
 

 

 
Abstract—In the present work it is shown that in cases where is 

possible to apply either the absorbing or the ergodig Markov chain 
theory  for modeling purposes - by making the proper modifications 
to the corresponding real situation – the results obtained are 
equivalent. For this, the Case-Based Reasoning paradigm is used, 
which is the process of solving problems (frequently with the help of 
computer systems) based on the solutions of previously solved 
analogous problems      
 

Keywords—Absorbing Markov Chain (AMC), Case-Based 
Reasoning (CBR), Ergodic Markov Chain (EMC), Problem Solving 
(PS).  

I. INTRODUCTION 

N an earlier work we have modeled the Case-Based 
Reasoning (CBR) process by introducing an Absorbing 

Markov Chain (AMC) on its steps and through it we have 
obtained a method for evaluating the effectiveness of a CBR 
system [1].  
     Here, by modifying properly our hypothesis about the CBR 
process, we manage to do the same thing with an Ergodic 
Markov Chain (EMC) on the steps of the CBR process instead 
of the AMC. For reasons of comparison the same examples 
are used with [1]. It is finally shown that the results obtained 
in both cases are the same.  
     The rest of the paper is organized as follows: In Section II 
a brief account is given of the earlier AMC model for the CBR 
process. In Section III the EMC model is developed in detail 
and through it a measure is obtained in Section IV for the 
effectiveness of a CBR system. The paper closes with the 
general conclusions stated in Section V.  

II. THE AMC MODEL FOR CBR 

A. Absorbing Markov Chains 

It is recalled that a Markov Chain (MC) is a stochastic 
process moving in a sequence of phases (steps) through a set 
of states and having only a one step memory (Markov 
property). In other words, the probability of entering a certain 
 

 
M, Gr. Voskoglou is with the Graduate Technological Educational Institute 

(TEI) pf Western Greece, 26334 Patras, Greece. 
Phone  - Fax: 0002610328631, Mobile: 00306978600391, e-mail: 

voskoglou@teiwest.gr ;  mvoskoglou@gmail.com,  
     URL: http://eclass.teipat.gr/courses/523102 

 
. 

state at a certain phase depends only on the state occupied in 
the previous phase and not in older phases. However, in 
practical applications the Markov property is usually 
weakened by accepting that the above probability, although it 
mainly depends on the state occupied in the previous phase, it 
may not be co0mpletely independent from older phases [2].   

When its set of its states is a finite set, the corresponding 
MC is called a Finite MC (FMC). For general facts on FMC’s 
we refer to Chapter 2 of the book [3]. 

  A state of a MC is called absorbing if once entered cannot 
be left and a MC is called an AMC if it has at least one 
absorbing state, and if from every state it is possible to reach 
an absorbing state, not necessarily in one step..  

B. The CBR Process 

Roughly speaking CBR is the process of solving problems 
(frequently with the help of computers) based on the solutions 
of previously solved analogous problems. For more details 
and examples about the CBR process we refer to [4] and to the 
relevant references contained in it. 
     CBR has been formalized for purposes of computer and 
human reasoning as a four steps process involving the 
following actions: 

 R1:  Retrieve the most similar to the new problem 
past case. 

 R2:  Reuse the information and knowledge of the 
retrieved case for designing the solution of the new 
problem. 

 R3: Revise the proposed solution for use with the new 
problem. . 

 R4:  Retain the part of this experience likely to be 
useful for future problem-solving. 

Through the revision the solution is tested for success. If 
successful, the revised solution is directly retained in the CBR 
system’s library; otherwise it is repaired and evaluated again. 
When the final result is a failure, the system tries to compare it 
to a previous analogous failure (transfer from R3 back to R1) 
and uses it in order to understand the present failure, which is 
finally retained in the library. The CBR process is completed 
in R4. According to the above description the flow diagram of 
the CBR process is that shown in Figure 1 that has been taken 
from [1]   
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Fig. 1: The flow diagram of the CBR process 

 

C. The model 

     We introduce a finite MC having as states the four steps of 
the CBR process. Denote by pij the transition probability 
from state Ri to Rj, for i, j=1, 2, 3, 4. Then, with the help of 
Fig. 1, one finds that the transition matrix of the MC is 

                
             R1    R2    R3   R4 

  A =  

1

2

3 31 33 34

4

R 0 1 0 0

R 0 0 1 0

R 0

R 0 0 0 1

p p p
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 
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 , 

 
with p31 + p33 + p34 = 1 (probability of the certain event).  
    We obviously have an AMC with R4 being its unique 
absorbing state. Applying standard techniques of the theory of 
AMC’s we bring A to its canonical form A* by listing its 
absorbing state first and then we make a partition of A* to 
sub-matrices as follows: 
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     Here Q stands for the transition matrix of the non 
absorbing states. Then the fundamental matrix of the chain 
is given by 
 

N = (I3 - Q) - 1 = 
)(

)(

3

3

QID

QIadj




 . 

 

     In the above equation I3 denotes the 3X3 unitary matrix, 
adj (I3 - Q) denotes the adjoin matrix and D(I3 - Q) denotes the 
determinant of  
I3-Q. Therefore, a straightforward calculation gives that  
 

N=
33311

1

pp 
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 = [nij] 
 
     It is well known ([5], Theorem 3.2.4) that the entry nij of N 
gives the mean number of times at state Rj when the chain is 
started in state Ri. Therefore, since the present chain is always 
starting from R1, the mean number of  its phases before the 
absorption is given by the sum 
 

t = n11 + n12 + n13 = 
3331

33

1

23

pp

p


  

 
    Therefore, the mean number of steps for the completion of 
the CBR process is t+1. It becomes evident that the bigger is 
the value of t, the greater is the difficulty encountered for the 
solution of the given problem via the CBR process. Another 
indication of that difficulty is the total time spent for the 
completion of the CBR process, which however is negligible 
in practice when using computers. 
 

III. THE EMC MODEL FOR CBR 

A. The general MC Model 

 
    Given a FMC, the row-matrix  
Pk = [p1

(k) p2
(k)… pn

(k)], known as the probability vector of the 
MC, gives the probabilities pi

(k) for the MC to be in state i at 
step k , for i = 1, 2,…., n and k = 0, 1, 2,…. Obviously we 
have that 
  

( )
1

( ( )
2

)  .  1k k k
np p p      

  
    Using conditional probabilities on can show ([3], Chapter 2, 
Proposition 1) that for all non negative integers k we have 
 

Pk+1= Pk A          (1) 
 
   Therefore a straightforward induction on k gives that  
 

k
0AkP P       (2) 

 
   Equation (2) enables one to make short run forecasts for 
the evolution of the various situations that can be represented 
by a finite MC. 

 

INTERNATIONAL JOURNAL OF COMPUTERS Volume 13, 2019

ISSN: 1998-4308 123



 

 

B. Ergodic Markov Chains 

 
     A MC is said to be an EMC, if it is possible to go between 
any two states, not necessarily in one step.  
     It is well known ([7], Theorem 5.1.1)  
that, as the number of its steps tends to infinity (long run), an 
EMC tends to an equilibrium situation, in which the 
probability vector Pk takes a constant value P = [p1 p2 …. pn], 
called the limiting probability vector of the EMC. Therefore, 
as a direct consequence of equation (1), the equilibrium 
situation is characterized by the equation  

A (3)P P   
 
     The entries of P express the probabilities of the EMC to be 
in each of its states in the long run, or in other words the 
importance (gravity) of each state of the EMC. 
     Let us now demote with mij the mean number of times in 
state Si between two successive occurrences of the state Sj, i, j 
= 1, 2, …., n. It is well known then ([5], Theorem 6.2.3) that 

                              4i
ij

j

p

p
m  ,  

where pi and pj are the corresponding limiting probabilities. 
 

C. The revised model for CBR 

 
     Let us now assume that, when the CBR process is 
completed in R4, a new analogous problem is forwarded to the 
CBR system for solution. Therefore the process is transferred 
back to R1 and a new circle is repeated. According to the 
above assumption the flow diagram of Fig. 1 for the CBR 
process can be revised as shown in Fig. 2. 
 

 
 

Fig. 2: The revised flow diagram of the CBR process 
 
    Accordingly, the transition matrix of the MC introduced on 
the steps of the CBR process, which is obviously now an 
EMC, takes the form 

                           1 2 3 4R    R    R   R  

A =  

1

2

3 31 33 34

4

R 0 1 0 0

R 0 0 1 0

R 0

R 1 0 0 0

p p p

 
 
 
 
 
 

 . 

 
     By equation (3) one finds that in the long run we have for 
the equilibrium situation of the EMC that  
 

   1 2 3 4 1 2 3 4 Ap p p p p p p p or 

 1 2 3 4p p p p 

 3 31 4 1 2 3 33 3 34p p p p p p p p p   

 
     Consequently it turns out that 
 

1p = 3 31 4p p p ,    2p = 1p  , 3p = 2 3 33p p p ,  

4p = 3 34p p         (5)    
 
     Adding by members the first three of the equations (5) one 

finds that 

3 31 4 1 2 3 33

4 3 31 3

1 2

3

3 4 3 34

3

34 3

3

4

( )

(1 )

p p p p p p p

p

p p p

p p

p p

p

p p

p

p pp

   

   

    

  


 

     Therefore, the fourth of the equations (5) is equivalent to 
the rest of them. Consider now the linear system L of the first 
three of the equations (5) and of the equation p1+p2+ p3+ p4 = 
1. It is straightforward to check that the determinant of L is 
equal to 
 

31

33 31
33

1 0 1

1 1 0 0
4 3

0 1 1 0

1 1 1 1

p

D p p
p

 


   


 

 

Also   

31

331
33

0 0 1

0 1 0 0
1

0 1 1 0

1 1 1 1

p

p

D p
p

 

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

 

 
Therefore, by the Cramer’s rule one finds that 
 

1 33
1

33 31
2

D
(6).

D 4 3

1p p
p p

p p
 


 

     . 

 
In the same way one finds that 
 

33
3 4

33

31

31 33 31

1
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4
 

1

3 4 3

p
P P

p p

p

p p






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  

34

33 314 3

p

p p


       (7). 

  
    The values of the pi’s give the probabilities of the CBR 
process to be in step Ri in the long run, i = 1, 2, 3, 4. 
Furthermore, since R1 is the starting state of the EMC it 
becomes evident that the sum 14 24 34 m m m m   calculates 

the mean number of steps of the EMC between two successive 
occurrences of the state R4. Therefore, the mean number of 
steps for the completion of the CBR process will be m+1, 
since it includes also the step R4. With the help of equation (4) 
one finds that 
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m 21 4

4

3

4

1p p p p

p p




 
   (8) 

 
     It becomes evident that the greater is the value of m, the 
more are the difficulties during the CBR process. The other 
factor indicating those difficulties, i.e. the total time spent for 
the CBR process, is practically negligible when using 
computers.  
 
     D) Example 
 
     For reasons of comparison the present example has been 
taken from Section 3 of [1] 
     A physician, in order to determine the disease and suggest 
the analogous treatment to a patient, takes into account the 
diagnosis and treatment of a previous patient having similar 
symptoms. If the initial treatment fails to improve the health 
of the patient, then the physician either revises the treatment 
(stay to R3 for two successive phases), or gets a reminding of 
a previous similar failure and uses the failure case to improve 
the understanding of the present failure (transfer from R3 to 
R1).  
    Assume that the recorded statistical data show that the 
probabilities of a straightforward cure of the patient as well as 
of each of the above two reactions of the physician in case of 
failure of the initial treatment are equal to each other. 

Therefore p31 = p33 = p34 =
3

1 .  Then equations (6) and (7) give 

that p1 = p2 = 1

4
,  

p3 = 3

8
 and p4 = 1

8
. That means that in this case the step of 

revision (R3) has the greatest gravity among the steps of the 
CBR process. 
     Also equation (8) gives that m = 7. Consequently the mean 
number of steps for the completion of the CBR process is 8. 
The same outcome was found in [1] by using the AMC model 
for the CBR process that has been presented in Section II. 
 

IV. ASSESSING THE EFFECTIVENESS OF A CBR 
SYSTEM 

 
A) Calculating the effectiveness of a CBR system 
 

     Let us consider a CBR system including a library of n 
recorded past cases and let mi be the outcome of equation (8) 
for the case ci, i=1,2,…, n. Each mi can be stored in the 
system’s library together with the corresponding case. Then 
we define the system’s effectiveness, say E, to be the mean 
value of the mi’s of its stored cases, i.e. we have that  

E = 1

n

i
i

m

n



   (9). 

     The more problems are solved through the given CBR 
system, the bigger becomes the number n of the stored cases 

in its library and therefore the value of E is changing. As n is 
increasing it is normally expected that E will decrease, 
because the values of the mi’s of the new stored cases will be 
normally decreasing. In fact, the bigger is n, the greater would 
be the probability for a new case to have minor differences 
with a past case, and therefore the less would be the difficulty 
of solving the corresponding problem via the CBR process. 
Thus we could say that a CBR system behaves well if, when n 
tends to infinity, then its effectiveness tends to 3, which, 
according to the flow-diagram of Fig. 2, is equal to the 
minimum number of steps between two successive 
occurrences of R4. 

 

B) Example 
     For reasons of comparison the present example has been 
taken from Section 4 of [1] 
      Consider a CBR system that has been designed in terms of 
Schank’s model of dynamic memory for the representation of 
cases [6]. The basic idea of this model is to organize specific 
cases, which share similar properties, under a more general 
structure called a generalized episode (GE). During the storing 
of a new case, when a feature of it matches a feature of an 
existing past case, a new GE is created. Hence the memory 
structure of the system is in fact dynamic, in the sense that 
similar parts of two case descriptions are dynamically 
generalized to a new GE and the cases are indexed under this 
GE by their different features.  
     In order to calculate the effectiveness of a system of this 
type we need first to calculate the effectiveness of each of the 
GE’s contained in it. For example, assume that the given 
system contains a GE including three cases, say c1, c2 and c3. 
Assume further that c1 corresponds to a straightforward 
successful application of the CBR process, that c2 is the case 
described in the example of the previous section, and that c3 
includes one “return” from R3 to R1 and two “stays” to R3. 
Then m1 = 3 and m2 = 7.  For calculating m3 observe first that 

p31 = p34 =
4

1
 and p33=

2

1
. Therefore, the second of equations 

(7) gives that p4 =
1

9
 and equation (8) gives that m3 = 8. 

Therefore, the effectiveness of this GE is equal to E = 

3

873  = 6. 

    The same outcome was found in [1] by defining a CBR 
system’s effectiveness in terms of the AMC model for the 
CBR process that has been presented in Section II. 
      Next we calculate the effectiveness of all the other GE’s of 
the CBR system the mean value of which gives the system’s 
total effectiveness.   
     Notice that a complex GE may contain some more specific 
GE’s including some common cases (see Figure 3 in page 12 
of [7]). Then we calculate the effectiveness of the complex GE 
by considering all its cases only once, regardless if they 
belong or not to one or more of the specific GE’s contained in 
it.  
    There are also alternative models for the representation of 
cases in a CBR system like the category and exemplar model 
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of Porter and Bareiss [8], the Rissland’s and Ashley’s HYPO 
system for legal reasoning [9], the MBR model of Stanfill & 
Waltz [10], etc. The process of calculating the effectiveness of 
a CBR system cfunctioning by one of those alternative models 
is analogous to the process described in the previous example 
for the Schank’s model. 
 

V. CONCLUSION 
 
     The theory of MC’s, that is based on probability theory and 
uses Linear Algebra as its basic tool, can be applied for 
making short and long run forecasts for the evolution of 
certain situations characterized by randomness.  
     In the paper at hands we have modeled the CBR process by 
introducing an EMC on its steps. This model provides the 
same outcomes with the AMC for CBR that we have 
developed in an earlier work [1]. For reasons of comparison 
we have properly modified here the same examples that have 
been used in [1]. 
     Our earlier research contains also applications of MC’s to 
Mathematics Education (learning mathematics, problem 
solving, mathematical modeling, etc.; e.g. see Chapter 3 of 
[3]), while the application of the MC theory for modeling 
other human activities is also among the priorities of our 
future research.   
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