
 

 

  
Abstract— Communities are common structures in social 

networks. These structures, typically, are formed by different 
attributes and consequently have different textures in the network. 
Standard Community Detection (CD) methods detect and extract 
them to some degree: they often form a node partition clearly related 
to a dominant node attribute. Such methods are unable to detect the 
whole variety of communities in the network. We study CD on multi-
attributed affiliation networks that are networks with nodes decorated 
by a number of attributes and edges forming due to their similarity. 
The networks are represented as a composition of single node 
attribute networks called one-layer networks and yield node 
partitions into the attribute clusters. We believe that these partitions 
can be detected by standard CD algorithms applied to a network 
accumulated both structural information and node attributes. We 
propose an iterative method called Multi-Layer Community 
Detection Algorithm (MLCDA) including two stages a synthesis 
phase of utilizing available network data and a decomposition phase 
in which communities are extracted layer by layer. The synthesis 
includes the conversion of an original network into a weighted one 
based on assumptions about the network model, construction of an 
association network accumulated the node attributes, and synthesis of 
the networks in an accumulated network. In the decomposition phase, 
CD is conducted on the accumulated network; for the obtained 
partition an underlying node attribute is determined; an 
approximation network for the corresponding one layer network is 
constructed and extracted from the accumulated network; these steps 
are repeatedly repeated. 
 

Keywords— Social Networks, Community Detection, Attributed 
Networks, Node Partition, Accumulated Networks 

I. INTRODUCTION 
Network Analysis is an area of research that has been 

studied intensively lately [3-5, 10, 12, 31]. Among a variety of 
networks, social networks have been of particular interest 
[9,14-16,27,29,36].  

 
 
 
Babak Farzad is Associate Professor of Mathematics, Mathematics and 

Statistics Department, Brock University,  1812  Sir  Isaac Brock Way, St. 
Catharines, ON L2S 3A1, Canada, (e-mail: bfarzad@brocku.ca) 

Oksana Pichugina is Associate Professor of Applied Mathematics, 
Computer Science Department, National Aerospace University "Kharkiv 
Aviation Institute",  17  Chkalova  str.,  Kharkiv, 61070, Ukraine (e-mail: 
oksanapichugina1@gmail.com) 

Liudmyla Koliechkina is Professor  of  Mathematics, Department of 
Informatics in Economic Systems, Poltava University of Economics and 
Trade, 3 Koval St. Poltava, 36014, Ukraine, and collaborates with Algorithms 
and Databases Department, University of Lodz, 3 Uniwersytecka Street, 
Lodz, 90-137, Poland (e-mail: ludaplt1971@gmail.com) 

  
Researchers investigate the structural characteristics of 

different networks, network formation models, and many other 
relevant questions.  

In many types of networks (e.g., social networks) 
observable and tightly bound groups of elements called 
communities exist [8,16,36]. How and why communities arise 
are interesting and important questions.  

It is also important to find efficient algorithms for detecting 
such communities. Researchers in Community Detection 
(CD) develop CD Algorithms (CDAs) with the purpose of 
extracting communities quickly and qualitatively for networks 
that nowadays can be immeasurably large and complex. 

II. BACKGROUND AND MOTIVATION 

Assume that our goal is to study the community structure of 
a social network (of people) and that we have complete 
information about every individual including their connections 
and the strength of each connection. Then the output of a 
typical CDA will be predictable: it would be a division by 
families because family ties are (on average) very strong. 
Thus, we fail to capture communities formed by friends or col-
leagues. 

Our approach is to detect and eliminate the dominant 
subnetworks (e.g., the family relationships) that create the first 
layer of the global network. Conducting CD in the remaining 
network would demonstrate a new community structure. The 
result, however, is not predictable - for some people, the next 
important thing is friendship, for others their hobby or their 
job and so on. Nevertheless, it makes sense to detect the 
communities formed by another factor and eliminate it from 
the consideration, so that other new layers of the global 
network can be detected. These factors of the nodes are called 
their attributes, and such networks are called attributed 
networks. The network built based on the similarity of the 
node attributes is called an association network. Due to the 
variety of characteristics, nodes (and edges) in social networks 
are heterogeneous. For the described multi-layer community 
detection, the heterogeneity and in particular the presence of 
node attributes, are crucial. 

In this article, we study community detection in attributed 
networks that combines a network structure accumulated in 
edges data and node attribute information. 
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III. DEFINITIONS AND NOTATIONS 

Attributed Networks Any social network can be 
represented as follows: 

Definition 1 [13] A social network is a hybrid graph, 
which is represented in the form: 

′=G (V ,E, , )Λ Λ , (1) 
where V is the set of nodes (the social network’s users), E 
is the set of edges (these users relationships), A and A' 
contain information about attributes related to each node 

∈v V  and each edge ∈{ u,v } E , respectively. 
The network represented in the form (1), where 0′∪ ≠Λ Λ , 

is an attributed network. So, an attributed network 
representing individuals' relationships is social. Let =n |V | , 

=m | E | , and K, K' denote the number of node's and edge's 
attributes, respectively. An attributed network is a multi-node 
attributed network (MNA-network) if K > 1. 

Our focus will be on MNA-networks. 
Let us introduce some notations for MNA- networks whose 

attributes take a finite number of values: 

1=KJ { ,...,K } , ∈= K
n nk

k JAT ( AT )  is a tuple of discrete 

nodes’ attributes (ATNs) taking values 

∈= ∈Lk
nk nk

l J Klat { at } ,k J (ATNVs); ′∈= K
e ek

k JAT ( AT ) is 

a tuple of discrete edges’ attributes (ATEs) taking values  

′ ′∈= ∈Lk
ek ek

l J Klat { at } ,k J  (ATEVs). 

∈ ∈= i K
k
i v V ,k J( a )Λ , ∈k nk

ia at  - a value of nkAT  of the node 

iv ; i j K
k

{ v ,v } E,k J{ i
'

, j }( a )Λ ′∈ ∈′ = , k{ i, j } 'a - a value of 

ekAT of the edge i j{ v ,v } . Let 

K K
k k

i i k J { i, j } k J{ i, j }
k nk k ek
i k{ i, j }

a ( a ) ,a ( a )

( a at ,a at )

′∈ ∈′ ′= =

′∈ ∈   
 (2) 

Denote the tuples of ATNVs of a node iv  and ATEVs of an 
edge ∈i j{ v ,v } E , respectively ( ∈i jv ,v V ). In terms of (2), A 

and A' in (1) can be represented as follows: 
∈ ∈′ ′= =ni i J { i, j } { i, j } E( a ) , ( a )Λ Λ . 

Assume that E is formed based on similarity of node 
attributes (e.g., in an affiliation network), then   

if k k
i j i jk a a { v ,v } E∀ ≠ ⇒ ∉ . (3) 

So G is composed of auxiliary networks  

K
k k

k JG { G (V ,E( G )} ∈= =
 

related to single node attributes: 
= ∪ k

kG G , (4) 

and for each kE( G )  the following holds:  

if k k k
i j i ja a { v ,v } E( G ).≠ ⇒ ∉  

 Each kG  is considered as a layer of G  formed by the 
attribute ATk, and we refer to it as a one-layer network. 

If in an attributed network, edges exist only between 
vertices with sufficient level of their node attributes 
association, then such network is called an association network 
[10]. For the case of discrete node attributed network G , the 
sufficient level of association between any pair of nodes 
having identical attributes is established. The association 
network aG corresponding to G  is a network with edges 
between any two nodes sharing a common node attribute. 

Therefore, in contrast with (3), for an association network, 
the edge condition is the following: 

∃ = ⇒ ∈k k
i j i jif k a a { v ,v } E .              (5) 

From (5) can be seen as a decomposition of type (4) 
= ∪a ak

kG G , (6) 

where = =a ak ak
kG { G (V ,E( G )}  are aG  subnetworks 

related to single node attributes. 
Networks Operations The adjacency matrix of network 

G  is a matrix A  of order n  such that 
1 if  are adjacent, and0  otherwise. ij i ja v ,v ,=  

The network’s weighted adjacency matrix (WAM) is a 
matrix wA  of weights of its edges. A linear combination of 
the networks =i i i{ G (V ,E( G )}  is a network with a WAM 
given by the corresponding linear combination of weighted 
adjacency matrices (WAMs) i i{ A }  of the networks. 

Let ⊆C V , G[C] be an induced G-subnetwork by 

C: =G[ C ] ( C,E( C )) , =n( C ) | C | . Let 
∈

= ∑
n

i
i J

|| b || b  denote 

the norm of a vector ∈ nb R . If  0 1∈ ≥ =KR : ,|| ||α α α  then 

the linear combination 
∈

⋅∑
K

i i
i J

Gα  of ∈ Ki i J{ G }  is called the 

weighted network sum. 
The sum ( G )ω of E-weights is a weight of the network G: 

∈

= ∑
n

w
ij

i, j J
( G ) a .ω  A network G of the weight one is called a 

normalized network: 
1=( G )ω . (7) 

A network partition is a partition of its nodes 
∈= Ll l J{ C } . We will consider two types of the partitions - 

node partitions into communities (obtained as a result of 
implementing a CDA) and node partitions into clusters related 
to different values of a particular node attribute. Then node 
covers are formed from these partitions (see Section 4.b). For 
the clarification we use the following notation for a partition 

∈
= * *

*L

*
l l J

{ C }  into communities: 
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∈

= ∈ =∑* * * *
*

*L

*
l l L l

l J

| C | n ,l J , n n .  (8) 

IV. RELATED WORK 

A. Association Network Inference Problem 
Normally in a group of people, new connections are formed 

more frequently with people that have common hobbies and 
interests. At the same time, people with common interests are 
not necessarily friends. However, in association networks, an 
edge exists if and only if the level of association is attained. If 
we know a function of the similarity = i jsim( i, j ) F( a ,a ) , 

where i ja ,a
 
- are vectors of attributes of nodes ∈i jv ,v V  

(see (2)), then given a level α
 
of association,  an edge set 

aE( G )  of an association network Ga can be formed 

according to the rule: ∈ a
i j{ v ,v } E( G )

 
if ≥i jF( a ,a ) α . 

Unfortunately, function F(.) is usually unknown. So 
typically the following assumptions are made when available 
network information is sufficient to restore missing elements 
of the network. For example, [10] focuses on a case where the 
information, contained in node attributes, is sufficient to 
establish links. In particular, as a similarity function, one may 
take the correlation between vectors of node attributes  

i ja ,a - = i ja ,asim( i, j ) ρ  

and establishing edges are suggested based on the results of 
verifying the following statistical hypotheses - 

0 0=i j
ij

a ,aH : ρ versus 1 0≠i j
ij

a ,aH : ρ . 

Since links in association networks are formed based only 
on a similarity of node attributes, the algorithm is also an 
approach to solve Networks Inference of Association 
Networks Problem. A drawback of the technique [10] is that 
the correlation does not consider the weights of node 
attributes. Moreover, this approach does not work when only 
one node attribute is present. The first disadvantage can be 
overcome by using “weighted” generalization of the standard 
correlation. 

B. Community Detection in Attributed Networks 
Standard CDAs [8] when dealing with weighted graphs, 

they fully parse the topological structure of networks, but 
partially utilize edge attributes accumulated in edge weights, 
and completely ignore node attribute information. 

In social networks edges describe relationships, and their 
weights strongly depend on roles of participants, which can be 
represented as node attributes. 

CDAs for attributed networks (ANCDAs) are developed for 
utilizing information available in (1). The presence of different 
node attributes means heterogeneity of nodes. Also, different 
edge attributes imply that edges are heterogeneous too. An 
ideal CDA for attributed networks should provide a balance 
between structural, and node attributes commonalities and 
should generate dense clusters with homogeneous vertices’ and 

edges’ properties. It is a quite challenging task because these 
three goals - dense connection as well as edges and nodes 
homogeneity - can conflict. 

Let us briefly review several approaches to CD for 
attributed networks. In [28] Tian et al. propose graph 
summarization approach that generates clusters, primarily 
based on similarity of node attributes, and, at the same time, 
count edge attributes. Methods introduced in [2,28] represent a 
group of ANCDAs based on user-selected node attributes 
and combine graph clustering with subspace clustering, where 
subspace is defined by the selected attributes. Zhou et al. 
present an SA-Cluster Algorithm [37] and then improve it in 
an Inc-Cluster Algorithm [38], where new edges are added 
based on nodes similarity, vertices with identical attributes are 
connected through additional vertices of node attributes and 
the Random Walk CDA is applied for constructing augmented 
graph, where random walk distance matrix is effectively 
computed by matrix increments. SA-Cluster and Inc-Cluster 
algorithms are distance-based ANCDAs. For such algorithm 
class, an artificial distance measure combining node attributes 
and structural information is designed. It uses weights W1, W11 
(see Section V) of both these parts, respectively. A drawback 
of such type of algorithms is that the result of CD highly 
depends on the parameters W1, W11, which can not be 
extracted directly from networks, so, an estimation of this 
exogenous data might be costly. Another way of the analysis 
of attributed networks is a model-based approach, where a 
null-model is designed for node and edge information 
consideration. For instance, Xu et al. in [30] propose a 
Bayesian Attributed Graph Clustering (BAGC) algorithm, 
where the following assumptions are used for the null model: 
a) the true partition exists, but it is unknown; b) vertices from 
the same community behave similarly whiles nodes from 
different communities may behave differently. The Bayesian 
model was used for defining a joint probability distribution, 
which transforms the attributed network CD problem into a 
standard probabilistic inference problem that can be solved by 
a specific variational algorithm. Yang et al. proposed another 
[35] model-based method CESNA (Communities from Edge 
Structure and Node Attributes) that in addition to the 
assumptions a) and b) includes next ones: c) nodes from the 
same communities most likely are adjacent; d) nodes may 
belong to multiple communities; e) if more than two nodes 
belong to the same community, then most likely they are 
adjacent. 

Two of the authors [35], Yang and Leskovec, devoted other 
research works to the analysis of attributed networks, 
especially to ANCDAs [32,34]. These researchers validated 
their algorithms on a number if real networks such as 
LiveJournal, Friendster, Orkut, Amazon, DBLP with explicit 
participants characteristics. For instance, in the popular social 
network Live- Journal it is divisions according to culture, 
entertainment, life/style, gaming, sports, technology, etc. The 
real groups of people are considered as ground-truth 
communities (GTCs), which are used for the validation of 
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different hypothesis and results of CD [32, 34, 35]. It turned 
out [32] that the GTCs are very different from standard 
’’structural” communities since CDAs attempt to find tightly 
connected groups of nodes, which are structural communities, 
whiles the real GTCs are well separated from each other and 
not necessarily well connected inside. 

A comparison of the sensitivity of numerous scoring 
functions and how they impact a given community detection 
algorithm is given [32] along with a CDA based on a local 
spectral clustering, applying different community scoring 
functions, and solving SNEP from one seed in each ground-
truth community. The results confirmed the hypothesis that for 
CD of the GTCs is better to use measures of reparability such 
as conductance. 

The authors also state that CDAs for GTCs should allow 
overlapping the communities since the network participants 
belong to a various number of GTCs of different categories 
that typically overlap. The mentioned local spectral clustering 
algorithm [32] allows detecting overlapping communities by 
choice of seed nodes in different GTCs. The works [34,35] 
continue the developing overlapping ANCDAs, but the used 
approach is entirely different - it is a model-based one. For 
instance, in [35] there is proposed a graph model that can 
generate networks with community structure entirely based on 
the probability of pairs of nodes affiliation to GTCs. The 
probability serves as a similarity function and is called 
affiliation function, and the described above CDA CESNA is 
based on it. 

The researchers continued developing the direction in [34] 
and presented a CDA based on a Cluster Affiliation Model for 
Big Networks (BIGCLAM). The method uses the same 
affiliation function and tries to fit nodes to their most likely 
attribute affiliations according to a model of maximum 
likelihood when node attribute assignment is approached as an 
optimization problem. 

C. Analytic Hierarchy Process 
The Analytic Hierarchy Process (AHP) is a multiobjective 

multi-criteria decision-making method, invented by Saaty 
[24,25]. 

An idea of the method is to compare pairwise criteria to 
obtain relative weights of elements of choice. The challenging 
part of this method is in assigning weights (global priorities) of 
alternatives. If alternatives are compared with respect to 
criteria of the next top level, then these criteria, in turn, are 
evaluated depending on criteria of the next top level and so on. 
Weights of all criteria against the next top-level ones form 
vectors of local priorities, which can be computed accurately 
for numerical criteria functions or can be assessed based on 
leading eigenvectors of preference matrices. Prioritisation of 
decisions is made at the stage of synthesis of local priorities 
vectors into a global priorities vector, which dimension 
coincides with ones of local priorities vectors of the decision 
alternatives. The global priorities vector is a linear com-
bination of these vectors with coefficients depending on local 
priorities of all criteria and alternatives. Normalization of the 

local priorities vectors guarantees normalization of the 
resulting global priorities vector. 

V. ACCUMULATION OF NETWORK INFORMATION AND ITS 
APPLICATION 

We utilize available network information in an accumulated 
network Gwa combining a weighted network Gw and an 
association network Ga, where Gw accumulates structural 
network data – edges and their attributes; Ga combines node 
attributes. 

To be more precise, to form the attributed network Gwa we 
use additional information of three levels. Level I - 

′=I I IW (W ,W )  is a vector of weights of Ga and Gw, 

respectively. Level II - ∈= K
II II ,k

k JW (W ) is a tuple of 

ATNs-weights in Ga and ′∈′ ′= K
II II ,k

k JW (W ) , is a tuple of 

ATEs- weights in Gw. Level III - ∈= Lk
III ,k III ,lk

l JW (W ) is a 

tuple of weights of ATNVs in akG   ( ∈ Kk J ) and 

′∈′ ′= Lk
III ,k III ,lk

l JW (W ) is a tuple of weights of ATEVs in 

wkG  ( ′∈ Kk J ). Notice that 

0′ ′ >I II II III IIIW ,W ,W ,W ,W otherwise dimension of the 
problem can be reduced and normalized. 

We form two sets of auxiliary networks: 
a) ∈= K

a ak
k JG { G }  - is a set of association networks cor-

responding node attributes ∈ K
nk

k J{ AT } ; 

b) ′∈= K
w wk

k JG { G }  - is a set of weighted networks 

corresponding edge attributes ′∈ K
ek

k J{ AT } .
 

1K K

I II II

III ,k III ,k
k J k J

||W || ||W || ||W ||

||W || ||W || ′
′

′∈ ∈

′= = =

′= =      (9) 

The weights ′I IW ,W can be interpreted as priorities of the 

networks a wG ,G in the waG -network structure. Similarly, 

′II IIW ,W are priorities of the auxiliary networks ∈ K
ak

k J{ G } , 

′∈ K
wk

k J{ G } . Finally, ′
′′III ,k III ,k

k k{W } ,{W } are priorities of 

subnetworks corresponding to single attribute values. The 
weights can be obtained in different ways, for instance, by an 
expert assessment or derived directly from the network. 

Remark 2 If information about some of Levels I-III is 
not available, then we suppose that the corresponding 
weights in (9) are equal. 

A. Attributed Network Construction 
Node Information Utilization 

The One Discrete Node Attribute Network 
akG Formation. We build the association network aG as 
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∈= Lk
k k

l Jl{ AC }
      

(10)
 

denote a G-partition into ACs related to each value of nkAT . 
By (2) each node attribute cluster (AC) with nk

lat - value of 
nkAT  is represented as follows: 

∈

= ∈ = =

= ∈ ∈∑ k
Lk

k k nk k k
i il l l l

k
L Kl

l J

AC { v V : a at },| AC | n ,

n n( l J ,k J ).   (11) 

Let us describe an order of constructing the network 
∈ak aG G . It should be normalized (Condition 1), should have 

edges between nodes with the same value of nkAT  (Condition 
2), edge weights within the attribute clusters k

lAC  and ′
k
lAC , 

′≠( l l )  should be proportional to the priorities of the values  

′
nk nk
l lat ,at  in akG  (Condition 3), and finally, it should have 

equal weights within the same attribute cluster (Condition 4). 
In our notations, these conditions can be represented as 
follows: 

• Condition 1 - the normalization (see (7)): 
 1=ak( G )ω ;      (12) 

• Condition 2 - the edge set formation: ∀ ∈ ni, j J  an edge 

i j{ v ,v } iff 

∃ ∈ = =k
k k nk

L i j ll J : a a at ;                    (13) 

• Condition 3 - the edge weights distribution: if 
(13) holds and 

′ ′ ′′∃ ∈ = = ⇒k
k k nk

L i j ll J :a a at     (14) 

′
′ ′

=
ak III ,lkij
ak III ,l k
i j

w W
w W

   

    (15) 

where ∈= n
ak ak

ij i, j Jw ( w )
 
is a WAM of akG ; 

• Condition 4 - equal weights within k
lAC : 

if for n i,i , j , j J′ ′∈  (13), (14) hold  

and ak ak
ij i jl=l w =w ′ ′′ ⇒ .        (16) 

          
Notice that (13) can be rewritten as follows: 

∃ ∈ ∈k
k

L i j ll J :v ,v AC .     (17)  

To satisfy (15), (16) we choose weights ak
ij i, j{ w }  

proportionally to III ,lkW : 

 
17

0

ak III ,lk
ij

n

w ( k ) W  if ( ),

otherwise ( i, j

  

J ),

ν= ⋅

∈   (18)
 

where ( k )ν  is a normalized factor of akG .  
 Define ( k )ν  using (11), (12), (18) and the fact that edges 

exist only between nodes with the same ATNV implying a 

partition of the network by a disjoint union of complete 
graphs: 

1

2

∈ ∈

∈ ∈

∈

= = = =

⋅ =

= ⋅ ⋅ = ⋅

∑ ∑ ∑

∑ ∑

∑

kLk l

kLk l

k
l

Lk

ak ak ak
ij ij

i, j l J i, j AC

III ,lk

l J i, j AC

III ,lk
n

l J

( G ) w w

( k ) W

( k ) W || K || ( k )

ω

ν

ν ν

 

1
∈

⋅ ⋅ −∑
Lk

III ,lk k k
l l

l J
W n ( n ) , wherefrom 

1

1
Lk

III ,lk k k
l l

l J

K

( k ) W n ( n ) ,

k

  

J .

ν

−

∈

 
 = ⋅ ⋅ − 
 
 

∈

∑  (19) 

We summarise the result in the following observation. 
Remark 3 Each association network akG  satisfied (12)-

(16) is a aG -partition by complete graphs ∈k Lkl
l Jn

{ K }  with 

the WAM akw  defined by (18) and ( k )ν  defined by (19), k . 
We can represent it as: 

∈

∈

= = ∪ =

= ∪ ∈
Lk

k
lLk

ak a k a k
ll J

Knl J

G G [ ] G [ AC ]

K ,k J .



 (20)
 

Remark 4 Notice that IIIkW  can be not normalized, but 

weights (18) do not change if multiply IIIkW  by a non-zero 
factor (see (19)). Therefore, without loss of generality, assume 
that for ∈ K

IIIk
k J{W }  (9) holds. 

Remark 5 If IIIkW  is unknown, then: a) by Remark 2, 

weights are equal ( ′ ′= ∀ ∈ k
III ,lk III ,l k

LW W , l ,l J ); b) by 

Remark 4, they are normalized, hence, 
1 1

= =III ,lk
III ,k k

W
L|W |

 and the formulas (19) and (18) 

become ( ) ,
( 1)

∈

= ∈
⋅ −∑ k

Lk

k
Lk k

l l
l J

Lk k J
n n

ν ,  

1

1  if  ,

other

17  

wise 0

holds

 
Lk

ak k k
ij l l

l J

n

w n ( n )

( i, j J )

( )

.

−

∈

 
 = ⋅ − 
 
 

∈

∑ . 

The Discrete Association Network aG  Construction. The 
association network is formed as a weighted network sum of 
with the weights: 
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k

ak

k J

a II ,kG W .G
∈

= ∑ .  (21) 

Lemma 6 If (12) holds then aG  is normalized: 

1a( G )ω = .   (22) 

Notice that a vertex set of aG is the same as for the original 

network: aV( G ) V= , its edge set aE( G )  is a union of 
k

k
a{ G }  edges sets: 1

K
k

a akE ) )( G E( G==  , the WAM 
a
ij

a
i, jww ( )=  is the following linear combination of akG - are 

WAMs: 
k

II ,k ak
k J

aw W w
∈

= ∑ .  

If the node attribute weights  IIW  are unknown, then they 

are supposed to be equal and, similar to IIIW  (see Remark 5), 

we have: 1II ,k
k,k J

k
W = ∈  and (21) becomes: 

 1

k

ak

k J

a GG
K ∈

= ∑ . 

1) Edge Information Utilization  
Similar to the association network aG  construction we 

build the weighted network wG  combining the  normalized 

auxiliary networks K
w wk

k J{G }G ′∈=  related to the edge 

attributes K
ek

k J{ AT } ′∈ : 

1wk
K) , .w( kG J ′= ∈    (23) 

The networks family 
w

G  is built using the same network 
structure as G : 

 K
wk wk) V ,k J ,V( G E ) E( G′∀ ∈ = =     (24) 

The One Discrete Edge Attribute Network wkG  Formation. Similar to merging nodes with the same values of attributes into attribute                                        

edge attribute ekAT . Similar to (11) for the edge attribute 
clusters (ECs) we have:  

′ ′

′= ∈ =

′= ∈ ∈k

k k ek
i jl { i, j } l

k k
L Kl l

EC {{ v ,v } E :a at },

| EC | m ( l J ,k J ),
         (25) 

where 
′

′
∈

′ = ∈∑
Lk

k
Kl

l J
m m,k J . Identical to the node partition 

set  ,  we can build ′∈= K
k

k J( )  - a tuple of E -

partitions into ECs of different ATEs. 
  In the same way as the conditions (12)-(16) were used for 
akG , each network wkG , ′∈ Kk J , satisfies four conditions: 

a) the normalization condition (23); b) the edge set formation 
condition (24); c) the weights uniformity within ECs: 

if for kn L
k wk wk

i j i j ijl i j

i,i , j , j J l J :

{ v ,v },{ v ,v } EC w w

′

′ ′ ′ ′

′ ′∈ ∃ ∈

∈ ⇒ =
,      (26) 

and d) the proportion of edge weights within ′k kEC ,EC  to the 
weights of the corresponding ATEVs: 

         ′
′ ′

′
=

′

wk III ,lkij
wk III ,l k
i j

w W
w W

  (27) 

where ∈= n
wk wk

ij i, j Jw ( w )  is the WAM of ′∈wk
KG ,k J .  

Similarly to the network akG , the conditions (26)  are 

satisfied by choice of the weights wk
ij i, j{ w }  proportionally to 

′III ,lkW : within k
lEC ′ ′= ⋅wk III ,lk

ijw ( k ) Wν , otherwise 0. 

Here ′( k )ν  is a normalized factor of wkG , which is defined 
from (23) by (25): 

1

2 2

kL i jk l

kL i jk l

L Lk k

wk wk wk
ij ij

i, j l J { v ,v } EC

III ,lk

l J { v ,v } EC

III ,lk k III ,lk k
l l

l J l J

( G ) w w

( k ) W

( k ) W | EC | ( k ) W m

ω

ν

ν ν

′

′

′ ′

∈ ∈

∈ ∈

∈ ∈

= = = =

′ ′= ⋅ =

′ ′ ′ ′ ′= ⋅ ⋅ = ⋅ ⋅

∑ ∑ ∑

∑ ∑

∑ ∑

where  
1

2
′∈

′ =
′ ′⋅∑

Lk

III ,lk k
l

l J

( k )
W m

ν ,            (28) 

  if 

otherwise 0

wk III ,lk
ij i jw ( k ) W { v ,v } E,

.

ν ′ ′= ⋅ ∈   (29) 

Remark 7 Analogically to nodes (see Remark 4), for edges 
we assume normalization of the weights ′∈′

K
IIIk

k J{W }  (see 

(9)). 
The Weighted Network wG  construction. Similar to aG  

construction, we form the weighted network wG  as the 
weighted network sum of networks wG  with parameters 

′IIW : 

 
K

II ,kw wk

k J
G W G

∈

= ⋅∑ .     (30) 

Lemma 8 If  (23)  holds then wG  is normalized: 

1=w( G )ω .    (31) 
Due to (24), the vertex and edge sets are not changed during 

the linear network transformation from wG  into wG , hence 

=wV( G ) V , =wE( G ) E ; a WAM =w w
ij i, jw ( w )  of wG  is 

the following linear combination of the WAMs ′∈ K
wk

k J{ w } : 

′∈

′= ⋅∑
K

w II ,k wk

k J
w W w . 

Aggregation of the networks aG  and wG  into the 
Aggregated Network waG .  
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In the current section, we present an approach for the 
analysis of attributed networks with discrete node attributes 
and edge attributes. Suppose the association network aG  and 
the weighted network wG  are formed then the aggregated 
network waG  is formed as their weighted network sum with 
coefficients IW : 

 ′= ⋅ + ⋅wa I a I wG W G W G .      (32) 
Lemma 9  If (23) and(31) hold then waG  is normalized: 

 1=wa( G )ω .     (33) 

Parameters of waG  are the following: a vertex set V( waG )  

coincides with the set V , an edge set E( waG )  is a 

combination of −aG  and −wG  edge sets, a WAM waw  is 
the corresponding linear combination of the WAMs a ww ,w . 
So, 

=waV( G ) V , = ∪wa a wE( G ) E( G ) E( G ) , 

′= ⋅ + ⋅wa I a I ww W w W w . 
For the final attributed network waG  construction, we 

perform two steps of aggregating the data of three levels. It is 
represented by a three-level hierarchy (see Fig. 1). 

As it is seen, the networks associated with individual node 
or edge attributes from the families aG  and wG  are located 
on the lowest level. Depending on IIW  and ′IIW  these 
networks constitute different proportions in the next upper 
level, which consists of the networks aG  and wG  associated 
with all node and edge attributes. In turn, aG  and wG  form 
the top level network waG  and participate in the aggregated 

network to more or less extend depending on ′I IW ,W . 
 

 
Fig. 1  The aggregated network waG  hierarchy 

 
A generalization of the AHP synthesis phase (see 

Section 4.c) is based on the observation that instead of vectors 
of local priorities of alternatives any other objects can be used 
if their linear combination is defined. For instance, they can be 
matrices of the same dimension, functions, networks of the 
same vertex set, etc. The result of the synthesis will be an 
object of the same type, such as a matrix of a relevant 

dimension, a function or a network of the same vertex set. 
So, at the bottom level of the hierarchy, we use the networks 

ak wk
k{ G ,G }  of individual node-edge attributes instead of 

vectors of local priorities of alternatives (see Section 4.c). 
Then the networks aG , wG , and waG  are built as their linear 

combination. 'II IIW ,W , and IW  play a role of vectors of 
local priorities. This operation is defined since the vertex set is 
the same for all of the networks. In comparison with the basic 
AHP, where a numerical global priorities vector is the result of 
the synthesis phase, the outcome of our procedure is the top 
level normalized network waG  (see Lemma 9).  

B. Attributed Networks Applications 

In Section V, the weighted network wG  is represented as a 
linear combination of auxiliary networks of individual edge 
attributes (see (30)). On the other hand, forming edge set, we 
assumed that the edges are formed exceptionally based on 
node attributes. Therefore, CD is conducted on wG  depending 
on node attributes. Analogically to the associated network aG  
representation (21) we represent wG  as a linear combination 

of auxiliary networks = k
kG { G }  related to single node 

attributes: 
 

 
∈

= ⋅∑
K

w II ,k k

k J
G W G .  (34) 

Respectively, by (32) waG  can be decomposed into the 
networks corresponding to ATNs only: 

 

 K

wa II ,k wak

k J
wak I ak I k

K

G W G , where 

G W G W G ,k J

∈

= ⋅

′= ⋅ + ⋅ ∈

∑
.     (35) 

For such type of networks, our approach to MLCD consists 
in the following: we run CD on the accumulated network 

waG , obtain the initial partition *   and define a node 

attribute 0nkAT  underlying the partition. Then we reduce 

edge weights of waG  by subtracting the network 0wakG , run 

CD again on the new network 0− wakwaG G , obtain a new 
node partition and define a node attribute underlying it, etc. 

C. Underlying Node Attributes 

Combining the clusters ∈k k
lAC   with the communities 

in ∈
*l *C  , we obtain ⋅ *

kL L  clusters of nodes: 

= ∩ = ∈ ∈* ** k
k k k k *

Lll* l ll*l Lll
AC AC C ,n | AC |,l J ,l J . (36) 

 
Evaluate the following values: 
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0

0 01

−
= ∈ ∈

−

*
** * k

k k
lk k *ll

L Lll llk k
l l

p p
z n ,l J ,l J

p ( p )
,   (37) 

where 

 0 = ∈ k

k
k l

Ll
n

p ,l J
n

,      (38) 

 = ∈ ∈
*

*k*

k
k *ll

Lll* L
l

n
p ,l J ,l J

n
         (39) 

are proportions of the number of nodes in the ACs (11) and the 
clusters ( 36) to their cardinality. ∀ ∈*

*
l

C   underlying node 

attribute (UNA) of the community corresponds to the 
maximum value of ( 37): 

  ∈ ∈= ∈ ** *L Kk
max k *

l J ,k J Ll ll
z max z ,l J . (40) 

So, *l
nk

AT  is the community *l
C -UNA if ∈* *l l

k I , where 

*l
I  includes indices of ATNs where the maximum (40) is 

attained: 
   

′
′⊆ ∀ ∈ ∃ =* * * *

k

k max
K kl l l l l

I J : k I l : z z .         (41) 

Find the number of nodes in the corresponding to (41) 
clusters: 

    ′
∈ ∈

= ∑ *
k*

* *l L

*
k l l

k I ,l J

n n   (42) 

and take their maximum:  
   ∈=* K

* * *
k J kk

k :n max n . (43) 

*nkAT  is the UNA of the partition.  
  Note that ( 40) are One-Proportion test statistics for testing 

the hypothesis: 0 0= =,k k k
ll* ll* lH { p p }  about significance 

difference of the proportions (39) from the ones (38). If 0,k
ll*H  

is true the statistics (40) is normally distributed  ( 0 1N( , ) ). The 
choice (43) can be justified with the pre-specified level of 
significance if the null hypothesis  0,k

ll*H  is considered with an 

alternate one 1 0= >,k k k
ll* ll* lH { p p } . The value k

lat  such that 
0 0= =,k k k
ll* ll* lH { p p }  is rejected is called underlying node 

attribute value (UNAV) of the community *l
C . 

D. The MLCD Algorithm 

• Step 1. Setup 1=τ  - an initial iteration, 1 = waG( ) G - an 
initial network, 1 = KI( ) J ; 

• Step 2 Run CD in G( )τ  and obtain the partition *τ ; 

• Step 3. Determine ∈k I( )τ τ  such that nkAT τ  is a UNA 

of the partition *τ  (see 43); 

• Step 4. Derive wakG τ  from G( )τ : 

1+ = − wakG( ) G( ) G ττ τ , 1+ =I( ) I( )\{ k }ττ τ ; 
• Step 5. Assign 1= +τ τ . If ≤ Kτ  then go to Step 2, 

otherwise stop. 

VI. EXPERIMENTS 
This section is conducted with the help of popular software 

for Network Analysis - Gephi and IGraph. If a CDA is not 
specified, then it means that we use the Louvain method [1], 
which is implemented in both listed programs. 

A. Attributed Networks Simulation 

Simulate attributed network wG  with each layer formed as 
a partition by Erdos-Renyi Random Graphs (ERRGs) [7] and 
the corresponding association network Ga. 

Parameters that are common for these networks include: the 
order 60=n , the number of the node attributes 3=K , the 
nodes are divided randomly into 5 4 6=k k{ L } { , , }  attribute 
clusters of the same sizes 

5 4 612 15 10∈ ∈ ∈= =k
L K Kk

Lk k
l J ,k J k Jl( n ) (( n ) ) ( , , ) , the 

priorities 0 5 0 3 0 2=IIW ( . , . , . )  of node attributes. 

The auxiliary networks = k
kG { G }  are formed as 

follows:
Lk

k w k k k
Kl ll J

G G [ ] ERRG( p ,n ),k J ,
∈

= = ∪ ∈  

 where k
lp  - the probability of an edge i j{ v ,v } : 

= =k k nk
i j la a at , l, k. 

The resulting network wG  is found by (34) and is 
overlapping of K  partitions by ERRGs.  

For the corresponding association network, the auxiliary 
association networks aG  are formed as follows: 

 
∈

= = ∪ ∈k
lLk

ak a k
Knl J

G G [ ] K ,k J .  

The network aG  is overlapping of K  partitions by 
complete graphs, which is defined by (6). 

B. Attributed Network Applications 
1) MLCD on Synthetic Networks 

The effectiveness of the MLCD algorithm (see Section 5.b) 
is demonstrated with the help of the network wG  generated in 
Section 6.a for the level of significance a = 90% [18,19]. 

Suppose that wG is an original network for which we have 
information about three attributes. The result of CD in wG  is 
five communities, M = 0.383 which, in fact, do not relate 
directly to any of the attributes - communities are mixtures of 
nodes with different attributes. On the other hand, we know 
that these attributes are the only factors of the network 
formation, and also we know the weights of each attribute - 
0.5, 0.3, 0.2, respectively. The only question here is an 
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identification of these three layers in the network. 

  
Fig.2 The MLCD     

 
Fig.3 The MLCD result in 

1G( ) - 1 1= *   
 

  
Fig. 4 The MLCD  

 
Fig. 5 The MLCD  result in 

2G( ) - result in 2G( ) , 
2 2= *   

 
According to the MLCD algorithm, we accompany wG  by 

the corresponding association network aG  (see Section 6.a) 
and construct an aggregated network (see Section 5.a). 

Take equal weights of the structural and attributed parts, 
0 5 0 5′ =I I(W ,W ) ( . , . ) , where 0 5 0 5= +wa a wG . G . G , 

1= =a w( G ) ( G )ω ω . We run the MLCD algorithm on 

1 = waG( ) G  and obtain by (42) 60 26 21=*
k k( n ) ( , , )  whereby 

(43) 1=*k . So, 1=
*nk nAT AT  is the partition 1* -UATN. 

Moreover, since we obtain the exact partition into attribute 
clusters related to the first node attribute, 1 1= =* *   , 

1nAT  is a dominant node attribute of 1G( ) . An illustration 
provided in Fig. 2 - 3 shows that attribute clusters related to 
both 1nAT  and 2nAT  can be detected. On the other hand, the 
weight of the 1nAT  is 0 5 0 3 1 67=. / . .  times more than the 

weight of the 2nAT .  
Running CD, as expected, we obtain 1*  related to the 

1nAT . The result of the next, 2=τ , iteration in the network 

2G( )  of the weight 12 1 0 5= − =II ,( G( )) W .ω  is presented in 
Fig. 4. Similar to the previous step we obtain a node partition 
related to the dominant node attribute 2nAT  of 2* , 

2 2=*  , since 2 3 60 23=* *
k( n ,n ) ( , ) , respectively, 2=*k . 

 In Fig. 4-5 we can see the division of the network into four 
communities that are exactly related to the attribute 2nAT . 
The last iteration is conducted in 3G( ) , 3 0 2=( G( )) .ω , and 

yields the partition 3 3=*  . 

2) The High-School Texting Network (HSTN) 
Also, MLCD was conducted on a real node-edge attributed 

network, a High-School Texting Network (HSTN) [18,19]. 
The HSTN description. In order to construct G  398 high-
school students of Denis Morris Catholic High School 
(Thorold, Ontario) were asked to provide information about 
their texting contacts, gender (“Gn”), grades (“Gr”), residence 
location (Region, “R”) and attitude to activities (see Fig. 6).  
 

 
Fig. 6 The questionnaire 

 
The intensity of: a) texting contacts (“TC”); b) participation 

in the following activities: Sports (“S”), Science/Academics 
(“Sc”), and Gaming/Tech (“Ga”) is represented by three 
categories and is ranked from worst to best. For instance, “1” 
corresponds to the weakest case (“cold contacts and activities 
participation), “3” - to the strongest one (a “hot” contact and 
not participation in an activity), and “2” - to medium one 
(“worm” contacts and rare participation in the corresponding 
activity). 

From each of the completed questionnaires a directed star 
graph was formed, and then all these graphs were combined 
into one undirected graph. In case if two participants included 
each other in their texting contact lists, then such intensity of 
the mutual contact was established as the highest one. 

As a result, the High School Texting Network G  521=n  
nodes and 1887=m edges was built. The network is decorated 
by node attributes “Gn”,“Gr”,“RL”,“S”,“Sc”,“Ga” and by an 
edge attribute “TC”. The node attribute data is incomplete 
because from one standpoint, a part of participants did not 
provide complete information, and from another standpoint, 
521 398 123− =  students were mentioned in the contact lists 
but did not participate in the survey. For these 123 students all 
the information, except for a partial list of texting contacts and 
their intensity, is missing. 

The HSTN has the following parameters (see Tables 1): a) 
there are K node attributes (K=6) and K' edge attribute 
( 1=K '  ); b) node and edge attributes are 

6
n nk

k JAT ( AT ) ∈= = ( Gn,Gr,RL,S ,Sc,Ga )  and 

1= =
e eAT ( AT ) (TC ) , respectively; c) the node attributes 

take k k{ L }  values 2 3 3 3 7 4=k k{ L } { , , , , , }   from 
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6 1 2 3∈= =
n nk

k Jat ( at ) ({ female,male },{ , , },  

{ } { } { }1 2 3 1 2 3 9 10 11 12, , , , , , Jordan,..., Thorold , , , ,{ } ); 
d) the edge attribute takes 3 values (L1 = 3) from ate = ate1 = 
{1, 2,3}. A robust subnetwork ′G  on n' = 348 nodes and m' = 
1148 edges, included those the survey participants who 
provided all the data, was extracted from G . Table 1 
represents {nlk}l,k - frequencies of ATNVs in G′ . 

MLCD in the HSTN G′  Consider the robust HSTN 
G′ and study the nature of communities of its first layer, which 
are obtained by CD applied to G' directly. For that first, we 
convert the edge-attributed network G' into a weighted 

wG assigning priorities of 1, 2, 3-texting intensity ranks such 
that to attain maximum modularity among selected com-
binations: IIIW ′ = =(0.084,0.275,0.641). Secondly, we assign 
the node attribute priorities IIW ′ = (0.22, 0.14, 0.12, 0.14, 
0.13, 0.25) comparing weights of edges within the attribute 
clusters with the ones between the attribute clusters and the 
rest of the network. Rest of priorities we take equal according 
to Remark 2. 

 
l Gender nl

1 S nl
2 Sc nl

3 Ga ni4

1 female 189 1 77 1 109 1 153
2 male 159 2 77 2 128 2 98
3 3 194 3 111 3 97

Total 348 348 348 348  
Table 1 Frequencies of the ATNVs in the HSTN G′  
 

l Region nl
5 Grade nl

6

1 Jordan 17 9 90
2 Merriton Ward 60 10 74
3 Other 145 11 103
4 St. Andrew’s Ward 5 12 81

5 St. George’s Ward 4
6 St. Patrick’s Ward 1
7 Thorold 116

Total 348 348  
Table 1 Frequencies of the ATNVs in the HSTN G′ (cont.) 

 
Since all the node attributes are known, we can compose 
' wG  with the corresponding association network (see 

Section 5.a) denoted by aG ′  . Assuming that aAT  are only 
reasons of the attributed network structure formation we 
choose equal weights of the attributed and structural parts 
( 0 5= =I ' IW W  . ) and construct an aggregated attributed 
network waG ′  = 0.5 aG ′ Ga'+0.5 wG ′ . We conduct CD in the 
networks wG ′  and waG ′ , obtain the node partitions *′  and 

* a′ , respectively, and compare the results (see Fig. 7-8): 

• the partition *′  includes *L ′  = 25 communities. First 
eight, 0 7* ( ) * ( )′ ′−   are the largest ones. They contain at 
least 2% each of the total number of the nodes and can be seen 

in Fig. 7. The rest 17 communities - we denote them 
8 24′ −* ( )  

- primarily correspond to people did not provide their texting 
contacts, therefore, represented by isolated vertices or by 
communities with a few nodes. In terms of the HSTN, since 
only the 8-11-th grades high-school students participated in the 
survey, it is unlikely that they do not communicate via texting 
or by another way with someone of classmates. Hence the 
existence of these isolated components is explained exclu-
sively by lost edges. 

• For the network waG ′ , the situation looks different. The 
network is one-component, the partition * a′ ,a includes only 
L*,a = 8 communities, where the first seven contain all nodes 
except for one. Namely, these communities denoted by 

0 6′ −* a( )  we analyze. Notice that they can be clearly seen in 
Fig. 8. 

These pictures demonstrate an advantage of the usage of 
network aggregation with an associated network instead of the 
original network usage. In the aggregated HSTN almost all the 
mentioned isolated components became connected by the 
common node attributes edges. As a result, the number of 
communities decreased significantly and made possible the CD 
results interpretation. Also, since the number of isolated 
components decreases a lot it makes possible to restore all the 
missing network information: we can start with node and edge 
attributes inference, after that the edge inference of the 
corresponding associated network can be conducted based on 
already renovated node attributes [10,18]. In terms of the 
HSTN, it means that the applying the aggregated networks 
allows for any node with at least one link or a node attribute to 
restore the rest of attributes, whiles for the original network it 
is not possible. 

For the HSTN community structure studying the 
aggregated network provides an opportunity to clarify to which 
communities the students from the 8 24′ −* ( )  belong if their 
links to the community were lost during the initial data 
collecting. 

 We analyze communities in 0 6′ −* a( )  and assign 
underlying ATNVs (UNAVs) to them with the level of 
significance 0 1= .α  according to the scheme described in 
Section 5.b. The result presented in Table 2 is obtained for 
those four node attributes, for which the communities UNAVs 
were derived. The other two node attributes, “Science'' and  
“Region'', are not significant in the division ′* .  In Table 2, 
the UNAVs  for 0 1= .α  are presented.  
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Fig. 7 Communities in the HSTN wG ′  
 

 
 
Fig. 8 Communities in the aggregated waG ′  (M = 0,314) 
 

It can be seen that only the “Grade''-UNAVs were 
extracted for each of the communities. 

Therefore, 6 =nAT ”Grade” is the dominant node attribute of 
the partition, as well as for the original G,G′  and the 

accumulated waG . 
For example, review the communities 

0 6
1 2 6

′ −∈* * * * a( )C ,C ,C   of the Grade 11. There are only one 

“male” community, 2
*C , and two “female” communities: the 

1
*C  unites girls that like sport and gaming activities, but they 

are not fans of it; there are mostly girls who definitely do not 
like gaming in the 6

*C . Two communities relates to the Grade 

10, 0 6
0 3

′ −∈* * * a( )C ,C  . For them no underlying attributes 

among 1 6−n nAT AT were derived, hence, with the probability 
90%, the reason of this division remains undetected. 
Therefore, the study is not complete. 

 

The results of the HSTM analysis show the capacity of 
detecting minor layers after extracting major ones. Analysis of 
underlying attributes and values allows studying the nature of 
the detected communities. 

VII. DISCUSSION 
CDAs mostly attempt to increase modularity [17]. 
Modularity of the partition ∈= *L

*
l l J{ C }  in the 

unweighted network G  is the following characteristics which 
is maximized: 

1

1
2 2= ∈

 
= − → 

 
∑ ∑

*

l

L
u v

u,v
l u,v C

d d
M a max,

m m
;     (44) 

where ud  is a degree of ∈u V . 
It always can be represented in a form: 

T Tf (x) = x Ax + c x  min, →              (45) 
 x  E Bn ,′∈ ⊆                          (46) 

i mf (x) < 0, i  J ,′∈  (47) 

where ×∈ n nA R , =TA A ,  1∈c R , (46) - are direct 
constraints and (47) are functional constraints. Depending on a 
choice of E, the problem can be represented with functional 
constraints or without them. 

Various heuristics for solving (44) are known [8, 16,36]. 
Some of them are implemented in Gephi and IGraph. 

However, exact and approximate methods are also can be 
offered based on the Euclidean statement (45)- (47) of (44). It 
has a form of an unconstrained quadratic problem over 0 — 1-
set: 

1
1 1

=
= = ⊗ **

nn
LL i

E ( ) B ( )B                      (48) 

where 1*L
B ( )  is a permutation set induced by 10 1−*L{ , } . 

Respectively, (45)-(47) can be treated as a quadratic binary 
problem with additional linear equality constraints on a sum of 
a particular set of variables [4,12]. 

Let us outline original approaches to (44) represented in the 
form (45),(46),(48) that are based on a vertex locality, a 
spherical locality, a 2-levelness of 1*

n
L

( )B , its belonging to 

polypermutation sets [23,40], and other properties of the 
generalized permutation set [6,22,26]. Its vertex locality 
allows assuming that the objective function is convex in 
accordance with [39]. The set is formed as an intersection of a 

l* ni Gende
 

Sport
 

Gamin
 

Grad
 5 95 male   9 

4 73  1 1 12 
3 71    10 
2 47 male   11 
1 34 female 2 2 11 
0 19    10 
6 8 female  1 11 
Table 2: 0 6′ −* a( ) -UNAVs, 0 9=p .  
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hypersphere with a polytope 1 1=* *
n n
L L

( ) conv ( )PB B . 

That is why the Branch&Bound Polyhedral-Spherical 
Method (B&B PSM) [21] is applicable for solving 
(45),(46),(48), as well as approximate schemes of the 
Polyhedral-Spherical Method (Greedy PSM, GPSM) [21,23]. 

Another approach is the Functional Representation Method 
[20], which allows forming a biquadratic continuous functional 
representation of 1*L

( )B  [22,23] and then applying Nonlinear 

Programming to (45),(46),(48). 
A peculiarity of 1*L

( )B  is that a linear function is 

optimized simply over it, and a projection on the set can be 
easily found based on its spherical locality [23]. 

Together with a convexity of the objective function, this 
allows solve (44) for small dimensional problems and obtain 
approximate solutions with a prescribed accuracy for higher 
dimensional ones. 

Note that the PSM-group is based on combining two 
continuous relaxation of the original problem - polyhedral and 
spherical [40], decomposing 1*L

( )B into sets of the same 

combinatorial type and lower dimensions, and reducing of 
(45),(46),(48) to similar lower-dimensional problems. Due to 
the convexity of f ( x ) , the polyhedral relaxation is solved to 
optimality exactly, and since we deal with the quadratic 
objective function, the spherical relaxation is solvable exactly 
as well [39]. 

Modularity is not only a numerical measure of a presence of 
communities in networks [8, 33]. Moreover, there is no unique 
definition of communities [8]. Hence, there is no unique 
numerical measure Cr of community detection quality. The 
scoring function 

Cr can be based on the internal connectivity (Type A) or the 
external connectivity (Type B); it can also be a combination of 
the internal and external connectivities (Type C), or it can be 
based on a network model (Type D) [32]. Thus, if we aim to 
get a partition with high intra-cluster density, which is the ratio 
between the number of intra-cluster edges in a community C 
and the number of all possible internal edges of C: 

2
1

=
−

int ,C | E( C )|
| C |(| C | )

δ  

and low inter-cluster density (7), i.e., the ratio between the 
number of C-inter-cluster edges and the number of all possible 
C-external edges: 

=
⋅

ext ,C | E( C,C )| .
| C | | C |

δ  

of detected communities, then scoring function of C- type may 
be the following [8]: 

( )
∈

= − →∑ int ,C ext ,C

C
Cr maxδ δ


. (49) 

Taking only one of these goals, we get the criteria of A-type 
and B-type, respectively: 

1
int ,C

C
Cr max;δ

∈

= →∑


                  (50) 

2
ext ,C

C
Cr min .δ

∈

= →∑


     (51) 

The Euclidean statement of (49) is again a binary problem. 
In case if it’s objective function is polynomial, it can be 
equivalently reformulated in the form (45)-(47), and all the 
above reasoning works for solving (49). 

Note that (49) is a convolution of the two-criterion problem 
(50), (51), which is also can be reformulated as a two-
objective problem (45)-(47), 

T T'f ( x ) x A x c x max,′ ′= + → , 

where ×′∈ n nA R , T'A A= ,  1′∈c R , 0A , 0A′
 , i.e., 

f ( x )  is convex, ′f ( x )  is concave. Respectively, multi-
objective combinatorial optimization approaches become 
applicable to resolve our task [11]. 

VIII. CONCLUSION 
It is clear, we need to develop more effective decomposition 

into one-layer networks for attributed networks. Such 
approaches can also be used to attack the problem of restoring 
missing network data such as lost attributes of edges and 
nodes. We studied attributed networks, however, not much is 
known about their formation models, in particular, when the 
edge weight distribution scheme is considered. 
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