PARALLEL PERFORMANCE EVALUATION OF HYBRID 
IMPLEMENTATION AND RESULTS ANALYSIS 

Similarity searching between RNA segments of various 
influenza viruses strains obtained from Genbank [15] has been 
carried out based on the hybrid MPI/OpenMP version of 
MSA_BG algorithm. Some experiments using various 
numbers of cores have been conducted. The experimental 
results in Table VI, Fig. 7 and Fig. 8 show that the parallel 
program implementation for multiple sequence alignment 
scales well as the number of the cores increases. 

TABLE VI.  EXECUTION TIME AND ACCELERATION OF MSA_BG 
ALGORITHM USING VARIOUS NUMBERS OF CORES AND VARIOUS SEQUENCES 

Length 
of seq. 

Number 
of seq. 

Input 
file 
(MB) 

Execution time, 
minutes 

Acceleration, 
%  

128 
cores 

256 
cores 

512 
cores 

256 
cores 

512 
cores 

2340 3780 8,78 11,33 6,51 3,85 42,54 66,02 

1750 5992 10,52 14,58 8,45 4,67 42,04 67,97 

1460 6128 8,90 13,35 7,82 4,12 41,42 69,14 

890 3996 3,58 7,12 4,14 2,16 41,85 69,66 

2340 5850 13,61 17,2 10,06 5,64 41,51 67,21 

1750 8999 15,77 22,01 12,47 7,23 43,34 67,15 

1460 9662 14,05 20,55 12,04 6,45 41,41 68,61 

890 6150 5,50 10,26 6,1 3,42 40,55 66,67 

 

 

Fig. 7. Execution time of MSA_BG algorithm as a function of number of 
cores. 

The molecular biology outcome of the experiments is that 
the consensus motifs and the variable domains in Influenza 
virus A have been determined and published using the Unipro 
UGENE editor [16]. The results are presented in Fig. 9. 
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Fig. 8. Acceleration of MSA_BG algorithm with respect to 128 cores. 

 

Fig. 9. Finding out consensus and variable domains in the case of Human 
Influenza Virus A/H1N1; output by graphic editor Unipro UGENE. 

VIII. CONCLUSION 
The parallel software MSA_BG for multiple sequence 

alignment has been ported and tuned on the Blue Gene/Q 
supercomputer JUQUEEN. Hybrid MPI/OpenMP 
parallelization was implemented and evaluated experimentally. 
Parallel performance was investigated and optimized through 
benchmark tests and profiling. 

The implementation of hybrid MPI/OpenMP parallelization 
on MSA_BG reduces up to a good factor the overall runtime 
of the MPI only version of the application as it allows us to 
fully occupy the CPU capacity of a JUQUEEN node with 
threads. It should also be noted that runs using the hybrid 
implementation resulted in better quality of sequence 
alignments due to additional randomness that was produced by 
the Mersenne Twister generator.  

The performance estimation and analyses show that the 
hybrid parallel program implementation of MSA_BG 
algorithm scales well as the number of the cores increases and 
is well balanced both in respect to the workload and machine 
size. The optimized code is universal and can be applied for 
other similar research projects and experiments in the field of 
bioinformatics. MSA_BG software allows researchers to 
conduct their experiments and perform simulations with very 
large amounts of data. 
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