
Evaluating the Mesh-connected Multiprocessor
Running a Parallel Algorithm Representing the

Gravitational Interaction Between N Bodies

Jamil Al-Azzeh,
Al-Balqa Applied University, Jordan

Received: December 21, 2020. Revised: March 9, 2021. Accepted: March 16, 2021. Published: March 22, 2021.

Abstract: In this study, a parallel algorithm to

solve the problem of gravitational interaction

between N bodies is considered. The peak

performance of an 8 × 8 mesh-connected

multiprocessor system while implementing the

algorithm is evaluated. Further, the mappings

of parallel threads of the algorithm onto the

multiprocessor are studied based on two

criteria for minimizing the communication

delay. The corresponding real application

performance of the multiprocessor is estimated.

Keywords: mesh-connected multiprocessors,

performance, thread mapping, communication

latency, minimax criterion, minimaximin

criterion.

I. INTRODUCTION
Currently, the development of

multiprocessor-based systems is considered a
priority in the evolution of computer
technology (1). Emerging computational
problems that cannot be solved within
practical and affordable time using traditional
single-processor systems have contributed to
the extensive development and
implementation of multi-core and many-core
multiprocessor systems (4) that are expected to
drastically enhance the computer performance
(8,10,12,26).

Multiprocessor systems have been applied
in various contexts to solve computationally
complex problems (14,9). For example, such
systems have been used in various physics
domains, and high-performance systems are
required by the aerospace and automotive
industries and nuclear power engineering.
Parallel computing systems are the primary
solution basis in financial and economic

forecasting, oil and gas exploration problems,
weather and climate forecasting, traffic flow
optimization in megacities, as well as
biological research and genetics. In addition,
multiprocessor-based systems are used in
safety-critical real-time systems (13).

II. HARDWIRED VERSUS

RECONFIGURABLE MULTIPROCESSOR
SYSTEMS

Conventionally, multiprocessor
systems employ hardwired or reconfigurable
architecture. Hardwired architectures are
fixed, i.e., they cannot be modified to satisfy
the requirements of a given problem.
Typically, such systems involve a set of
conventional processor units and standard
communication tools, i.e., networking
hardware and protocols. The mesh-connected
multiprocessor-on-a-chip is an example of
such systems. In contrast, reconfigurable
systems can adapt to a given algorithm to
provide the best-fit architecture. Typically,
such systems are based on dedicated hardware,
e.g., application-specific integrated circuits

(ASIC) or programmable logic devices (PLD).
When compared to reconfigurable
architectures, hardwired architecture exhibits
several significant disadvantages such as
relatively low inter-processor data exchange
speed and limited communication network
bandwidth. Consequently, hardwired systems
can reach peak performance only while
running “loosely coupled” parallel
applications that do not produce heavy inter-
processor traffic. Sets of threads in separate
processor cores may need to be synchronized

INTERNATIONAL JOURNAL OF COMPUTERS
DOI: 10.46300/9108.2021.15.5 Volume 15, 2021

E-ISSN: 1998-4308 30

frequently if the implemented algorithm is
poorly decomposed and allocated, thereby
contributing to performance degradation
(3,23,24,22,15,19,17,5,11,18,2). To increase
the efficiency of the hardwired parallel
computing in a general case, specific methods
must be used to map the parallel applications
or solution algorithms onto the system such
that the communication cost is minimized
(20). The mapping procedure should be
performed according to a certain criterion.

III. MULTIPROCESSOR SYSTEM-ON-A-

CHIP

Tilera and Adapteva processors are
typical examples of hardwired multiprocessor
systems-on-chips. Tilera’s recently released
Tile-Gx64 is a general purpose 64-bit RISC-
based multiprocessors targeted at servers
running large multithreaded applications (21).
The block diagram of the Tile-Gx36
multiprocessor is shown in Figure 1.

Tile-Gx processors are manufactured
according to 40 nm microelectronic
technology. The Tile-Gx36 has 36 processor
cores connected via a dedicated iMesh
network. The Tile-Gx36 operates at a clock
speed of 1.2 GHz, and its power consumption
does not exceed 24 W. Each core of the Tile-
Gx36 chip has a first and second-level cache
memory unit, several memory controllers, and
multiple I/O controllers. Each core can run a
standalone operating system (OS), and
multiple cores can be managed by a single
multiprocessor OS. Tile-Gx-based systems

have nearly perfect scalability. Processor cores
can be grouped to reach maximum
performance for a given application. The Tile-
Gx36 provides up to 40 Gbps of bandwidth for
network communication.

The Tile-Gx processor family reduces
system development costs by providing built-
in memory and I/O controllers, thereby
reducing the number of external components
that need to be designed and implemented.
The TileDirect technology facilitates
consistent I/O operation directly to processor
node cache, which significantly reduces delays
in processing data packets. Tilera's distributed
coherent cache (DDC) system increases the
performance of multithreaded and shared
memory applications. Processor cores can be
grouped into independent compute clusters
running separate applications. The
multiprocessor is programmed using C and
C++ languages, which allows developers to
port existing applications to them.

The Tile-Gx functional core is a 64-bit
VLIW processor that executes 64-bit-wide
instructions. This core processor has 64
registers in a register file, a three-level
pipeline with up to three instructions per cycle,
a doubled first-level cache for 32 KB data and
32 KB instructions, and a 256 KB second-
level cache. The clock frequency is in the
range 1-1.5 GHz. The third level cache is
formed as a union of the caches located in
individual processor cores, Tilera's so called
DDC.

INTERNATIONAL JOURNAL OF COMPUTERS
DOI: 10.46300/9108.2021.15.5 Volume 15, 2021

E-ISSN: 1998-4308 31

Figure 1. Tile-Gx multiprocessor block diagram

The inter-core data transfer speed of

the Tile-Gx chip is approximately 200 Tb/s.
Four memory controllers (DDR3) provide
memory bus bandwidth of 500 Gb/s. The
multiprocessor can have up to eight 10 Gigabit
Ethernet interfaces (XAUI), up to three second
generation PCI-e interfaces, up to 32 Gb
Ethernet interfaces (MAC), an mPIPE network
packet processing device, as well as
encryption and data compression hardware.
Thus, the processor can run network

applications with a traffic intensity of 40-80
Gb/s (with packet processing bandwidth of 80
Gb/s and VPN traffic processing bandwidth of
40 Gb/s). Note that PCI-E bandwidth reaches
up to 80 Gb/s. The total power consumption of
the chip is 10-50 W. Tile-Gx processor
topology is typical for multiprocessors and is
suitable for solving problems characterized by
independent object or data parallelism. Such
system organization, i.e., multiple
instruction/multiple data, requires a host

INTERNATIONAL JOURNAL OF COMPUTERS
DOI: 10.46300/9108.2021.15.5 Volume 15, 2021

E-ISSN: 1998-4308 32

computer generating a stream of instructions
and a large number of processor nodes
operating in parallel and processing particular
data streams. Thus, the peak performance of
the system is simply the sum of the processor
nodes’ peak performances across the mesh.
However, to solve a wide range of practical
problems and increase system efficiency,
communication between processor cores must
be organized such that the computational
capabilities of a multiprocessor system are
maximized (7,6,16,25).

IV. EFFECTS OF THREADS-TO-

PROCESSORS MAPPING ON
MULTIPROCESSOR PERFORMANCE

Threads-to-processors mapping
significant affects communication delay in
mesh-connected multiprocessors like Tile-Gx.
When determining thread mapping prior to
uploading threads to the cores, a delay
estimation method to investigate the
effectiveness of possible threads-to-processors
mappings must be formulated. A minimaximin
criterion has been proposed for such
estimation purposes. This criterion calculated
the minimum communication delay for each
pair of processor nodes corresponding to the
selection of the least loaded path between two
processors in subsequent routing. After
determining the minimum delays for all pairs
of processors in the multiprocessor, the
maximum value is chosen. Note that the
maximum delay limits the inter-processor data
exchange time. This calculation method
estimates the worst case of possible inter-
processor data stream overlap, the delay does
not increase after routing more than the value
obtained by this method. However, a minimax
communication delay criterion is used. This
minimax criterion characterizes data exchange
time for a given pair of processors without
considering inter-processor data stream
overlaps occurring during simultaneous data
exchanges for a given set of processor pairs.
The imposition of data routes increases the
volume of inter-processor communication and
drastically reduces multiprocessor
performance when solving tightly coupled
tasks.

In this paper, we focus on employing
the minimaximin criterion when mapping
parallel threads to processor nodes and
demonstrate that the resulting communication
latency reduction leads to increased
multiprocessor performance. In this context,
we consider a very tightly coupled task as an
example because communication delay
minimization is for crucial for such problems.
Our example task is the gravitational
interaction of N bodies, which is a well-known
classical celestial mechanics and gravitational
dynamics problem first formulated by Isaac
Newton.

V. FORMULATION OF EXAMPLE

PROBLEM
The target problem is described as

follows. In a void, there exist N material
points (bodies) with masses

im , initial
positions 0 0i i tr r  , and velocities

0 0i i tv v  . Here, pairwise interaction of
points is controlled by the universal
gravitation law, and the gravitational forces
are assumed to be additive. The positions of
the points for all subsequent moments in time
must be determined.

The numerical solution to this problem
can be found by calculating the increments for
the velocities and coordinates using a time
step of ∆t as follows.

() (1) ()t t t

v v a t


   ,
() (1) ()t t t

x x v t


  

Here,
()t

v ,
(1)t

v


,
()t

x ,
(1)t

x


, and
()t

a denote
the velocity of the target point at time t, the
velocity of the target point at time 1t  , the
position (coordinate) of the target point at time
t, the position (coordinate) of the target point
at time 1t  , and the acceleration of the target
point at time t as calculated according to
Newton's second law:

INTERNATIONAL JOURNAL OF COMPUTERS
DOI: 10.46300/9108.2021.15.5 Volume 15, 2021

E-ISSN: 1998-4308 33

()t F
a

m
 ,

where F is the resultant force affecting the
body calculated as the sum of the attraction
forces between the current body and all other
bodies. The attraction force between the ith
and jth bodies is determined as follows
according to the universal gravitation law:

3
i j

ij ij

ij

m m
F G r

r
 ,

where G is the gravitational constant. Here,

ijr
is the distance between the ith and jth bodies
and is calculated as follows:

2 2 2() () ()ij i j i j i jr x x y y z z      ,

Where xi, xj, yi, yj, zi, and zj denote the
corresponding coordinates of the ith and jth
bodies in three-dimensional space.

VI. SOLUTION TO EXAMPLE PROBLEM

Based on the above formal statements,
the algorithm used to calculate the coordinates
of an interacting body comprises the following
steps. Note that the number of required
necessary operations is given in parentheses.

1) Determine the distance between a body
and all of its peers (9 FLOPs)

2) Calculate the attraction force between
the given body and all other bodies (4 FLOPs)

3) Estimate the resulting force affecting a
body

4) Determine the acceleration of the given
body (1 FLOP)

5) Compute the velocity of the body at
moment t (2 FLOPs)

6) Calculate the coordinates of the given
body at time t (6 FLOPs)

In Figure 2, a parallel-sequential
solution to the considered problem is given
with a set of threads (shown as circles).

It is possible to solve the stated
problem in parallel according to the
decomposition of Figure 2 in a Tile-Gx-like
multiprocessor (Figure 1), where each
processor core performs a loop to calculate the
coordinates of the given body, transmits the
result to all peers calculating the same for the
other bodies, and then proceeds to the next
iteration. As shown in Figure 2, the presented
parallel algorithm is fully connected, and the
weights of arcs represent the amount of data
required to store the coordinate values in
memory. Note that the accuracy of the
calculations is important; therefore, it is
necessary to use the double-precision floating-
point format, which requires 8 bytes of
memory per number. Here, it is necessary to
transfer three coordinates for a given body;
thus, the arcs of the graph have a weight of 24.

VII. EVALUATING MULTIPROCESSOR

PERFORMANCE WHEN SOLVING
TARGET PROBLEM

Based on the above example, the real
performance of an 8×8 Tile processor running
the algorithm shown in Figure 2 can be
evaluated using the previously mentioned
thread mapping technique, which enables the
minimization of inter-processor
communication delay. Here, we introduce the
following dedicated multiprocessor
performance indicator:

comp

comp comm

V
P

Т Т



,

where compV is the calculation amount

(FLOPs), compТ is calculation duration in

seconds, and commТ is data transfer time,
which is estimated as the maximum across the
set of processor pairs and depends on the
given threads-to-processors mapping.

INTERNATIONAL JOURNAL OF COMPUTERS
DOI: 10.46300/9108.2021.15.5 Volume 15, 2021

E-ISSN: 1998-4308 34

Figure 2. Parallel-sequential solution to N interacting bodies problem

The calculation amount in the body
coordinate estimation algorithm is determined
as follows:

     comp

2 2 2 2

9 1 4 1 1 2 6

9 9 4 4 9 14 5 ,

V N N N N N N N N N

N N N N N N N N N

         

        

where N is the number of bodies.
The multiprocessor is a homogeneous

computing system in which each processor
core runs a calculation loop for a single body;
thus, compute time is determined by
multiplying the execution time of a single loop
of the coordinate calculation by the number of
iterations of the algorithm. According to the
characteristics of the target Tile processor, the
maximum core frequency is 1 GHz: thus, the
execution time of the coordinate calculation
period in nanoseconds is equal to the number

of clock cycles for the floating-point
operations that make up the loop:

1 2 3 4 5 6

comp 9
(1) (1)() 3

10
N c N c c c c c

T
      



,

where 1 54c  clock cycles are required to
calculate the distance between bodies,

2 3 116c c  clock cycles are required to
estimate the attraction force plus the resulting
force, 4 80c  clock cycles are required to
obtain the acceleration of a body, 5 14c 
clock cycles are required to calculate the
velocity of a given body, and 6 14c  clock
cycles are required to estimate the coordinates
of a body.

INTERNATIONAL JOURNAL OF COMPUTERS
DOI: 10.46300/9108.2021.15.5 Volume 15, 2021

E-ISSN: 1998-4308 35

Assuming all data exchanges are
performed simultaneously, the inter-processor
data transfer time is limited by the worst-case
pairwise delay resulting from a threads-to-
processors mapping produced by the mapping
algorithm. In a serial byte-by-byte data
exchange, the data transfer time for a pair of
processors (excluding overlapping data routes)
is determined as the product of m d c  ,
where m is the number of bytes transferred, d
is the number of consecutive links between a
given pair of processors, and c is a constant
factor equal to the transfer time of 1 byte per
link. Note that the minimaximin criterion
considers possible route overlaps that require
summation of data transmission times;
therefore, commТ is defined as the maximum
data transfer time for any pair of processors
calculated by the minimaximin criterion using

10c  ns, which corresponds to the
capabilities of the communication subsystem
of modern multiprocessors on a chip.

In the following evaluation, we assume
a one-quarter multiprocessor load, which
means that the 16-body problem is solved and
only 16 (of 64) processor cores are utilized. In
the worst case, the multiprocessor is fully
loaded (i.e., a 64-body problem) and the
threads-to-processors mapping optimization
cannot reduce communication delay because
any permutation on the set of 64 threads yields
the same total amount of data to be transferred
between pairs of processor cores.

Using 16 processor nodes, the peak
performance of the multiprocessor can be
determined if commТ is assumed to tend to 0.
Here, comp 3504V  FLOPs and

comp 2686Т  ns: thus, we obtain the
following.

comp

comp
1.3

V
P

Т
  GFLOP/s

The threads-to-processors mapping
algorithm was tested previously using the
minimaximin (1) and minimax (4) criteria to
evaluate which criterion provides deeper
optimization. Figure 3(a) shows the given
initial mapping of 16 threads to calculate the
coordinates of bodies. Here, the maximum
distance between corresponding processors is
six hops. Note that this mapping is optimal
relative to the maximum distance between
processors; however, it yields a significant
increase in communication delay when routing
along the shortest paths due to the full
connectivity of the data exchange graph and
significant overlaps among data transmission
channels. In Figure 3(a), all shortest paths
between the allocated processors lie within the
dashed rectangle.

The following simulation results were
obtained. The maximum data exchange time
for any pair of processors for the initial
mapping shown in Figure 3(a) according to the
minimax criterion without considering channel
overlap is 1920 ns. In contrast, with multiple
route overlaps, the worst data exchange time is
13440 ns, which time corresponds to the pair
of processors 1-28. The only shortest path
between two processors is located on the same
horizontal or vertical line of the
multiprocessor mesh, which enables the
estimation the minimum number of route
overlaps on any shortest path under the
previously discussed routing condition.
Consider the shortest path between processor
cores 1 and 28, i.e., 1-2-3-4-12-20-28. For this
case, shortest channels (selecting only the
shortest path) are shown in Table 1.

INTERNATIONAL JOURNAL OF COMPUTERS
DOI: 10.46300/9108.2021.15.5 Volume 15, 2021

E-ISSN: 1998-4308 36

Table 1
Channel length calculation depending on the position of processor pairs

Processors pairs in same
horizontal/vertical line

Channel
length

Processors pairs in different
horizontal/vertical lines

Channel
length

1-2 1 1-12 4

1-3 2 1-20 5

1-4 3 2-12 3

2-3 1 2-20 4

2-4 2 2-28 5

3-4 1 3-12 2

4-12 1 3-20 3

4-20 2 3-28 4

4-28 3

12-20 1

12-28 2

20-28 1

INTERNATIONAL JOURNAL OF COMPUTERS
DOI: 10.46300/9108.2021.15.5 Volume 15, 2021

E-ISSN: 1998-4308 37

According the data given in Table 1,

we can calculate the minimum possible delay
of this shortest path in consideration of the
unidirectional data exchange between
processors 1 and 28, the shortest distance

between which is 6. The minimum possible
delay of this path is obtained as follows.

TSUM = (24∙1∙6+24∙2∙4+24∙3∙2+24∙6∙1)∙10 =
24∙10∙(6+8+6+6) = 6240 ns

a) b)

c)

Figure 3. Initial threads-to-processors mapping for 16-body problem (а), and suboptimal threads-to-
processors mappings according to minimax (b) and minimaximin (c) criteria

INTERNATIONAL JOURNAL OF COMPUTERS
DOI: 10.46300/9108.2021.15.5 Volume 15, 2021

E-ISSN: 1998-4308 38

In Figure 3(a), the above shortest path
between processors 1 and 28 is highlighted,
and the number of data exchanges
superimposed on each inter-processor channel
are shown.

To obtain the worst case
communication delay, assume the
unidirectional data exchanges between
processors located on different horizontal and
vertical lines (Table 1) are routed along the
previously specified shortest path. We then
add the total delay for these data exchanges to
the possible minimum as follows.

TSUM=6240+(24∙2∙1+24∙3∙2+24∙4∙3+24∙5∙2)∙10

=
=6240+240∙(2+6+12+10)=13440 ns

As shown in Figure 3(b), a suboptimal

mapping is obtained using the minimax
criterion to estimate mapping quality, and
Figure 3(c) shows usage of the minimaximin
criterion. Here, none of the obtained mappings
guarantees the presence of at least one shortest
path for any pair of interacting processors
without overlap. Therefore, it is preferable to
estimate the communication delay of the
obtained suboptimal mappings using the
minimaximin criterion.

According to the above, the maximum
data exchange time is 8400 ns for processors
17–29 in the mapping shown in Figure 3(b)
and is 4560 ns for processors 3–37 in the same
shown in Figure 3(c).

As with the initial mapping, we can
also estimate the minimum possible delay for
the shortest paths of the processor pairs
described above. In Figure 3(b), the shortest
paths between processors 17 and 29 are shown
inside the dashed rectangle. As shown in
Figure 3(b), we assume that no processor
within the outlined rectangle remains unloaded
in the mapping obtained using the minimax
criterion; thus, with full connectivity in the
data exchange between threads, any shortest
path between processors 17 and 29 can have
the maximum degree of overlap. Here,
consider the shortest path 17-18-19-20-21-29
whose length equals 5 hops. In this case, it is
possible to select processor pairs lying on only

one horizontal or one vertical line, i.e., pairs
17-18, 17-19, 17-20, 17-21, 18-19, 18-20, 18-
21, 19-20, 19-21, 20-21, and 21-29.
Furthermore, we can calculate the minimum
possible delay for such a list of overlaps
according to the lengths of the above data
channels as follows.

TSUM =

(24∙1∙5+24∙2∙3+24∙3∙2+24∙4∙1+24∙5∙1)∙10 =
6240 ns

Analogous to Figure 3(a), Figure 3(b)

shows the minimum number of overlapping
data exchanges on the inter-processor channels
of the selected path. Here, the minimum
possible delay is equal to that of the initial
mapping; therefore, the mapping selected
using the minimax criterion guarantees
reduction of only the worst case of
overlapping shortest data channels.

The shortest paths between processors
3 and 37, for which the maximum data transfer
time was obtained via simulation, are within
the dashed rectangle in Figure 2(b). Here, the
smallest numbers of loaded processors (four)
are on the shortest paths, i.e., 3-4-5-13-21-29-
37, 3-4-12-13-21-29-37, and 3-11-12-13-21-
29-37. Thus, the probability that these paths
will be the least loaded is the highest. Among
any of the abovementioned shortest routes,
only processors 3, 21, 29, and 37 are loaded,
with processors 21, 29, and 37 belonging to
the same vertical.

We calculate the minimum possible
delay between processors 3 and 37 in
consideration of the lengths of overlapping
channels 3-37, 21-29, 21-37, and 29-37 as
follows.

TSUM = (24∙6∙1+24∙1∙2+24∙2∙1)∙10 =

240∙(6+2+2) = 2400 ns

Similar to Figures 3(a) and 3(b), Figure

3(c) shows the minimum number of
overlapping data exchanges on the inter-
processor channels of the selected path.

We can identify the worst case
overlapping path 3-4-5-13-21-29-37 under the
assumption that all unidirectional exchanges

INTERNATIONAL JOURNAL OF COMPUTERS
DOI: 10.46300/9108.2021.15.5 Volume 15, 2021

E-ISSN: 1998-4308 39

between processors 3, 21, 29, and 37 will be
on the given path. Thus, the actual overlaps
along this path are 3-21, 3-29, 3-37, 21-29, 21-
37, and 29-37; therefore, we obtain the
following.

TSUM = (24∙4+24∙5+24∙6+24∙1∙2+24∙2)∙10 =

240∙(4+5+6+2+2) = 4560 ns

Since both results are less than the

minimum possible delay found for processors
17-29 in the mapping selected using the
minimax criterion, we conclude that it is
preferable to use the minimaximin criterion
when planning the mapping of parallel threads
in mesh-like multiprocessors.

VIII. CONCLUSION

Based on the obtained communication
delay values for the worst overlap cases, the
minimum real multiprocessor performance
was calculated as 0.32 GFLOP/s using the
minimax criterion and 0.48 GFLOP/s using
the minimaximin criterion. From these results,
we conclude that the real application
performance of the multiprocessor increases
by 50% with the minimaximin criterion
compared to the use of the minimax criterion
for the target problem.

ACKNOWLEDGEMENT

The authors would like to thank the
editor and anonymous reviewers for their
detailed and insightful comments, which
helped to significantly improve the quality of
the paper.

REFERENCES

[1]. Borzov, D.B., Azzeh, I.V., Zotov,
D.E., Skopin, D.M., 2014. An
Approach to Achieving Increased
Fault-Tolerance and Availability of
Multiprocessor-Based Computer
Systems. Austr. J. Basic Appl. Sci. 8,
512–522. ISSN: 1991-8178

[2]. Camara, J.M., Moreto, M., Vallejo, E.,
Beivide, R., Miguel-Alonso, J.,
Martinez, C., Navaridas, J., 2010.
Twisted Torus Topologies for

Enhanced Interconnection Networks.
IEEE T. Parall. Distr. 21, 1765–1778.
DOI: 10.1109/TPDS.2010.30

[3]. Chalasani, S., Boppana, R.V., 1997.
Communication in Multicomputers
with Nonconvex Faults. IEEE T.
Comp. 46, 616–622. DOI:
10.1109/12.589238

[4]. Chen, D., Eisley, N., Heidelberger, P.,
Senger, R., Sugawara, Y., Kumar, S.,
Salapura, V., Satterfield, D.,
Steinmacher-Burow, B., Parker, J.,
2012. The IBM Blue Gene/Q
Interconnection Fabric. IEEE Micro
32, 32–43. DOI: 10.1109/MM.2011.96

[5]. Chmaj, G., Selvaraj, H., 2017.
Interconnection Networks Efficiency in
System-on-Chip Distributed
Computing System: Concentrated
Mesh and Fat Tree. 2017 25th
International Conference on Systems
Engineering (ICSEng), Las Vegas,
Nevada, USA. 277–286. DOI:
10.1109/ICSEng.2017.50

[6]. DellAmico, M., Carra, D., Michiardi,
P., 2016. PSBS: Practical Size-Based
Scheduling. IEEE T. Comp. 65, 2199–
2212. DOI: 10.1109/TC.2015.2468225

[7]. Domke, J., Hoefler, T., 2016.
Scheduling-Aware Routing for
Supercomputers, SC16: International
Conference for High Performance
Computing, Networking, Storage and
Analysis (SC), Salt Lake City, UT,
USA. 142–153. DOI:
10.1109/SC.2016.12

[8]. Dorigo, M., Stützle, T., 2003. The Ant
Colony Optimization Metaheuristic:
Algorithms, Applications and
Advances. Handbook of
Metaheuristics, Springer, Boston. 250–
285. DOI: https://doi.org/10.1007/0-
306-48056-5_9

[9]. Feil, M., Uhl, A., 2000. Multicomputer
Algorithms for Wavelet Packet Image
Decomposition. Parallel and
Distributed Processing Symposium,
International (IPDPS), Cancun,
Mexico. 793. DOI:
10.1109/IPDPS.2000.846066

INTERNATIONAL JOURNAL OF COMPUTERS
DOI: 10.46300/9108.2021.15.5 Volume 15, 2021

E-ISSN: 1998-4308 40

https://doi.org/10.1109/TPDS.2010.30
https://doi.org/10.1109/12.589238
https://doi.org/10.1109/MM.2011.96
https://doi.org/10.1109/ICSEng.2017.50
https://doi.org/10.1109/TC.2015.2468225
https://doi.org/10.1109/SC.2016.12
https://doi.org/10.1109/IPDPS.2000.846066

[10]. Friedrich, L.F., Cancian, R., de
Oliveira, R.S., Corso, T.B., 2000.
Performance Evaluation of Real-Time
Scheduling on a Multicomputer
Architecture, 2000 IEEE International
Symposium on Performance Analysis
of Systems and Software. ISPASS
(Cat. No.00EX422) (ISPASS), Austin,
TX, USA. 28–33. DOI:
10.1109/ISPASS.2000.842277

[11]. Kieu, T.C., Nguyen, K.V., Truong,
N.T., Fujiwara, I., Koibuchi, M., 2016.
An Interconnection Network
Exploiting Trade-Off between Routing
Table Size and Path Length. 2016
Fourth International Symposium on
Computing and Networking
(CANDAR), Hiroshima, Japan. 666–
670. DOI:
10.1109/CANDAR.2016.0119

[12]. Klenke, R.H., Aylor, J.H., Han, G.,
2001. Performance Modeling of
Hierarchical Crossbar-Based
Multicomputer Systems. IEEE T.
Comp. 50, 877–890. DOI:
10.1109/12.954504

[13]. Knight, J.C., 2002. Safety Critical
Systems: Challenges and Directions.
Proceedings of the 24th International
Conference on Software Engineering.
ICSE 2002. 547–550. ISBN: 1-58113-
472-X

[14]. Lau, N.D., Chien, T.Q., 2016. Solving
the Traveling Salesman Problem on
Multicomputer Cluster. 2016 2nd
International Conference on
Computational Intelligence and
Networks (CINE), Bhubaneswar,
India. 90–94. ISBN: 978-1-5090-0451-
5

[15]. Lee, H., Jang, M., Seo, J., 2008.
Petersen-Torus Networks for
Multicomputer Systems. International
Conference on Networked Computing
and Advanced Information
Management (NCM), 01, 567–571.
DOI: 10.1109/NCM.2008.47

[16]. Nakano, K., Takafuji, D., Fujita, S.,
Matsutani, H., Fujiwara, I., Koibuchi,
M., 2016. Randomly Optimized Grid

Graph for Low-Latency
Interconnection Networks. 2016 45th
International Conference on Parallel
Processing (ICPP), Philadelphia, PA,
USA, 340–349. DOI:
10.1109/ICPP.2016.46

[17]. Punhani, A., Kumar, P., Nitin, A.,
2017. Horizontal Fat Mesh
Interconnection Network. 2017 Tenth
International Conference on
Contemporary Computing (IC3),
Noida, India, 1–5. DOI:
10.1109/IC3.2017.8284343

[18]. Rocher-Gonzalez, J., Escudero-
Sahuquillo, J., García, P.J., Quiles,
F.J., 2017. On the Impact of Routing
Algorithms in the Effectiveness of
Queuing Schemes in High-
Performance Interconnection
Networks. 2017 IEEE 25th Annual
Symposium on High-Performance
Interconnects (HOTI), Santa Clara,
California, USA, 65–72. DOI:
10.1109/HOTI.2017.16

[19]. Shahrabi, A., Ould-Khaoua, M., 2005.
On the Performance of Routing
Algorithms in Wormhole-Switched
Multicomputer Networks. International
Conference on Parallel and Distributed
Systems (ICPADS), Fukuoka, Japan.
515–519. DOI:
10.1109/ICPADS.2005.209

[20]. Tasoulas, E., Gran, E.G., Skeie, T.,
Johnsen, B.D., 2016. Fast Hybrid
Network Reconfiguration for Large-
Scale Lossless Interconnection
Networks. 2016 IEEE 15th
International Symposium on Network
Computing and Applications (NCA),
Cambridge, Boston, MA, USA, 101–
108. DOI:
10.1109/NCA.2016.7778601

[21]. Tile processor architecture overview
for the Tile-Gx series. Release 1.1,
Document No. Ug130, May 2012,
TILERA corporation.
http://www.mellanox.com/repository/s
olutions/tile-scm/docs/UG130-
ArchOverview-TILE-Gx.pdf [access
date: 18/04/2019]

INTERNATIONAL JOURNAL OF COMPUTERS
DOI: 10.46300/9108.2021.15.5 Volume 15, 2021

E-ISSN: 1998-4308 41

https://doi.org/10.1109/ISPASS.2000.842277
https://doi.org/10.1109/CANDAR.2016.0119
https://doi.org/10.1109/12.954504
https://doi.org/10.1109/NCM.2008.47
https://doi.org/10.1109/ICPP.2016.46
https://doi.org/10.1109/IC3.2017.8284343
https://doi.org/10.1109/HOTI.2017.16
https://doi.org/10.1109/ICPADS.2005.209
https://doi.org/10.1109/NCA.2016.7778601
http://www.mellanox.com/repository/solutions/tile-scm/docs/UG130-ArchOverview-TILE-Gx.pdf
http://www.mellanox.com/repository/solutions/tile-scm/docs/UG130-ArchOverview-TILE-Gx.pdf
http://www.mellanox.com/repository/solutions/tile-scm/docs/UG130-ArchOverview-TILE-Gx.pdf

[22]. Theiss, I., Lysne, O., 2006. FRoots: A
Fault Tolerant and Topology-Flexible
Routing Technique. IEEE T. Parall.
Distr. 17, 1136–1150. DOI:
10.1109/TPDS.2006.140

[23]. Wang G., Chen J., 2003. A New Fault-
Tolerant Routing Scheme for 2-
Dimensional Mesh Networks.
Proceedings of the Fourth International
Conference on Parallel and Distributed
Computing, Applications and
Technologies, IEEE, 2003, 95–98.
DOI: 10.1109/PDCAT.2003.1236266

[24]. Xiang, D., Sun, J.G., Wu, J.,
Thulasiraman, K., 2005. Fault-Tolerant
Routing in Meshes/Tori Using Planarly
Constructed Fault Blocks. Proc. Int’l
Conf. Parall. Process. ICPP 2005, 577–
584. DOI: 10.1109/ICPP.2005.40

[25]. Youn, H.Y., Choo, H., Yoo, S., 2000.
Processor Scheduling and Allocation
for 3D Torus Multicomputer Systems.
IEEE T. Parall. Distr. 11, 475–484.
DOI: 10.1109/71.852400

[26]. Zhu, W., Fleisch, B.D., 2000.
Performance Evaluation of Soft Real-
Time Scheduling for Multicomputer
Cluster. Proceedings 20th IEEE
International Conference on
Distributed Computing Systems
(ICDCS), Taipei, Taiwan, 610. DOI:
10.1109/ICDCS.2000.840977.

Creative Commons Attribution License 4.0
(Attribution 4.0 International, CC BY 4.0)

This article is published under the terms of the Creative
Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en_US

INTERNATIONAL JOURNAL OF COMPUTERS
DOI: 10.46300/9108.2021.15.5 Volume 15, 2021

E-ISSN: 1998-4308 42

https://doi.org/10.1109/TPDS.2006.140
https://doi.org/10.1109/PDCAT.2003.1236266
https://doi.org/10.1109/ICPP.2005.40
https://doi.org/10.1109/71.852400
https://doi.org/10.1109/ICDCS.2000.840977

