

Abstract—In silico biological sequence processing is a key task

in molecular biology. This scientific area requires powerful
computing resources for exploring large sets of biological data.
Parallel in silico simulations based on methods and algorithms for
analysis of biological data using high-performance distributed
computing is essential for accelerating the research and reducing the
investment. Multiple sequence alignment is a widely used method for
biological sequence processing. The paper focuses on performance
investigation and improvement of multiple biological sequence
alignment software MSA_BG on the BlueGene/Q supercomputer
JUQUEEN. Experimental simulations on the basis of parallel
implementation of MSA_BG algorithm for multiple sequences
alignment have been carried out for the case study of the influenza
virus variability investigation. The objectives of the investigation are
code optimization, porting, scaling, profiling and performance
evaluation of MSA_BG software. A hybrid MPI/OpenMP
parallelization has been developed and the advantages of this
approach through the results of benchmark tests, performed on
JUQUEEN have been shown. The experimental results show that the
hybrid parallel implementation provides considerably better
performance than the MPI only implementation.

Keywords—artificial bee colony, hybrid programming, high
performance computing, multiple sequence alignment.

I. INTRODUCTION
HE fundamental scientific studies are in revolution era by
the big files and flows of data. One of the fields of the

fundamental science, strongly dependent from the
development of big data, is the field of molecular and
computational biology [1]. In the biological sciences there are
very well established practices of collecting data in the public
and generally accessible data bases, which are used by the
scientists from all over the world, working on concrete
subjects. The development of the bioinformatics stimulates in
high extent the methods for processing and analyzes of
collected data. The technological progress, as well the next
generation sequencing, yielded to exponential grow of size and
number of experimental data, and as a result the well-known
methods and technologies became not applicable to the new

This work was supported by the National Science Fund, Bulgarian
Ministry of Education and Science, Grant DN 07/24. Thanks the project
PRACE for the access to the JUQUEEN system.

Pl. I. Borovska is with Department of Informatics, Technical University of
Sofia, Bulgaria (e-mail: pborovska@tu-sofia.bg).

V. S. Gancheva is with Department of Programming and Computer
Technology, Technical University of Sofia, Bulgaria (e-mail: vgan@tu-
sofia.bg).

challenges of the big flows of data. Many scientific research
teams are doing prognostics for the significance of big data,
and most analyses for the period till 2025 list astronomy,
molecular and computational biology, medicine and
meteorology as directions of fundamental science, strongly
dependent and influenced from the development of the big
files and flows of data [2].

Multiple sequence alignment (MSA) is an important method
for biological sequences analysis and involves more than two
biological sequences, generally of the protein, DNA, or RNA
type [3]. This method is computationally difficult and is
classified as a NP-hard problem [4]-[6].

The innovative parallel algorithm MSA_BG for multiple
alignment of biological sequences was proposed as a result of
a previous study [7]. The MSA_BG algorithm is iterative and
based on the concept of Artificial Bee Colony metaheuristics
and the concept of algorithmic and architectural spaces
correlation. The Artificial Bee Colony (ABC) algorithm is an
optimization algorithm based on the intelligent foraging
behavior of honey bee swarm [8]. In the ABC model, the
colony consists of three groups of bees: employed bees,
onlookers and scouts. The algorithmic framework of the
designed parallel algorithm had already been constructed and
the resulting parallel implementation used has been based on
MPI only.

Within this study we investigate the parallel performance of
the MSA_BG algorithm. Optimization is achieved by applying
hybrid MPI & OpenMP code development. The application
was ported on the JUQUEEN supercomputer [9] and
numerous experiments have been conducted. Profiling and
benchmark tests were performed in order to evaluate the
performance of the application.

This paper is structured as follows. Section II explains the
Artificial Bee Colony (ABC) algorithm. Section III is focused
on the multiple sequence alignment method MSA_BG. Section
IV presents the experimental framework. Profiling results of
the MPI only implementation are presented in section V. The
design of a hybrid MPI/OpenMP implementation is explained
in Section VI. The experiments, performance evaluation and
results analysis are discussed in Section VII. We present the
conclusion and future work aspects in Section VIII.

II. THE ABC ALGORITHM
The Artificial Bee Colony (ABC) algorithm is based on

populations [8]. The first step is to generate randomly a

Massively Parallel Multiple Sequence
Alignment on the Supercomputer JUQUEEN

Plamenka Borovska, Veska Gancheva

T

INTERNATIONAL JOURNAL OF COMPUTERS Volume 12, 2018

ISSN: 1998-4308 1

partitioned initial population. The colony consists of employed
bees, onlookers and scouts. After the initialization, the
population repeats the cycle of seeking for food sources.
Onlookers and employed bees carry out the exploitation
process of food sources, while scouts control the exploration
process. These two processes must be carried out together in
the search space.

The position of a food source represents a possible solution
of the optimization problem and the amount of nectar
represents the quality of the proposed solution. A food source
is considered exploited and will be abandoned by the bees
when a sufficient number of attempts to improve its quality has
been reached. A control parameter called “limit” determines
the number of times that the bees will try to improve a food
source, before they abandon it.

Employed bees are associated with a food source. They
carry and share information regarding that particular food
source. The number of employed bees is equal to the number
of food sources around the hive. An employed bee becomes a
scout, as soon as her food source has been exploited and is
looking for any food source without any guidance.

A scout modifies the positions of the food sources in his
memory and remembers the new position of a food source. In
case that a new source nectar amount is greater than the
previous, the scout remembers the position of the new source
and forgets the old one. Otherwise the scout remembers the
position of the previous source in the memory. Once all the
scouts complete the search process, they return to the hive and
share information about the positions of food sources with
onlookers through a dance.

Regarding the exchange of information, an important part of
the hive is the dancing area where communication among the
bees takes place. This is how collective knowledge is formed.
The dance of the bees is called a “waggle dance”.

Each onlooker evaluates the information for the nectar
according to the dance of scouts and then selects a food source
according to the amount of food in the source. The onlooker
compares quantities of nectar in the new source with that
already stored. If the amount of the nectar is greater in the new
source, the bee remembers the new position and forgets the old
one.

For the purposes of MSA_BG application two additional
bee roles have been used, which do not exist in the original
ABC algorithm: the mother bee of each beehive and the queen
bee of the colony. After the cycle of seeking for food sources
is complete, the mother bee of a hive will become aware of the
best quality solution found in her own hive. Thereafter, each
mother bee is responsible to give that solution to the queen bee
of the colony. The queen bee determines the elite solution
found between all the hives.

III. MULTIPLE SEQUENCE ALIGNMENT ALGORITHM MSA_BG
A new highly scalable and locality aware parallel algorithm

MSA_BG for multiple alignment of biological sequences is
presented in [7]. MSA_BG is a parallel iterative algorithm

with a regular computational and communication system based
on data parallelism and replica code, which is executed on all
computing nodes. The parallel paradigm is Single Program
Multiple Data (SPMD) and data decomposition. The
granularity is hybrid - coarse granular computing for each
node (multithreaded process) that runs multithreading (fine
granular) of the cores within the computing node. In the case
of hybrid granularity in order to effectively use the resources
of supercomputers it is appropriate to use hybrid parallel
implementations. The parallel algorithm is designed according
to the methodology for the synthesis of parallel algorithms,
which is based on the correlation of the parameters of the
algorithmic and architectural spaces. The conceptual model of
the MSA_BG method for parallel multiple alignment of
biological sequences on the basis of the ABC algorithm is
shown in Fig. 1.

Artificial Bee Colony

REDUCE (MAX_HIVE)

REDUCE
(MAX_COLONY)

Queen Bee of the
Colony

Bee Hive Bee Swarm

Elite Solutions of the
Swarms

Elite Solutions of the
Hives in the Colony

Mother Bee of the
Colony

Output – the Best
Solution of the

Colony

Fig. 1. Conceptual model of the MSA_BG method for parallel multiple
alignment of biological sequences on the basis of ABC algorithm.

The allocation of computing resources is as follows:
The entire system simulates the behavior of a colony of

beehives, and the number of hives is equal to the number of
computing nodes. Each computing node simulates the behavior
of a hive. Within a hive q swarms are included, where q is the
number of segments of the system. The OpenMP threads
simulate the behavior of many bees in the swarm. The swarms
within a hive work on common lists of best temporary
solutions and elite solutions. Each hive has a mother bee,
which gets the best quality decisions of all swarms in the hive.
The number of mother bees is equal to the number of MPI
processes. The queen bee of the colony (MPI process rank 0)
finds the elite solution of all the hives in colony.

An overview of the computational algorithm (Fig. 1) is the
following:

INTERNATIONAL JOURNAL OF COMPUTERS Volume 12, 2018

ISSN: 1998-4308 2

• Scout 0 reads the sequences from an input file and stores
them in the shared memory of the computational node
(hive). Scout bees in the swarms round certain
subregions in the searching space and construct a
potential solution. Once the scout bees obtain possible
(feasible) solution, they return to the hive and begin to
dance. The better the quality of a solution generated by
a scout is, the higher is possibility to include it in the
list of elite solutions. The food source is presented by
possible sequence alignments. Scouts generate initial
solutions through sequence alignment including gaps.
The random generator that is used is based on the
Mersenne Twister pseudo random generator that uses a
32-bit word length.

• Onlookers watch the waggle dances, choose one of the
possible solutions and evaluate it. The quality of
obtained solutions is determined by the grade of
sequences’ similarity. The higher the grade of the
solution the better the quality of the obtained alignment,
i.e., the criterion of optimality is a maximum similarity
score. For the evaluation of the alignment quality, the
following method is used:

An assessment by columns is done – in case of nucleotide
sequences the numbers of symbols – A, G, C and T are
counted. The numbers of symbols are compared and the
nucleotides that occur mostly in the different columns are
selected. Afterwards, the calculation of assessments in
columns is formed, the so-called sequence-favorite (fij), which
contains in each position the respective favorite nucleotide in
the column (Table 1).

TABLE I. SEQUENCE-FAVORITE

sequence-favorite A G T C A A T
sequence A A T C G A T
sequence A G T C A T T
sequence A G - G A A G

The sequences are compared to the sequence-favorite. The

higher is the similarity to the sequence-favorite, the greater is
the grade of a sequence. A scoring matrix is built up which
stores (in columns) the values of the evaluation function S for
sequences (rows in the matrix). For the grade computation of a
sequence (row) i in position j (column) the nucleotide aij and
nucleotide–favorite fij are used:

 Sij = 0 in case aij = gap
Sij = 1 in case aij = fij
Sij = -1 in case aij ≠ fij

TABLE II. SCORING MATRIX S - THE SCORING COLUMN CONSISTS OF
SIMILARITY SCORES FOR EACH SEQUENCE AND THE SEQUENCE-FAVORITE.

1 -1 1 1 -1 1 1 3
1 1 1 1 1 -1 1 5
1 1 0 -1 1 1 -1 2

• The employed bees select one of the solutions and make

attempts to improve it based on local search. An
approach for the modification of the aligned working
set of sequences is used:

The column with counters of the scoring matrix S is
reviewed and the row (sequence) with the lowest counter value
is selected (sequence that differs most from the favorite).
Using a random generator two indexes are selected: one for
insertion of a gap (INS) and another for deletion of a gap
(DEL) from the list of empty positions (DEL ≠ INS). The
generated indexes are compared:

o If DEL > INS, then all characters in positions between
INS and DEL are shifted one position to the right
(shift_right).

o If DEL < INS the characters are shifted one position to
the left (shift_left).

After a number of modifications, employed bees suspend
the processing of the current working set and write down the
best solution in the list of elite solutions that is sorted in
descending order. The condition for termination of the parallel
algorithm is the number of iterations.

• Finally, the mother bee shall inform the queen bee of the
colony and send her the quality of the best solution
(elite solution). The colony queen through collective
communication reduction with the operation MAX gets
the quality of the elite decisions by hives’ mother bees
and determines the best one. Finally the queen bee
sends messages to the mother bee holding the best
solution to display the resultant sequences alignment.

A description of the algorithmic framework for the parallel
multiple sequence alignment in steps follows:

1. Parse input file - Read the sequences
Each MPI process reads the sequences from the input file

and calculates the maximum sequence length. If the variety of
sequence lengths is less than a limit, a number of variety gaps
are added.

2. Alignment of the sequences
The sequences are aligned by adding gaps in random

positions, so that their length is equal to the maximum
sequence length. For each sequence (row) a dynamic data
structure containing the indexes of the gaps in the sequences
has been generated. Each MPI process iterates through the
entire set of sequences. Therefore, the number of iterations is
equal to the number of processes. This is a highly parallel task
as there is no dependency between the sequences.

3. The sequence-favorite is created
Every MPI process iterates through each column on the

array of the sequences in order to find the favorite nucleotides.
The iterations are equal in number to the max sequence length.
The calculations are independent for each genome. Therefore
this is also a perfect task for parallel multithreaded execution.

4. The grades of the genomes are calculated
Each MPI process calculates the grade of every sequence in

the working set. The grade calculation is independent for each
sequence. The number of iterations is equal to the number of
the sequences.

INTERNATIONAL JOURNAL OF COMPUTERS Volume 12, 2018

ISSN: 1998-4308 3

5. The sequences are sorted in descending order
The scores of the working sets are stored in the list of

solutions, which is sorted, in descending order by the total
alignment scores. Each MPI process sorts its own working set
of sequences.

6. The quality of the solutions is improved
Minor changes are made in the working set and the quality

of the modified alignment is evaluated: the new sequence is
compared with the sequence-favorite and a grade is calculated
as described in step 4. In case of quality improvement, the new
solution is accepted and is stored in the list of "best temporary
solutions". Otherwise, the new alignment is ignored. This is an
iterative process that can be executed in parallel.

The number of iterations, which corresponds to the number
of attempts to improve the quality of each sequence alignment,
is split as a division over the number of MPI processes. The
total number of iterations is given as an input to the program.
In this study, the benchmark tests have been performed using
10 million iterations.

7. The total matrix grade is calculated
After the process of working set improvement is completed,

the matrix grade is calculated as the sum of each sequence
grade and is stored along with the process rank. An MPI
collective communication through reduction and operation
MAX is performed in order to locate the best matrix grade, as
well as the process that found the best solution.

8. The best solution is written to the output file
The root process (rank 0) communicates with all MPI

processes and informs the process with the best quality
solution working set to save the aligned sequences to a file.

IV. EXPERIMENTAL FRAMEWORK

A. IBM BlueGene/Q supercomputer
The benchmark tests were run on JUQUEEN, an IBM

BlueGene/Q supercomputer. JUQUEEN consists of 28 racks
on which 28,672 nodes are installed in total. The processor
that is used is IBM PowerPC A2, 1.6 GHz. There are 16 cores
per node supporting additional 4-way SMT each. Memory per
node is 16 GB. Additionally JUQUEEN hosts 248 I/O nodes.

JUQUEEN provides interactive access and submission of
batch jobs through two login nodes with processor architecture
IBM Power 740. The front-end nodes have identical
environments. The operating system is RedHat Linux (6.2)
[10].

B. MPI/OpenMP Configuration and Compilation
The BlueGene/Q system has a distributed memory system

and uses explicit message passing to communicate between
tasks that are running on different nodes. Within each node a
common (shared) memory of 16 GB may be used for
threading. The Blue Gene/Q system supports shared-memory
parallelism on single nodes [11].

The BlueGene/Q MPI implementation is based on the
MPICH2 standard [12] and uses the IBM Parallel Active
Messaging Interface (PAMI) as a low-level messaging
interface. The BlueGene/Q PAMI implementation directly
accesses the BlueGene/Q hardware through the message unit
system programming interface (MUSPI).

The OpenMP API for shared-memory parallel programming
in C/C++ and Fortran is supported by the IBM extensible
language (XL) compilers and the GNU GCC compilers on the
Blue Gene/Q system. The IBM XL compilers provide support
for OpenMP v3.1. The GNU compilers provide support for
OpenMP v3.0.

The IBM XL MPI compiler wrapper for C++ has been used
with the xl version of MPICH, PAMI and MUSPI libraries.
Other compilation options that were tested on JUQUEEN for
MSA_BG did not result in performance improvement. For the
OpenMP implementation the thread safe version of the
compiler was used [13] with the flags -qsmp=omp and -
qnosave. Additionally, compiler options -O3 -qstrict -
qarch=qp -qtune=qp were used for aggressive
optimization with no impact on accuracy. Higher optimization
levels did not result in further performance improvement.

C. Execution Modes
The smallest allocation unit on the JUQUEEN system is 32

compute nodes (512 processor cores) and the maximum
number of ranks per node is 64. The number of tasks (ranks
per node) needs to be chosen as a power of 2.

Fig. 2. Execution modes in BG/Q [11].

V. PROFILING RESULTS OF THE MPI ONLY IMPLEMENTATION
Scalasca profiling tool for measuring and analyzing runtime

behavior has been used for the initial profiling of the code
[14].

The tests have shown that the routines that consume the
highest amount of time are genNumber, calculateGrade and
changeSeq. GenNumber implements the Mersenne Twister
pseudo random generator, while changeSeq attempts to
improve the solution by shifting the retrieved sequence.
CalculateGrade is used to evaluate the new alignment each
time a new modification of the alignment is proposed by
changeSeq. The total amount of time consumed by these
routines is approximately 95% of the overall execution time

INTERNATIONAL JOURNAL OF COMPUTERS Volume 12, 2018

ISSN: 1998-4308 4

(Fig. 3 and Fig. 4). The rate of time consumption by these 3
routines is very similar using 512/1024 MPI processes and
106/107 iterations as a termination condition.

(a) 106 iterations

(b) 107 iterations

Fig. 3. Scalasca profiling results containing execution time percentages
using 512 MPI processes on JUQUEEN.

Important parts of the application, considering I/O, are steps
1 and 8, as described in section III. At step 1 all MPI processes
read the sequences from a common input file. The function

getSequences is called by every process in order to parse the
sequences from the input file and store them in their own
memory space as the initial working set. At step 8 the best
quality solution is written to the output file. The MPI process
which holds the best solution, calls saveSequencesToFile to
save the final solution.

(a) 106 iterations

(b) 107 iterations

Fig. 4. Scalasca profiling results containing execution time percentages
using 1024 MPI processes on JUQUEEN and 107 iterations.

INTERNATIONAL JOURNAL OF COMPUTERS Volume 12, 2018

ISSN: 1998-4308 5

As a result the total time spent at the getSequences calls is
proportional to the number of MPI processes, while the time
for the saveSequencesToFile call stays almost constant for the
same problem size. However, in all cases the percentage of
time spent for I/O is below 0.2% of the overall execution time.

VI. HYBRID MPI/OPENMP IMPLEMENTATION
The concept of hybrid parallelism that was implemented on

MSA_BG is based on simple logic. Each MPI process forks
multiple OpenMP threads to work in parallel with the
sequences in the working set. The parallel hybrid
MPI/OpenMP computational model of MSA_BG algorithm
for multiple sequence alignment is presented in Fig. 5.

Thread 0

Thread 11

Thread 2

Process Rank 2Process Rank 0 Process Rank 1

Thread 3 3

Thread 0

Thread 11

Thread 2

Thread 3 3

Thread 0

Thread 11

Thread 2

Thread 3 3

MPI

Fig. 5. Hybrid OpenMP/MPI parallel computational model of MSA_BG
algorithm.

A Hybrid MPI/OpenMP version of the code has been
implemented in order to exploit more efficiently the whole
shared/distributed memory hierarchy of the JUQUEEN system.

The steps 2, 3, 4 and 6 of the algorithm described in section
4 are performed in iterations until every sequence is processed.
The initial MPI implementation was modified by including
OpenMP directives in the source code of the MSA_BG
application in steps 2, 3, 4 and 6.

Initial benchmark tests have shown that increasing the
number of threads for the same number of MPI processes and
nodes decreases the execution time significantly. Within the
Table III we have measured the execution time of step 6 (the
most time consuming part of the code) when adding 2, 4, 8 and
16 OpenMP threads per MPI process. We also measure the
relative speedup (normalized to using only 2 OpenMP threads
per MPI process). These results correspond to using 512
processes allocating 4 MPI tasks per JUQUEEN node and for
a total of 107 iterations.

TABLE III. RELATIVE SPEEDUP OF EXECUTION TIME OF STEP 6 USING
OPENMP DIRECTIVES.

#OpenMP threads Time for step 6
(seconds)

Relative speedup

2 241.33 1.00
4 122.65 1.96
8 34.04 7.08

16 27.57 8.75

According to the initial results the performance of the
overall code is significantly improved when the number of
OpenMP threads is increased. Therefore, the set up that was
used for benchmark tests using the hybrid MPI/OpenMP
implementation has been chosen in accordance to the
configurations listed in Table IV.

TABLE IV. CONFIGURATION ALTERNATIVES FOR BENCHMARKING THE
HYBRID MPI/OPENMP IMPLEMENTATION.

Configuration
number

#Ranks per node #OpenMP
threads

1 32 2
2 16 4
3 8 8
4 4 16

Benchmark tests have been conducted on the JUQUEEN

supercomputer in order to measure and tune the performance
of the application. Similarity searching between RNA
segments of influenza viruses sequence has been carried out
based on the parallel MPI only version and the hybrid
MPI/OpenMP version of MSA_BG software. The experiments
that are presented use various numbers of computing nodes,
MPI processes and hybrid MPI/OpenMP configurations. The
conditions of termination that were used are 106 and 107
iterations which refer to attempts for improvement of each
sequence alignment quality. The input file that was used for
the benchmark tests contains 149 sequences with a maximum
length of 1036 nucleotides.

Table V presents the speedup achieved when allocating a
constant number of nodes with a different set of MPI ranks per
node and OpenMP threads. The speedup is normalized to the
MPI only version corresponding wall time for the same
number of nodes, using 64 MPI tasks per node (which is the
maximum number of ranks per node).

Scalasca profiling of the hybrid MPI/OpenMP
implementation is shown in Fig. 6.

TABLE V. RELATIVE SPEEDUP OF HYBRID IMPLEMENTATION FOR
PROBLEM SIZE OF 107 ITERATIONS.

#Nodes #MPI
processes

#OpenMP
threads

Wall time
(seconds)

Relative
speedup

 2048 - 269.75 1.00
 1024 2 127.22 2.12

32 512 4 111.31 2.42
 256 8 110.58 2.44
 128 16 113.39 2.38
 4096 - 138.44 1.00
 2048 2 74.12 1.87

64 1024 4 57.73 2.40
 512 8 57.09 2.43
 256 16 58.29 2.37
 8192 - 75.23 1.00
 4.96 2 48.79 1.54

128 2048 4 31.05 2.42
 1024 8 30.41 2.47
 512 16 30.92 1.38
 16384 - 42.71 1.00
 4096 4 18.18 2.35

256 2048 8 17.34 2.46
 1024 16 17.24 2.48

INTERNATIONAL JOURNAL OF COMPUTERS Volume 12, 2018

ISSN: 1998-4308 6

(a) Call tree - cpu time percentages.

(b) OpenMP parallel regions in detail

Fig. 6. Scalasca screenshots corresponding to 1024 MPI processes with 16
OpenMP threads per process. The problem size corresponds to 107 iterations.

The 6th step of the algorithm that improves the sequences
alignments consumes almost the most significant part of the
total execution time. In Figure 5(b) the four OpenMP parallel
regions are displayed in detail. The routines genNumber,
changeSeq and calculateGrade still consume a large proportion
of the overall execution time. However, in this case they are
executed in parallel by a number of OpenMP threads. This
results in a significant decrease of the total execution time.

VII. PARALLEL PERFORMANCE EVALUATION OF HYBRID
IMPLEMENTATION AND RESULTS ANALYSIS

Similarity searching between RNA segments of various
influenza viruses strains obtained from Genbank [15] has been
carried out based on the hybrid MPI/OpenMP version of
MSA_BG algorithm. Some experiments using various
numbers of cores have been conducted. The experimental
results in Table VI, Fig. 7 and Fig. 8 show that the parallel
program implementation for multiple sequence alignment
scales well as the number of the cores increases.

TABLE VI. EXECUTION TIME AND ACCELERATION OF MSA_BG
ALGORITHM USING VARIOUS NUMBERS OF CORES AND VARIOUS SEQUENCES

Length
of seq.

Number
of seq.

Input
file
(MB)

Execution time,
minutes

Acceleration,
%

128
cores

256
cores

512
cores

256
cores

512
cores

2340 3780 8,78 11,33 6,51 3,85 42,54 66,02

1750 5992 10,52 14,58 8,45 4,67 42,04 67,97

1460 6128 8,90 13,35 7,82 4,12 41,42 69,14

890 3996 3,58 7,12 4,14 2,16 41,85 69,66

2340 5850 13,61 17,2 10,06 5,64 41,51 67,21

1750 8999 15,77 22,01 12,47 7,23 43,34 67,15

1460 9662 14,05 20,55 12,04 6,45 41,41 68,61

890 6150 5,50 10,26 6,1 3,42 40,55 66,67

Fig. 7. Execution time of MSA_BG algorithm as a function of number of
cores.

The molecular biology outcome of the experiments is that
the consensus motifs and the variable domains in Influenza
virus A have been determined and published using the Unipro
UGENE editor [16]. The results are presented in Fig. 9.

INTERNATIONAL JOURNAL OF COMPUTERS Volume 12, 2018

ISSN: 1998-4308 7

Fig. 8. Acceleration of MSA_BG algorithm with respect to 128 cores.

Fig. 9. Finding out consensus and variable domains in the case of Human
Influenza Virus A/H1N1; output by graphic editor Unipro UGENE.

VIII. CONCLUSION
The parallel software MSA_BG for multiple sequence

alignment has been ported and tuned on the Blue Gene/Q
supercomputer JUQUEEN. Hybrid MPI/OpenMP
parallelization was implemented and evaluated experimentally.
Parallel performance was investigated and optimized through
benchmark tests and profiling.

The implementation of hybrid MPI/OpenMP parallelization
on MSA_BG reduces up to a good factor the overall runtime
of the MPI only version of the application as it allows us to
fully occupy the CPU capacity of a JUQUEEN node with
threads. It should also be noted that runs using the hybrid
implementation resulted in better quality of sequence
alignments due to additional randomness that was produced by
the Mersenne Twister generator.

The performance estimation and analyses show that the
hybrid parallel program implementation of MSA_BG
algorithm scales well as the number of the cores increases and
is well balanced both in respect to the workload and machine
size. The optimized code is universal and can be applied for
other similar research projects and experiments in the field of
bioinformatics. MSA_BG software allows researchers to
conduct their experiments and perform simulations with very
large amounts of data.

REFERENCES
[1] European Big Data Value Partnership, Strategic Research and

Innovation Agenda, January 2016.
[2] Z. D. Stephens, S. Y. Lee, F. Faghri, R. H. Campbell, C. Zhai, M. J.

Efron, R. Iyer, M. C. Schatz, S. Sinha and G. E. Robinson, “Big data:
astronomical or genomical?,” PLoS Biol. 2015 Jul 7, 13(7):e1002195,
doi: 10.1371/journal.pbio.1002195, eCollection 2015.

[3] H. Carrillo and D. Lipman, “The multiple sequence alignment problem
in biology,” SIAM Journal of Applied Mathematics, vol. 48, no. 5,
1988, pp. 1073-1082.

[4] L. Wang and T. Jiang, “On the complexity of multiple sequence
alignment,” Journal of Computational Biology, vol. 1, no. 4, 1994, pp.
337–348, doi:10.1089/cmb.1994.1.337.

[5] W. Just, “Computational complexity of multiple sequence alignment
with SP-score,” Journal of Computational Biology, vol. 8, no. 6, 2001,
pp. 615–23.

[6] S. Sze, Y. Lu and Q. Yang, “A polynomial time solvable formulation of
multiple sequence alignment,” Journal of Computational Biology, vol.
13, no. 2, 2006, pp. 309–319, doi:10.1089/cmb.2006.13.309.

[7] P. Borovska, V. Gancheva, N. Landzhev, “Massively parallel algorithm
for multiple biological sequences alignment”, in Proc. 36th
International Conference on Telecommunications and Signal
Processing (TSP), 2-4 July, 2013, Rome, Italy, pp. 638 - 642.

[8] D. Karaboga, “An idea based on honey bee swarm for numerical
optimization,” Technical Report-TR06, Erciyes University, Engineering
Faculty, Computer Engineering Department, 2005,
http://mf.erciyes.edu.tr/abc/pub/tr06_2005.pdf

[9] JUQUEEN Configuration, http://www.fz-juelich.de/ias/jsc/EN/
Expertise/Supercomputers/JUQUEEN/Configuration/Configuration_no
de.html

[10] JUQUEEN – Logging on to JUQUEEN, http://www.fz-
juelich.de/ias/jsc/EN/Expertise/Supercomputers/JUQUEEN/UserInfo/Lo
gonJuqueen.html.

[11] Megan Gilge, “IBM System Blue Gene Solution: Blue Gene/Q
Application Development”, IBM international Tecnical Support
Organization, 2013,
 http://www.redbooks.ibm.com/redbooks/pdfs/sg247948.pdf.

[12] M. Stephan, “JUQUEEN: Blue Gene/Q - System Architecture”,
Forschungszentrum Jülich http://www.training.prace-
ri.eu/uploads/tx_pracetmo/JUQUEENSystemArchitecture.pdf.

[13] Florian Janetzko, “JUQUEEN: Application Stack and Best Practices,”
Jülich Supercomputing Centre, Institute for Advanced Simulation,
Forschungszentrum Jülich, http://www.training.prace-
ri.eu/uploads/tx_pracetmo/JUQUEENAppStackBestPractises.pdf

[14] Scalasca, http://www.scalasca.org/
[15] GenBank, http://www.ncbi.nlm.nih.gov/Genbank/
[16] Unipro UGENE: Integrated Bioinformatics Tools,

 http://ugene.unipro.ru/

Plamenka Borovska, Prof. PhD is a prominent scientist and University
professor in the area of supercomputer architecture and applications,
optimization algorithms, machine learning, in silico experimentation and
bioinformatics. She is author of 150 scientific publications and papers at
international scientific conferences and journals and holds a patent for
“multiprocessor systems” recognized in the United States, England and
Germany. Prof. Borovska has participated in over 35 research projects at
national and European level in the field of parallel processing,
supercomputing architectures and applications: TEMPUS, ERASMUS,
PRACE, ETN FETCH and the Programme for Development of Human
resources. Under her scientific supervision 16 PhD thesis have been
successfully defended.

Veska Gancheva, Asoc. Prof. PhD is expert with extensive experience in
information technology, bioinformatics, in silico biological experiments
parallel methods, algorithms and models, software technologies,
supercomputing applications, cloud computing, management and analysis of
data. She is author of 45 scientific publications and has participated in over
30 research projects at national and European level: ERASMUS, PRACE and
the Operational Programme for Human Resources Development.

INTERNATIONAL JOURNAL OF COMPUTERS Volume 12, 2018

ISSN: 1998-4308 8

http://www.training.prace-ri.eu/uploads/tx_pracetmo/JUQUEENAppStackBestPractises.pdf
http://www.training.prace-ri.eu/uploads/tx_pracetmo/JUQUEENAppStackBestPractises.pdf
http://www.scalasca.org/
http://www.ncbi.nlm.nih.gov/Genbank/

	I. INTRODUCTION
	II. The ABC Algorithm
	III. Multiple Sequence Alignment Algorithm MSA_BG
	1. Parse input file - Read the sequences
	2. Alignment of the sequences
	3. The sequence-favorite is created
	4. The grades of the genomes are calculated
	5. The sequences are sorted in descending order
	6. The quality of the solutions is improved
	7. The total matrix grade is calculated
	8. The best solution is written to the output file

	IV. Experimental Framework
	A. IBM BlueGene/Q supercomputer
	B. MPI/OpenMP Configuration and Compilation
	C. Execution Modes

	V. Profiling Results of the MPI only Implementation
	VI. Hybrid MPI/OpenMP Implementation
	VII. Parallel Performance Evaluation of Hybrid Implementation and Results Analysis
	VIII. Conclusion

