
 

 

 
Abstract— The core of a parallel processing system is the 

interconnection network by which the system’s processors are 
connected. Due to the great role played by the interconnection 
network’s topology in improving the parallel processing system’s 
performance, various topologies have been proposed in the literature. 
This paper presents the topological structure and properties of a 
hybrid interconnection network topology, referred to as the Hyper 
Hexa-Cell (HHC), in which the topological structure is based on 
Hexa-Cell and hypercube. The major topological properties of the 
HHC topology have been presented and investigated, including its 
size, diameter, minimum and maximum node degree, cost, and 
bisection width. A comparative study is then conducted between the 
HHC and other interconnection networks’ topologies; including 
multilayer hex-cells, hex-cell, hypercube, chained-cubic tree, tree-
hypercube, hyper-mesh, and mesh-of-trees, in terms of the above 
mentioned topological properties. The concluding results showed the 
excellence of the HHC over these interconnection networks. 
 

Keywords— Hexa-Cell, Interconnection Networks, Topological 
Properties, Topological Structure.  

I. INTRODUCTION 

HE need for parallel processing in computers has grown 
during the past decade, which has led to the introduction 

of new interconnection networks to support parallel 
processing. In general, interconnection networks are divided 
into two categories; namely, static and dynamic networks. In 
static networks, a direct link appears between a processor and 
other processors through point-to-point links; such as 
hypercube, mesh, ring, star, tree, fat-tree topologies, etc. [1], 
while in dynamic networks, a processor and other processors, 
as well as memory banks, are connected through multiple 
intermediate stages of interconnection networks; such as bus-
based networks, multistage interconnection networks, and 
crossbar switching networks [1]. 

Additionally, interconnection networks can be categorized 
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based on the type of communication links that connects 
processors; electronic and optoelectronic. Examples of 
electronic interconnection networks are hypercube, mesh, 
ring, tree, etc. [1] and examples of optoelectronic 
interconnection networks are Optical Chained–Cubic Tree 
(OCCT) and Optical Transpose Interconnection System 
(OTIS), where there are various structures for OTIS; such as 
OTIS Hyper Hexa-Cell (OHHC), OTIS-Hypercube, OTIS-
Mesh, and many more [2]–[5]. 

In this paper, the topological structure and properties of a 
static electronic interconnection network called Hyper Hexa-
Cell (HHC) is presented, which is suitable for large parallel 
computers by taking the advantageous characteristics of both 
Hexa-Cell and hypercube. Despite the difficulties of 
measuring and comparing the “goodness” of suggested 
network topologies [6], this paper uses the most common 
quantitative comparison metrics to evaluate the suggested 
HHC network and compare it to others. The HHC 
interconnection network is compared with multilayer hex-cells 
(MLH), hex-cell (HC), hypercube (Q), chained-cubic tree 
(CCT), tree-hypercube (TQ), hyper-mesh (HM), and mesh-of-
trees (MOT) interconnection networks in terms of the 
following topological properties: size, diameter, minimum and 
maximum node degree, cost, and bisection width. Therefore, 
the main contributions of this paper are: 
 It describes the design and structure of the HHC 

interconnection network, where HHC is based on Hexa-Cell 
and hypercube. 

 It presents the topological properties in terms of size, 
diameter, minimum and maximum degree, cost, and 
bisection width for HHC. 

 In addition, it compares HHC with MLH, HC, Q, CCT, TQ, 
HM, and MOT, in terms of the above mentioned topological 
properties. 
The rest of this paper is organized as follows: Section 2 

presents a background and summarizes related work to 
interconnection networks. Section 3 presents the topological 
structure and properties of HHC topology. Section 4 presents 
a comparison assessment, where the HHC interconnection 
network is compared with MLH, HC, Q, CCT, TQ, HM, and 
MOT interconnection networks in terms of several topological 
properties. Section 5 concludes the research work results and 
presents suggested future work.  

Topological Properties Assessment for Hyper 
Hexa-Cell Interconnection Network 
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II. BACKGROUND AND RELATED WORK 

There are several well-known basic interconnection 
networks, such as hex-cell, hypercube, mesh, ring, tree, star 
and many more. Over the years, many researchers have 
studied these interconnection networks and several 
applications have been applied over these interconnection 
networks [1], [7]. However, some of these basic 
interconnection networks have major issues with their 
topological properties; such as high diameter and/or high cost. 
To enhance these topological properties, some researchers 
came up with hybrid interconnection networks, where these 
hybrid interconnection networks are based on two or more 
basic interconnection networks; such as MLH, CCT, TQ, HM, 
MOT, etc. [8]–[13]. 

The HC is relatively a new basic interconnection network 
[7], where it has a low cost in terms of number of links in 
comparison to hypercube topology as an advantage, but it has 
a high diameter in comparison to hypercube as a disadvantage 
for large network size. 

As a basic interconnection network, the hypercube is well-
known as one of the best interconnection networks in terms of 
some topological properties; such as low diameter and high 
connectivity in comparison to other basic interconnection 
networks; such as mesh, ring, and tree [1], [14]. A hypercube 
is a multidimensional mesh of processors with exactly two 
processors in each dimension. A zero-dimensional hypercube 
is a single processor. A one-dimensional hypercube is 
constructed by connecting two zero-dimensional hypercubes. 
In general, a (d+1)-dimensional hypercube is constructed by 
connecting the corresponding processors of two d-
dimensional hypercubes [1]. 

The MLH is a new hybrid interconnection network [13], 
where its structure is based on HC. MLH is scalable and it has 
a better diameter than HC, but as a disadvantage, it has a high 
diameter in comparison to hypercube topology for large 
network size.   

The CCT interconnection network is presented in [8], [15] 
where the structure is based on both tree and hypercube 
topologies; in which chains of hypercubes are arranged in a 
tree structure; thus, taking the advantages of both topologies. 
CCT makes a fair compromise between the two topologies by 
supporting their advantages and reducing their drawbacks. 
While tree topology has a good maximum node degree for 
some applications and good diameter with a basic routing 
algorithm, it is not considered as a practical topology because 
of its low bisection width and the absence of the parallel 
paths. On the other hand, although the hypercube has 
attractive properties, its major drawback for some applications 
is the increasing maximum node degree for massive parallel 
processing. Thus, CCT combines both topologies trying to 
take advantages of each. 

TQ networks were introduced in [12] as new fixed 
interconnection networks. It was shown that they have many 
hypercube features such as self-routing and partitioning. In 
addition, they have advantages over hypercube in 

extendibility, diameter, and average distance. It was also 
shown that the TQs have great partitioning flexibility. In [12], 
researchers presented point-to-point routing algorithms for the 
TQ networks. Three optimal algorithms were presented. All of 
the presented algorithms take messages from the source node 
to the destination nodes using the shortest path, where the 
shortest path is calculated in a distributed manner by all nodes 
along the path from source to destination. 

The topological properties of the HM interconnection 
network were studied in [9], [16]. The HM network combines 
two well-known interconnection networks; hypercube and 
mesh. The HM networks take the advantages of the hypercube 
network and overcome its large maximum node degree by 
combining it with the mesh network, which has a low fixed 
degree that does not increase when the network size increases. 
The study shows that the HM exhibits the appealing properties 
of its two constituent networks, and it reduces its major 
drawbacks. 

The MOT, which owns two favorable properties: small 
diameter and large bisection, is known as the fastest network 
when considered in terms of speed [10], [11]. Combinatorial 
properties of MOT were presented in [10], [11]. More 
specifically, this paper shows the wide diameter, fault 
diameter, and Rabin number, which are three generalizations 
of diameter, of a two dimensional MOT. 

III. HYPER HEXA-CELL TOPOLOGY 

The structure of HHC is based on both Hexa-Cell and 
hypercube structures. The Hexa-Cell has low cost in terms of 
the number of links as an advantage, but it has a high diameter 
as a disadvantage. The hypercube interconnection network has 
the advantages of smaller diameter, Hamiltonian, and 
recursive structure [1], [14]. 

A. Topological Structure 

The topological structure of HHC is based on the 
topological structure of Hexa-Cell and hypercube topologies. 
The definition of the hypercube is presented by Definition 1. 
Also, the definition and the labeling of the HHC graph are 
presented by Definition 2. Each dimension of the HHC is a 
combination of one-dimensional HHC and a hypercube of 
dimension d. The smallest dimension of HHC is one, and it is 
the base for the other dimensions of HHC. Examples of HHC 
graphs of one, two, and three dimensions are shown in Fig. 
1(a–c), respectively. 

Definition 1: A d-dimensional hypercube, where d ≥ 0, is an 
undirected graph consisting of 2d node labeled from 0 to 2d–1 

binary strings and has d × 2d–1 edges, such that there is an edge 
between two nodes if and only if the binary representations of 
their labels differ in precisely one bit [1], [14]. 

Definition 2: A Hyper Hexa-Cell (HHC) of dimension dh, 
where dh ≥ 1, is an undirected graph. HHC is constructed by 
replacing 2d nodes of a hypercube of dimension d by one-
dimensional HHC graphs. Each one-dimensional HHC graph 
represents a group in the HHC graph, and each dh-dimensional 
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HHC represents a hypercube of dimension dh–1. Each node v 
in the HHC graph is labeled by a pair <g-label(v), n-label(v)>, 
where g-label and n-label are called group and node labels, 
respectively. For each node v, in each group, the g-label is 
presented by a binary string starting from 0 to dh–1 and the n-
label is represented in the same way as the node in a one-
dimensional HHC graph. Also, as in the hypercube topology, 
two nodes in the HHC graph are connected by a direct link if 
and only if the binary representation of their group labels 
differs at exactly one-bit position. The binary representation 
of the group has dh–1 bits [17].  

 
Fig. 1 HHC graphs of one, two, and three dimensions are shown in 
parts (a–c), respectively. 

B. Topological Properties 

The definitions of the following topological properties: size, 
diameter, minimum and maximum node degree, cost, and 
bisection width, are presented in Definitions 3–8, respectively. 
Also, the topological properties of HHC are presented in 
Theorems 1–6. 

Definition 3: The size is the number of nodes in the 
interconnection network. 

Theorem 1: The size of the HHC interconnection network is 
6×2d

h
–1.  

Proof. In the HHC interconnection network, the minimum 
number of nodes is six. This is when we have only one group, 
and the number of groups is equal to 2d

h
–1 which represents the 

size of a hypercube [5], [17] since we replaced each node in 
the hypercube by one-dimensional HHC. Therefore, the size 
of the HHC is equal to 6×2d

h
–1 [17]. □ 

Definition 4: The diameter is the shortest path between the 
farthest two nodes in the network. 

Theorem 2: The diameter of the HHC interconnection 
network is dh+1. 

Proof. The maximum distance in each group of HHC will 
always be two steps, which is between one of the top 
triangle’s node and with one of the nodes in the bottom of the 

opposite triangle; for example, the distance between node 
<0,000> and node <0,110> in Fig. 2 is two (see dashed bold 
lines). Since the dh-dimensional HHC consist of 2d

h
–1 groups 

arranged as dh–1 dimensional hypercube, and the diameter of 
a hypercube is dh–1 [1]; then, the total diameter of HHC is dh–
1+2 which is dh+1 [17]. □ 

Fig. 2 shows a two-dimensional HHC contains two groups, 
which represent a hypercube of one dimension where each 
node in the hypercube is a group of a one-dimensional HHC. 
To reach the destination node <1,110> from the source node 
<0,000>, we need one step to reach the node <1,000> in the 
destination’s group, another two steps to reach the destination 
node <1,110> within the destination’s group, which gives a 
total of three steps. So, the diameter of the two-dimensional 
HHC is three (see solid bold lines). 

 
Fig. 2 The diameter of two-dimensional HHC. 

Definition 5: The minimum node degree is the minimum 
number of links that are connected to it. 

Theorem 3: The minimum node degree of the HHC 
interconnection network is dh+2. 

Proof. Each node in the HHC has the same degree; that is each 
node is connected with three nodes in the same group and 
with dh–1 corresponding nodes in other groups, giving a total 
of dh–1+3 = dh+2. □ 

Definition 6: The maximum node degree is the maximum 
number of links that are connected to it. 

Theorem 4: The maximum node degree of the HHC 
interconnection network is dh+2. 

Proof. Each node inside each group of HHC is connected to 
three nodes, in addition to dh–1 links which represent the 
maximum node degree of a hypercube of dimension d [1], [5] 
that connects it with its corresponding nodes in other groups 
of the dh-dimensional HHC, this gives a total of dh–1+3 which 
is equal to dh+2. Therefore, the maximum node degree of an 
HHC is equal to dh+2 [17]. □ 

Fig. 3 illustrates the maximum node degree of a two-
dimensional HHC, which is represented by dashed bold lines, 
where node <00,000> is connected to nodes <00,001>, 
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<00,010>, and <00,100> within same group giving a total of 
three, in addition to node <01,000> in another group. 
Therefore, the maximum node degree of a two-dimensional 
HHC is equal to four. 

 
Fig. 3 The maximum node degree of a two-dimensional HHC. 

Definition 7: The cost is the number of communication links 
in the network. 

Theorem 5: The cost of the HHC interconnection network is 
((6×2d

h
–1) × (dh+2))/2. 

Proof. Each node in each group of HHC has dh+2 neighbor 
nodes connected with them via direct links. The size of HHC 
in each group is equal to (6×2d

h
–1); so, the number of links in 

each group is ((6×2d
h

–1) × (dh+2))/2, where we divide the 
results by two because the links are undirected [17]. □ 

Definition 8: The bisection width is the minimum number of 
communication links that must be removed to partition the 
network into two equal halves. 

Theorem 6: The bisection width of the HHC interconnection 
network is (6×2d

h
–1)/2. 

Proof. To partition the network into two equal halves we need 
to divide the number of nodes in an HHC by two. Since the 
total number of nodes in HHC is equal to (6×2d

h
–1), then half 

the number of nodes is the total number of nodes divided by 
two. So, the bisection width of HHC is (6×2d

h
–1)/2. □ 

IV. COMPARISON AND ASSESSMENT 

It is essentially impossible to fairly compare 
interconnection networks, simply because there are too many 
parameters and topological properties [6]. The most suitable 
way for evaluating a new topology is to conduct a 
comparative study between the topological properties of both; 
the new topology and the other topologies that are familiar by 
their appealing topological properties. In this paper, it has 
been chosen to compare HHC with the following topologies: 
MLH, HC, Q, CCT, TQ, HM, and MOT in terms of the 
following topological properties: size, diameter, minimum and 
maximum node degree, cost, and bisection width. These 
interconnection networks are chosen according to their 
preference, strong properties, and the good qualities they 
exhibit over other topologies. 

In order to evaluate the HHC interconnection network, each 
of the HHC’s topological properties needs to be calculated for 
growing sizes of HHC and compare it with other 
interconnection networks corresponding to the mentioned 
topological properties. 

The topological properties equations for these mentioned 
interconnection networks are presented in Table I, where dh is 
the dimension of HHC, d is the dimension of the hypercube, k 
is the number of layers in MLH, t is the depth of MLH and 
HC, N is the number of nodes in HC, h is the height of the 
tree, and r is the row size of the mesh. Table II shows the 
various sizes of these interconnection networks. The size is 
categorized into three categories; small, medium, and large. 

The comparison results for all mentioned interconnection 
networks in terms of the mentioned topological properties are 
shown in Tables III–VII. Table III shows the diameter for 
various sizes of these interconnection networks. The diameter 
of HHC and TQ is the best; that is both HHC and TQ have the 
shortest path between the farthest two nodes compared with 
other interconnection networks due to their good connectivity, 
whereas the HC has the worst diameter, which depends on its 
depth and number of nodes. In general, as the network size 
increases the diameter of all interconnection networks 
increases too. 

Tables IV and V show the minimum and maximum node 
degree for all mentioned interconnection networks, 
respectively. The best interconnection networks in terms of 
minimum node degree are those that have a larger number of 
multiple distinct paths between any two nodes in the network. 
As shown in Table IV, HHC and Q have the highest values, 
whereas HC, TQ and MOT topologies have the worst 
minimum node degree. This means that HHC and Q achieve 
higher connectivity compared to others. Thus, as the network 
size increases the minimum node degree increases too, except 
for MLH, HC, TQ and MOT topologies since they have a 
constant minimum node degree. For some applications, the 
best interconnection networks in terms of maximum node 
degree are those which have static low degree, which means 
as the size of the network increases the maximum node degree 
stays as is; this means scaling up the system can be done 
without replacing the old nodes with new ones. In our 
comparison, in Table V, this is achieved by MLH, HC, and 
MOT interconnection networks, which have a constant 
maximum node degree. Whereas, for other applications, the 
best interconnection networks in terms of maximum node 
degree are those that have a high degree; regardless of their 
scalability. In Table V, this is achieved by the TQ 
interconnection network for medium and large network sizes, 
but for small network size, it is achieved by the CCT 
interconnection network. However, the HHC interconnection 
network has a good maximum node degree since it is higher 
than MLH, HC, and MOT, and lower than TQ. 

Many researchers neglect the cost of the interconnection 
network since the goal is to gain speed. However, to construct 
any interconnection network for large scale computing, it is 
still important to build it with minimal cost, which depends on 
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the number of communication links. Thus, the number of 
communication links in any interconnection network depends 
on many factors; such as size and minimum and maximum 
node degree. For instance, when there is a large number of 
nodes and the minimum and maximum node degree are also 
large, this yields a large number of communication links. In 
general, as the network size increases the cost of the network 
increases too. Table VI shows the cost of various 
interconnection networks for small, medium, and large sizes, 
respectively. The lowest cost interconnection network is 
MOT, whereas the highest cost interconnection network is Q. 
Thus, HHC network cost is less than Q, CCT, TQ and HM 
networks. 

Table VII shows a comparative study based on the bisection 
width property, where a high bisection width is more 
desirable. From this table, it is obvious that the Q, TQ, and 
HM topologies have the highest bisection width, where they 
have the same values. Our HHC topology has a higher 
bisection width than MLH, HC, CCT, and MOT for medium 
and large network sizes, which is a factor in increasing its 
reliability. As, for small network size, CCT has a higher 
bisection width than HHC. The MOT topology has the lowest 
bisection width for all network sizes. In general, as the 
network size increases the bisection width increases too for all 
topologies. 

 

Table I Topological properties of various interconnection networks. 

Topology Size Diameter Min Degree Max Degree Cost Bisection Width 

HHC 6×2d
h

–1 dh+1 dh+2 dh+2 ((6×2d
h
–1) × (dh+2))/2 (6×2d

h
–1)/2 

MLH 6k×t 2 4t–1+k 3 4 k(9t 2–3t)+(k–1)×6(2t–1) 2t×k 

HC 6t 2 4√(N/6)–1 2 3 3N/2–3√(N/6) 2√(N/6) 

Q 2d d d d d×2d–1 2d–1 

CCT 2h+d+1–2d 2h+d–1 d+2 d+5 2h+d(d+4)–2d(d/2+h+4) 2d (h+1.5) 

TQ 2h+1–1 h 2 h+2 2h(h+1)–1 2h 

HM 2d × r2 d+2r–2 d+2 d+4 d2d–1 r2 + 2d(2r2–2r) 2d–1 × r2 

MOT 3r2–2r 4 floor(log r) 2 3 4r2–4r r 

Table II Various interconnection networks sizes. 

Size Range 
Size 

HHC MLH HC Q CCT TQ HM MOT 

Small 
6 – 16 12 12 6 16 12 15 16 8 

21 – 32 24 24 24 32 28 31 32 21 

 48 – 65 48 48 56 64 60 63 64 65 
    Medium 96 – 128 96 96 96 128 124 127 128 96 

 192 – 256 192 192 216 256 248 255 256 225 

Large 
384 – 512 384 384 384 512 504 511 512 481 

768 – 1024 768 768 1014 1024 1008 1023 1024 936 

Table III The diameter of various interconnection networks for different sizes. 

Size Range 
Diameter 

HHC MLH HC Q CCT TQ HM MOT 

Small 
6 – 16 3 5 3 4 3 3 4 4 

21 – 32 4 7 7 5 5 4 5 4 

 48 – 65 5 9 11 6 7 5 6 8 
   Medium 96 – 128 6 11 15 7 9 6 9 8 

 192 – 256 7 17 23 8 10 7 10 12 

Large 
384 – 512 8 19 31 9 12 8 11 12 

768 – 1024 9 23 51 10 13 9 12 16 

 

 

Table IV The minimum node degree of various interconnection networks for different sizes. 
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Size Range 
Minimum Node Degree 

HHC MLH HC Q CCT TQ HM MOT 

Small 
6 – 16 4 3 2 4 4 2 4 2 

21 – 32 5 3 2 5 4 2 5 2 

 48 – 65 6 3 2 6 4 2 6 2 
    Medium 96 – 128 7 3 2 7 4 2 5 2 

 192 – 256  8 3 2 8 5 2 6 2 

Large 
384 – 512 9 3 2 9 5 2 7 2 

768 – 1024 10 3 2 10 6 2 8 2 

Table V The maximum node degree of various interconnection networks for different sizes. 

Size Range 
Maximum Node Degree 

HHC MLH HC Q CCT TQ HM MOT 

Small 
6 – 16 4 4 3 4 7 5 6 3 

21 – 32 5 4 3 5 7 6 7 3 

 48 – 65 6 4 3 6 7 7 8 3 
    Medium 96 – 128 7 4 3 7 7 8 7 3 

 192 – 256  8 4 3 8 8 9 8 3 

Large 
384 – 512 9 4 3 9 8 10 9 3 

768 – 1024 10 4 3 10 9 11 10 3 

Table VI The cost of various interconnection networks for different sizes. 

Size Range 
Cost 

HHC MLH HC Q CCT TQ HM MOT 

Small 
6 – 16 24 18 6 32 24 31 32 8 

21 – 32 60 42 30 80 68 79 56 24 

 48 – 65 144 78 75 192 160 191 192 80 
    Medium 96 – 128 336 174 132 448 348 447 576 120 

 192 – 256  768 306 306 1024 828 1023 896 288 

Large 
384 – 512 1728 654 552 2304 1708 2303 2048 624 

768 – 1024 3840 1350 1482 5120 3920 5119 4608 1224 

Table VII The bisection width of various interconnection networks for different sizes. 

Size Range 
Bisection Width 

HHC MLH HC Q CCT TQ HM MOT 

Small 
6 – 16 6 4 2 8 10 8 8 2 

21 – 32 12 8 4 16 14 16 16 3 

 48 – 65 24 8 6 32 18 32 32 5 
    Medium 96 – 128 48 16 8 64 22 64 64 6 

 192 – 256  96 16 12 128 44 128 128 9 

Large 
384 – 512 192 32 16 256 52 256 256 13 

768 – 1024 384 64 26 512 104 512 512 18 

 

V. CONCLUSION AND FUTURE WORK 

Many interconnection networks have been proposed in the 
last few decades. An observable fact is that high performance 
may be accompanied by design complexity and increased cost. 
None of these interconnection networks, until now, is proved 
to outperform all of the others. As a basic static topology, the 
hypercube topology is considered as one of the strongest 
topologies, which has a good diameter and high bisection 
width, but because of its high cost which forms a major 
drawback when massive parallelism is applied, many 
researchers worked to find alternatives for this topology while 
preserving the same advantages. On the other hand, the Hexa-
Cell topology has a low cost, but very high in diameter.  

This paper presented the topological structure and 
properties of a hybrid interconnection network called Hyper 

Hexa-Cell (HHC), which is based on the advantageous 
characteristics of both Hexa-Cell and hypercube 
interconnection networks. Moreover, HHC topology has been 
evaluated in terms the following topological properties: size, 
diameter, minimum and maximum node degree, cost, and 
bisection width, and it has been compared to MLH, HC, Q, 
CCT, TQ, HM, and MOT interconnection networks in terms 
of these mentioned topological properties. 

The comparative study results have shown that HHC has 
the best diameter and minimum node degree, good maximum 
node degree, reasonable cost, and good bisection width for 
medium and large network sizes. 

HHC interconnection network is developed to support 
parallel algorithms for solving computation and 
communication-intensive problems. In [17], two broadcast 
communication operations, using the store-and-forward 
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technique, have been applied to HHC interconnection 
networks. These broadcast operations are one-to-all and all-to-
all; which allow a message to be transmitted through the 
shortest path from the source node to all other nodes. These 
broadcast communication operations over HHC perform very 
well in terms of maximum communication steps, 
communication latency, and speed. Thus, applying different 
parallel algorithms, such as load balancing, sorting, and 
searching algorithms on HHC can be considered as future 
work, in order to show the effectiveness of the HHC 
interconnection network. 
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