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Abstract—This paper proposes a synaptic device based on 
charge trap flash (CTF) memory that has good CMOS 
compatibility and excellent reliability compared to other 
synaptic devices. Using hot-electron injection (HEI) and hot-
hole injection (HHI), we designed the operation method to 
fulfill incremental-step-pulse program (ISPP). To demonstrate 
the ability of the device for neuromorphic, the device 
simulation (TCAD) and the MATLAB simulation were 
performed simultaneously. We also implemented the multi-
level operation. 
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I. INTRODUCTION 

Recently, neuromorphic systems have been spotlighted to 
overcome the existing computing systems based on the von 
Neumann architecture [1-5]. The term “neuromorphic” refer 
to artificial neural system that mimics neurons and synapses 
of the biological nervous system [3]. In the case of the 
biological nervous system, it is composed of neurons and 
synapses. A neuron generate a spike when a signal received 
from the pre-neuron exceeds a threshold, and the generated 
spike is transmitted to the post-neuron. A synapse refers to 
the junction between neurons, and each synapse has its own 
synaptic weight, which is the connection strength between 
neurons [6]. In neuromorphic system, synaptic weight can be 
represented by the conductance of synapse device. 

To implement neuromorphic system, it is essential to 
develop a synapse device that has small cell size, low-energy 
consumption, multi-level operation, symmetric and linear 
weight change, high endurance and CMOS compatibility [5]. 
Various memory devices, such as static random-access 
memory (SRAM) [7], resistive random-access memory 
(RRAM) [8], phase change memory (PCM) [9], floating 
gate-memory (FG-memory) [10], have been proposed to 
implement the synapse operation. However, the above-
mentioned devices have critical limitations [5]. 

In this paper, we propose a synaptic device based on a 
charge trap flash (CTF) device, which has already been 
commercialized in NAND flash memory [11-12]. Compared 
to other memory devices, CTF devices have good CMOS 
compatibility and excellent reliability [5]. The conductance 
of CTF device can be modulated by the hot-electron 
injection (HEI) and hot-hole injection (HHI) mechanisms. To  

 

 
 
Fig. 1. (a) Proposed synapse crossbar array to act inhibitory and excitatory 
in the same time. (b) Synaptic device based on a CTF device. 

 

obtain excellent synaptic behavior, studies have been 
conducted on the pulse scheme for HEI and HHI. Also, the 
feasibility of the synaptic device is verified through a pattern 
recognition application with the Modified National Institute 
of Standards and Technology (MNIST) database.  

II. SYNAPSE DEVICE 

Generally, the synaptic behaviors include the 
potentiation operation to increase the synaptic weight by 
excitatory synapse part and the depression operation to 
decrease the synaptic weight by inhibitory synapse part. In 
this section, we proposed the synapse device based on a 
CTF device and the operation method for the synaptic 
behavior. 

A. Synaptic device based on the CTF memory 

An artificial neural network (ANN) with a single nm 
can be implemented by a crossbar array of memory device 
pairs  shown in Fig. 1(a). The synapse weight of each 
synapse can be represented by different two conductances: 
wij = Gij

+ - Gij
-, where wij is the weight of the synapse device 

from neuron i to  j. By using a pair of devices, it can be 
represented the negative and positive weight at the same time 
[14]. The total output current is explained by the sum of each 
vertical current as follows: 
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Fig. 2. (a) Potentiation method by successive drain pulse train. (b) 
Depression method by successive drain pulse train. 

 

 
Fig. 3. (a) Potentiation method by ISPP pulse train. (b) Depression method 
by ISPP pulse train. 

 
Fig. 1(b) shows the proposed device based on CTF 

device with a silicon nitride layer as a storage layer. It is 
combined two MOSFET transistors sharing a source (S) and 
gate. When the voltage is applied to a source, the drain 
currents of D(+) and D(-) flow into the neuron circuit and is 
determined by Gij

+ and Gij
-. Through this architecture, the 

part of excitatory can be represented by Gij
+ and inhibitory 

can be represented by Gij
- simultaneously. Each conductance 

is determined by threshold voltage according to the amount 
of trapped charge in each storage layer. A technology 
computer-aided design (TCAD) simulation (Synopsys 
Sentaurus) was used to demonstrate the synaptic operation 
of the device [15]. 

B. Successive-Pulse Programing 

HEI and HHI are used as a charge injection mechanism 
and for the conductance modulation of the proposed synapse 
device. HEI occurs when positive voltage is applied to the 
drain under the positive gate bias, which means the 
conductance decreases and the threshold voltage increases by 
injecting the electron [16]. On the other hand, if the drain 
voltage is applied under the negative gate bias, the 
conductance is increased and the threshold voltage is 
decreased by HHI as injecting the hole. In addition, HHI 
operates at lower voltage and faster than Fowler-Nordheim 
(FN) tunneling [17-18]. As a result, the potentiation can be 
performed simultaneously by HHI in the D(+) region and 
HEI in the D(-) region, as shown in Fig. 2(a). The depression 
operation is performed by HEI in the D(+) region and HHI in 
the D(-) region, as shown in Fig. 2(b).  

 
Fig. 4. Gradual changes of conductances (synaptic weight) by successive 
pulse programming and ISPP. 

C. Incremental-Step-Pulse Programming 

The Incremental-Step-Pulse Programming(ISPP) is used 
for the program scheme of NAND flash memory [12]. The 
program pulse is increased by a constant value Vstep after 
each program step as shown in Fig. 3. Using a TCAD device 
simulation, we compared the conductance modulation 
characteristics of the successive-pulse programming and the 
ISPP. As shown in Fig. 4, the ISPP scheme shows better 
synaptic behavior than the successive-pulse scheme. The 
ISPP scheme showed that the conductance changes linearly 
according to the number of applied pulses. Also, the range of 
available conductances (memory window) can be  further 
increased [19]. Consequently, The ISPP scheme is more 
suitable than the successive-pulse scheme for the operation 
method of the proposed synapse device.  

D. Pattern Recognition Simulation 

To demonstrate the functionality of the proposed device, 
the single-layer ANN system was simulated as shown in Fig. 
1 (a). The MNIST database is a large database of handwritten 
digits, which contains about 60,000 learning images and 
10,000 test images. A total of 784 input nodes and 10 output 
nodes are used for MNIST pattern recognition. At this time, 
784 input nodes represent 2828 black pixels of the learning 
image, and 10 output nodes represent ten digits (0-9). We 
also used a rectifier linear unit (ReLU) as a activation 
function, which is one of the popular activation functions. 
Because the lack of vanishing gradient problems appear in 
other ones such as sigmoid or hyperbolic tangent functions 
[20-22]. The learning process is as follows: the error is 
calculated by supervised learning, and the target of 
conductance change is determined by the gradient descent 
method. After that, the synaptic weight value is updated 
based on a fitted equations for the conductance modulation 
characteristics with the successive-pulse scheme and the 
ISPP scheme.  

Fig. 5(a) shows the MATLAB simulation result of the 
recognition accuracy using the 10,000 untrained samples 
based on the number of trained samples is plotted in Fig. 4. 
The synaptic weight maps are illustrated in Fig. 5(b). The 
successive-pulse scheme and the ISPP scheme show 
accuracy of 79.83 % and 85.9 %, respectively. This result 
indicates that synaptic devices should have linear 
conductance modulation characteristic for the better 
performance of a neuromorphic system [23].  
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 Fig. 5. (a) Recognition accuracy as a function of the number of trained 
samples. (b) Synaptic weight map of the ISPP after training 10,000 samples. 

 
We have also analyzed the conductance modulation 

characteristics according to the Vstep of the ISPP scheme and 
its effect on the pattern recognition rate.  As illustrated in Fig. 
6(a), a smaller Vstep allows for fine conductance modulation, 
which means that the number of conductance level can be 
increased. Consequently, the ISPP scheme with the smaller 
Vstep exhibits better pattern recognition rate as shown in Fig. 
6(b).  

III. CONCLUSION 

We have proposed a synapse device based on a CTF 
memory device. The operation method was designed by 
using HEI and HHI to apply ANN systems. The synapse 
behavior was operated by TCAD simulation, and we 
verified the ability of synaptic device through a MATLAB 
simulation with MNIST database. Finally, we obtained the 
high accuracy and implemented the multi-level operation by 
ISPP. 
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Fig. 6. (a) The gradual conductance change by applying various Vstep.  
(b) Recognition accuracy as a function of the number of the trained samples. 
The number in the figure is the pulse number from minimum conductance 
to maximum conductance called the conductance level. 
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