

Abstract—Event-B is a formal method used for software

development, in complex system. It uses the notion of refinement

step by step modeling, going from an abstract level and add more

details gradually to move on to a more concrete one. This method

use proof obligations rules which based on mathematical approach to

prove the consistency and the correctness of the modeling. This paper

presents an incremental formal modeling of the Routing Information

Protocol (RIP) using event-B method. Routing Information Protocol

is a standard based, distance vector, interior gateway protocol used

by routers to exchange routing information among gateways and

other hosts. It plays an important role providing the shortest and best

path for data to take from node to node. It permits to update

periodically the routing information in the RIP network.

Keywords— Event B, Formal modeling, RIP, refinement.

I. INTRODUCTION

he routing information protocol (RIP) is one of the

internal gateway protocols (interior gateway protocol), it

manages the route information in a local network, it considered

as the effective solution for small networks. The RIP is a

dynamic protocol used to find the best route or path from end-

to-end over a network by using a routing metric/hop count

algorithm. This algorithm is used to determine the shortest

path from the source to destination.

 The first version of the routing information protocol is

defined by IETF in RFC 1058 [7] published in 1988, it is

considered a classful routing protocol. Due to the many limits

of the version 1, the second version developed in RFC 2453

published in 1993 [8] and standardized in 1998 [9], it is

considered a classless routing protocol, and has the ability to

carry subnet information. The third version of RIP called

RIPng (RIP next generation) developed in RFC 2080 is an

extension of the RIPv2 to support IPv6.

Bahija Boulamaat is with LMPHE laboratory, University of Mohammed

V, Faculty of sciences, Rabat, Morocco (e-mail:

boulamaatbahija@gmail.com).

Anas Amamou is with LMPHE laboratory, University of Mohammed V,

Faculty of sciences, Rabat, Morocco (e-mail: amamou.anas@yahoo.fr).

Rajaa Filali is with LMPHE laboratory, University of Mohammed V,

Faculty of sciences, Rabat, Morocco (e-mail: rajaafilali@gmail.com).

Sanae El Mimouni is with LMPHE laboratory, University of Mohammed

V, Faculty of sciences, Rabat, Morocco (e-mail: sanae.elm@ gmail.com).

Mohamed Bouhdadi is with LMPHE laboratory, University of Mohammed

V, Faculty of sciences, Rabat, Morocco (e-mail: bouhdadi@fsr.ac.ma).

 This paper presents the informal specification of RIP which

will be modeled using event-B method. This article is an

extended version of a conference paper that appeared as [1].

 Event B is a formal method for modeling software systems

[2]. It has been used in several interdisciplinary such as

medicine, transport, aeronautics, trains, space, biology,

security, hybrid system, parallel systems and communications

protocols…etc. It translates an informal specification to a

formal notation using mathematical language (elementary set

theory, first order logic...etc). It goes from developing a

discrete system by refinement. This method permits to build a

model by successive steps going from an abstract model to a

more concrete one adding more details gradually. Each version

is proved and is consistent with the previous one [3].

 The refinement notion was first introduced by Dijikstra [3]

in the 70s, and then formalized with Back [13], then it was

mentioned in several research such as Lamport [14],Abrial,..

 Jean Raymond Abrial has developed the Event-B in 2010

which is the evolution of the B method developed in the 90s

and also the Z language which is developed in the seventies. It

works essentially on the concepts of: refinement, composition

and generecity [5]. The advantage of this method is to make

proofs automatically using the Rodin platform. The Even-B

use the Rodin Platform that is an Eclipse based IDE that

provides refinement and mathematical proofs. The proofs help

to improve the failure and errors and help up to correctly

model.

 The reminder of this paper is as follows. In Section2, we

give an overview of the Event-B method. In Section 3, we

present the description of the routing information protocol.

And, the final section presents the modeling of the protocol.

II. OVERVIEW OF THE EVENT-B METHOD

 Event-B is a formal method used to model complex systems.

It uses mathematical language to built models step by step

going from an abstract one to a refined one and proving it the

correctness. The Event-B models consist of two mean

constructs: the contexts and the machines. The context

contains the static part of the model like sets and constants,

and axioms whereas the machines contain the dynamic part

like variables, invariants and events. Between the machines

and contexts, there are different relationships. The machines

can refine one or several ones. The contexts can be extended

by one or several context and can be referenced ‘’see’ by one

or several machines.

Using Event-B Method to model Routing

Information Protocol

Bahija Boulamaat, Anas Amamou, Rajaa Filali, Sanae El Mimouni and Mohamed Bouhdadi

T

INTERNATIONAL JOURNAL OF COMPUTERS Volume 13, 2019

ISSN: 1998-4308 73

In Event-B, an event is defined by the syntax: EVENT e

WHEN G THEN S END , Where G is the guard, expressed as

a first-order logical formula in the state variables, and S is any

number of generalized substitutions, defined by the syntax S

::= x := E(v) | x := z : | P(z). The deterministic substitution, x

:= E(v), assigns to variable x the value of expression E(v),

defined over set of state variables v. In a non-deterministic

substitution, x := z : | P(z), it is possible to choose non-

deterministically local variables, z, that will render the

predicate P(z) true. If this is the case, then the substitution,

 x := z, can be applied, otherwise nothing happens.
 The Event-B consists of three important techniques:

refinement, composition, instantiation.

 Refinement: the refinement permits to build model

gradually by making it more and more accurate. We construct

the models by sequence; each one is the refinement of the

previous one in the sequence. The refinement uses the concept

of the superstition refinement and data refinement.

 Decomposition: the decomposition consists on spitting a

model to small sub models.

 Generic instantiation: the generic instantiation permit to

parameterize machines in order to reuse it to refinement. It

consists of using a generate theory proved using constants and

axioms in a machines to be reused in another machine without

proving it.

The proof obligation permits to test and validate the model.

The proof obligation rules define what must be, it correct the

error and help to ameliorate the model. They verify the

properties of the machines and ensure the correctness of the

modeling and its consistency between the refined and the

abstract levels. The proof obligation rules define what must be

proven; verify certain properties of the machines. Rodin

platform generates automatically this proof with the help of the

proof obligation generator. There several proof obligation as

INV, FIS, WD, EQL...

 Invariant preservation proof obligation rule (INV) ensure

that each invariant are preserved by each event, the Feasibility

proof obligation rule (FIS) ensure that the action are feasible.

The well-definedness proof obligation rule (WD) ensures that

a potentially ill-defined axiom, theorem, invariant, guard,

action, variant, or witness is indeed well defined

III. DESCRIPTION OF RIP

 Routing Information Protocol (RIP) is a standard distance-

vector protocol used by routers to exchange routing

information between each entity: host, gateway, within the

network. Each entity participating in the routing scheme sends

update messages that describe the routing information

currently exist in that entity.

 The RIP is used to find the best route or path from end-to-

end (source to destination) over a network by using a routing

metric/hop count algorithm. This protocol is used to determine

the shortest path from the source to destination. Hop count is

the number of nodes the packet must go through until it

reaches its destination [7], [8], [9], the routing information is

stored in a routing table for future use.

The routing information protocol manages the router

information by enable to exchange routing information in

network (RFC 1058). RIP allows connecting with destinations

that is not directly reachable. It used for a finite number of

nodes the longest path supported is 15.if the metric’s (the

metric is the number of node from the originating node to

reach a destination) node value is 16 the destination is

considered unreachable. Each node in the network should

know all the routes to the other nodes .the routing table is

updated periodically to ensure the freshness of the routes.

A node sends a broadcast request to RIP neighbors’

interfaces in the network, the request consist of its entire

routing table. All the neighbors receiving the request respond

with their routing tables, and these tables will also be sent to

the receiving neighbors.

The node send a request to its neighbors, each node of the

neighbors will send its routing tables to its neighbors until all

the nodes in the network have all the routes in their tables.

The messages received, permit to update the receiving ‘node

table. Each entry in the routing table presents a route, it consist

of source, destination and the metric node to reach the

destination. The update consist of comparing the received

table with the table of the node ,If an entry is in the received

node routing table but it does not exist in the node routing

table than we add it as a new one in the node table. If it already

exists we take the minimum metric, as it considered the best

path to the destination.

The routing information table has four important timers,

which used in the routing information protocol as

The Route update timer: each 30 second a router send a

copy of its routing table to its neighbors.

 Route invalid timer: a time to determine when a route is

considered invalid, when there is no update for a route about

180 s then the router sends updates to its neighbors that the

route is invalid.

 Route hold-down timer: is the time in which a route in

unreachable, is about 180s or until a better route is found

 Route flush timer: is the time to remote a route from the

routing table, it comes after the route is considered invalid.

 The limits specifications of this protocol are: The hop count

cannot exceed 15, otherwise it will be considered unreachable,

RIP has slow convergence and has count to infinity problems,

Variable Length Subnet Masks are not supported by RIP

version 1.

IV. MODEL IN EVENT-B

 In the initial model, we present the exchange between a node

and its neighbors. We take the node and one neighbor because

the same pattern is repeated with the other nodes. The source

node send messages to it neighbor, this messages consist of the

source node, routing table, and then it received a response

messages from the neighbor, also consist of the neighbors

routing table. In first model we also present the update of the

source node table as how it updated. The update happens when

we compare the source node routing table and the received

node routing table. If there are routes in the received table that

are not in the source table, we then add those routes as new

INTERNATIONAL JOURNAL OF COMPUTERS Volume 13, 2019

ISSN: 1998-4308 74

http://en.wikipedia.org/wiki/Count_to_infinity

entries. If the same routes exist in both tables, we consider the

route with best path (with the minimum metric).

A. The initial model

We consider the message exchange between the nodes. We

model it as an exchange between one node and its neighbors;

in the RIP network .We called the source node and one of its

neighbors we called it a neighbor node

 In the context:

 We define two carrier sets: NODE and MSG.

 In the machine:

Sd,and rcv present the messages send or received by a node in

the RIP network, we also define the routing table by the

variable entrytable, and hopecount who presents the routing

table of the resource node (rcvnode)and respectively

entrytablercv, and hopecountrcv presents the routing table of

the neighbors node (neibornode),

In the event initialization we initialize the variables defined

previously:

 INITIALISATION:

 THEN

 act1: sd≔∅

 act2: rcv≔∅

 act3: srcnode ≔ ∅

 act4: neibornode ≔∅

 act5: entrytable ≔∅

 act6: hopecount≔∅

 act7: entrytablercv≔ ∅

 act8: hopecountrcv≔∅

 END

We have two events for the exchange messages between a

source node and one of it neighbors. And three events for the

update of the routing table of the source node.

The event send_request and receiv_request present the

messages send or received by a node:

send−request:

ANY

msg , s , n

 WHERE

 grd1: msg ∈ MSG

 grd2: s∈NODE

 grd3: n∈NODE

 grd4: msg∈dom(srcnode)

 grd5: msg∈dom(neibornode)

 grd6: srcnode(msg)=s

 grd7: neibornode(msg)=n

 grd8: s ≠ n

 THEN

 act1: sd ≔ sd ∪ {msg}

END

 receiv−request:

 ANY

 msg s n

 WHERE

 grd1: msg ∈ MSG

 grd2: s∈NODE

 grd3: n∈NODE

 grd4: msg∈dom(srcnode)

 grd5: msg∈dom(neibornode)

 grd6: srcnode(msg)=s

 grd7: neibornode(msg)=n

 grd8: s ≠ n

 THEN

 act1: rcv ≔ rcv ∪ {msg}

 END

 After we compare the routes in the route table of the source

node and the one received from the neighbor node. We update

the source routing table, when the route in the received table

does not exist in the resource routing table (event

updare_table−dif), or when the route exists in the routing table

but the received one has a better path because it has an inferior

count metric (update_table_same_entry1). Finally, there is no

update when the route in the source routing table has an

inferior metric node than the one in the received one; in this

case there is no action so it’s a SKIP, nothing changing in the

resource routing table.

 updare_table−dif:

 ANY

 s, n, msg1, msg2

 WHERE

 grd1: msg1 ∈ MSG

 grd3: msg2∈MSG

 grd3: s∈NODE

 grd4: n∈NODE

 grd5: s≠n

 grd6: msg1∈dom(srcnode)

 grd7: msg2∈dom(neibornode)

 grd8: srcnode(msg1)=s

 grd9: neibornode(msg2)=n

 grd10: s↦n ∉ entrytable

 grd1: n↦s ∈ entrytablercv

 THEN

CONTEXT ctx0

SETS NODE,MSG

END

VARIABLES

 Sd,rcv,srcnode, neibornode,

 entrytable, entrytablercv,

 hopecount, hopecountrcv

 INVARIANTS

 inv1: sd ⊆ MSG

 inv2: rcv ⊆ MSG

 inv3: srcnode ∈ MSG⇸ NODE

 inv4: neibornode ∈ MSG⇸ NODE

 inv5: entrytable ∈ NODE↔NODE

 inv6: entrytablercv ∈ NODE↔NODE

 inv7: hopecount ∈ NODE⇸(NODE⇸ℕ)

 inv8: hopecountrcv∈ NODE⇸(NODE⇸ℕ)

 inv9: ∀i,j·i↦j∈entrytable⇒i≠j

 inv10: ∀i,j·i↦j∈entrytablercv⇒i≠j

INTERNATIONAL JOURNAL OF COMPUTERS Volume 13, 2019

ISSN: 1998-4308 75

 act1: entrytable≔ entrytable ∪ {s↦n}

 END

 update_table_same_entry1:

 ANY

 s , n , msg1, msg2

 WHERE

 grd1: msg1 ∈ MSG

 grd2: msg2∈MSG

 grd3: s∈NODE

 grd4: n∈NODE

 grd5: msg1∈dom(srcnode)

 grd6: n≠s

 grd7: msg2∈dom(neibornode)

 grd8: srcnode(msg1)=s

 grd9: neibornode(msg2)=n

 grd10: n↦s∈entrytablercv

 grd11: s↦n∈entrytable

 grd12: s∈dom(hopecount)

 grd12: n∈dom(hopecount(s))

 grd13: n∈dom(hopecountrcv)

 grd14: s∈dom(hopecountrcv(n))

 grd15: hopecount(s)(n)>hopecountrcv(n)(s)

 THEN

 act1: entrytable ≔ entrytable ∪ {n↦s}

 END

 update_table_same_entry2:

 ANY

 n ,s , msg1, msg2

 WHERE

 grd1: msg1 ∈ MSG

 grd2: msg2∈MSG

 grd3: s∈NODE

 grd4: n∈NODE

 grd5: msg1∈dom(srcnode)

 grd6: n≠s

 grd7: msg2∈dom(neibornode)

 grd8: srcnode(msg1)=s

 grd9: neibornode(msg2)=n

 grd10: n↦s∈entrytablercv

 grd11: s↦n∈entrytable

 grd12: s∈dom(hopecount)

 grd13: n∈dom(hopecount(s))

 grd14: n∈dom(hopecountrcv)

 grd15: s∈dom(hopecountrcv(n))

 grd16: hopecount(s)(n)<hopecountrcv(n)(s)

 END

B. The first refinement

 In the first refinement, we add three more events related to

the four timers. Then we refine the previous events by adding

more guard.

 Route update (t1), time route invalid (t2), time, route flush

time (t3) and time route hold-down (t4).

 The initial context will be extended and the initial machine

will be refined.

 Firstly we extend the initial context, by defining the states of

the route if it is valid or unreachable (the metric is above 15)

or invalid and adding the timers.

 In this refinement we have two more variables a time: temps

and a Boolean for the first timer.

We add in the INITIALISATION event the initialization of the

new variables

 act9: temps ≔ 0

 act10: b ≔ FALSE

 act10: etat ≔ valid

 The previous events are extended in this refinement by

staying the same or adding new events. We refine the events

send−request by adding two more guards b = TRUE, and etat=

valid. And for the events: update_table_same_entry1,

update_table_same_entry2 , updare_table−dif we add the

guard etat=valid, the route should be valid so it can be

updated.

 We add three more events route−invalid, route−remove and

route−holddown. The first added event presents when the

route is considered invalid. In the second one the invalid

routes are removed after a flush time. The third event presents

when route is considered unreachable

 route−invalid:

 ANY

 s ›

 n ›

 WHERE

 grd1: s ∈ NODE

 grd2: n ∈ NODE

 grd3: temps∈ℕ

 grd4: s ≠ n

CONTEXT

 ctx01

 EXTENDS

 ctx0

SETS

 ETAT

CONSTANTS

 Valid,invalid ,unreachable

 t1,t2,t3,t4

AXIOMS

 ETAT={valid,invalid,unreachable}

 valid ≠ unreachable

 unreachable≠invalid

 t1 ∈ ℕ ,t2 ∈ ℕ,t3∈ℕ ,t4∈ℕ
END

VARIABLES

 b,temps,etat

 INVARIANTS

 inv1: temps ∈ ℕ

 inv2: b ∈ BOOL

 inv3: b= TRUE ⇒ temps <t1

 inv4: etat ∈ ETAT

INTERNATIONAL JOURNAL OF COMPUTERS Volume 13, 2019

ISSN: 1998-4308 76

 grd5: etat=valid

 grd6: temps≥t2

 grd7: s↦n ∈ entrytable

 THEN

 act1: etat≔invalid

 END

 route−remove:

 ANY

 s , n

 WHERE

 grd1: s ∈ NODE

 grd2: n ∈ NODE

 grd3: s ≠ n

 grd4: etat=invalid

 grd5: temps≥t3

 grd6: s↦n ∈ entrytable

 THEN

 act1: entrytable≔entrytable∪(entrytable∖{s↦n})

 END

 route−holddown:

 ANY

 s , n

 WHERE

 grd1: s ∈ NODE

 grd2: n ∈ NODE

 grd3: s ≠ n

 grd4: temps≥t4

 grd5: s↦n ∈ entrytable

 grd6: s∈dom(hopecount)

 grd7: n∈dom(hopecount(s))

 grd8: hopecount(s)(n)≥16

 THEN

 act1: etat≔unreachable ›

 END

 All the proof obligations have been valid automatically or

manually in the both model fig1 and fig2. The fig3 shows the

number of generated proof obligations rules and the state of

each one

Fig.1 proof obligation rules in initial model

Fig.2 proof obligation rules in the first refinement

Fig.3 proof obligation statistics

V. Conclusion

 The formal method has been used to model different concept

and answer to different discipline [10], [11], [12]. We have

used event-B as a formal method. Thus, we have transformed

the informal specifications into a formal notation based on

mathematical approach. In this paper, we have modeled the

routing information protocol with the event-B method. Going

from an initial model and refine it. The Event-B method has

assured the correctness of the models and proves it using the

proof obligation rules in the platform Rodin.

 The proof obligation rules that have been failed are fixed by

adding new invariants or strengthen the guards in the events.

In the end we can see that our model in correct and proved

using Event-B.

REFERENCES

[1] B.Boulamaat., A.Amamou, R.Filali,, S.El.mimouni,, M.Bouhdadi,’’

Modeling RIP using Event-B’’ Proceedings of the 1st International

Conference on Mathematical Methods & Computational Techniques in

Science & Engineering (MMCTSE 2014)pp152-156

[2] Jean-Raymond Abrial,Modeling in Event-B - System and Software

Engineering. Cambridge University Press 2010, ISBN 978-0-521-

89556-9.

[3] Edsger W,Dijkstra, Carel S. Scholten, Predicate calculus and program

semantics. Texts and monographs in computer science, Springer 1990,

ISBN 978-3-540-96957-0, pp. I-X, 1-220

[4] Jean Raymond Abrial, Stefan Hallerstede, Refinement, Decomposition,

and Instantiation of Discrete Models: Application to Event-B

Fundamenta Informaticae,Vol.77, No.1-2, 2002, pp. 1-28.

[5] Jean-Raymond Abrial, Michael J. Butler, Stefan Hallerstede, Thai Son

Hoang, Farhad Mehta, Laurent Voisin: Rodin: an open toolset for

modelling and reasoning in Event-B. STTT, Vol 12, NO.6, 2010, pp.

447-466.

[6] http: //www.event-b.org Rodin Platform

[7] C. Hendrik, RFC 1058, Routing Information Protocol, the Internet

Society, June 1988

[8] G. Malkin, RFC 1388, RIP Version 2 - Carrying Additional

Information, The Internet Society ,January 1993

[9] G. Malkin ,RFC 2453, RIP Version 2, , The Internet Society ,November

1998

[10] Xin Ben Li, Feng Xia Zhao,Formal development of a washing machine

controller by using formal design patterns. Proceedings of the 3rd

WSEAS international conference on Computer engineering and

applications 2009. ISBN:978-960-474-41-3 ,pp127-132

INTERNATIONAL JOURNAL OF COMPUTERS Volume 13, 2019

ISSN: 1998-4308 77

http://www.informatik.uni-trier.de/~ley/pers/hd/s/Scholten:Carel_S=.html
http://www.informatik.uni-trier.de/~ley/pers/hd/h/Hallerstede:Stefan.html
http://www.informatik.uni-trier.de/~ley/db/journals/fuin/fuin77.html#AbrialH07
http://www.informatik.uni-trier.de/~ley/db/journals/fuin/fuin77.html#AbrialH07
http://www.informatik.uni-trier.de/~ley/pers/hd/b/Butler:Michael_J=.html
http://www.informatik.uni-trier.de/~ley/pers/hd/h/Hallerstede:Stefan.html
http://www.informatik.uni-trier.de/~ley/pers/hd/h/Hoang:Thai_Son.html
http://www.informatik.uni-trier.de/~ley/pers/hd/h/Hoang:Thai_Son.html
http://www.informatik.uni-trier.de/~ley/pers/hd/m/Mehta:Farhad.html
http://www.informatik.uni-trier.de/~ley/pers/hd/v/Voisin:Laurent.html
http://www.informatik.uni-trier.de/~ley/db/journals/sttt/sttt12.html#AbrialBHHMV10
http://dl.acm.org/author_page.cfm?id=81416609445&CFID=461154628&CFTOKEN=82323277
http://dl.acm.org/author_page.cfm?id=81416600098&CFID=461154628&CFTOKEN=82323277
http://dl.acm.org/citation.cfm?id=1519454&CFID=461154628&CFTOKEN=82323277
http://dl.acm.org/citation.cfm?id=1519454&CFID=461154628&CFTOKEN=82323277

[11] Štefan Korečko, Branislav Sobota, Csaba Szabó, Using simulation and

3D graphics software to visualize formally developed control systems,

Proceedings of the 15th WSEAS international conference on

Computers,july 2011,pp 98-103

[12] Adel Ali Ahmed, Norsheila Fisal, Sharifah H. S. Ariffin, Probabilistic

real-time routing protocol for mobile ad-hoc networks based on IEEE

802.11b, ACS'11: Proceedings of the 11th WSEAS international

conference on Applied computer science,Octobre 2011.

[13] R.-J. Back, Refinement Calculus II: Parallel and Reactive Programs. In:

de Bakker J. W., de Roever W. P., Rozenberg G. (eds.), Lecture Notes in

Computer Science, Springer, vol 430, pp. 67-93, 1990.

[14] L.Lamport, “The temporal logic of actions,” Transactions on

Programming Languages and Systems (TOPLAS), vol.16 no.3, pp. 872-

923, 1994.

INTERNATIONAL JOURNAL OF COMPUTERS Volume 13, 2019

ISSN: 1998-4308 78

http://dl.acm.org/author_page.cfm?id=81548012977&coll=DL&dl=GUIDE&CFID=461154628&CFTOKEN=82323277
http://dl.acm.org/author_page.cfm?id=81453658156&coll=DL&dl=GUIDE&CFID=461154628&CFTOKEN=82323277
http://dl.acm.org/author_page.cfm?id=81488655809&coll=DL&dl=GUIDE&CFID=461154628&CFTOKEN=82323277
http://dl.acm.org/citation.cfm?id=2028299.2028321&coll=DL&dl=GUIDE&CFID=461154628&CFTOKEN=82323277
http://dl.acm.org/citation.cfm?id=2028299.2028321&coll=DL&dl=GUIDE&CFID=461154628&CFTOKEN=82323277
http://dl.acm.org/author_page.cfm?id=81100287262&coll=DL&dl=GUIDE&CFID=461154628&CFTOKEN=82323277
http://dl.acm.org/author_page.cfm?id=81330491093&coll=DL&dl=GUIDE&CFID=461154628&CFTOKEN=82323277
http://dl.acm.org/author_page.cfm?id=81351593637&coll=DL&dl=GUIDE&CFID=461154628&CFTOKEN=82323277
http://dl.acm.org/citation.cfm?id=2051254.2051287&coll=DL&dl=GUIDE&CFID=461154628&CFTOKEN=82323277
http://dl.acm.org/citation.cfm?id=2051254.2051287&coll=DL&dl=GUIDE&CFID=461154628&CFTOKEN=82323277
http://dl.acm.org/citation.cfm?id=2051254.2051287&coll=DL&dl=GUIDE&CFID=461154628&CFTOKEN=82323277

