

Abstract— Existing software testing methods cannot be

dynamically used in requirement modeling and system design
before detailed coding. But often, more than 85% of the
critical defects in a software product development are
introduced into the product in the requirement modeling
process and the product design process. Therefore, it is easy to
understand why NIST (National Institute of Standards and
Technology) concluded that “Briefly, experience in testing
software and systems has shown that testing to high degrees of
security and reliability is from a practical perspective not
possible.” This paper presents a new software testing method
called Transparent-Box combining functional testing and
structural testing together seamlessly with a capability to
automatically establish bidirectional traceability among the
related documents and test cases and the corresponding source
code according to the test case description. To each test case
this method not only helps users check whether the output (if
any, can be none when it is dynamically used in requirement
development and product design) is the same as what is
expected, but also helps users check whether the execution
path covers the expected one specified in control flow, so that
this method can be dynamically used in the entire software
development process from the first place down to the
retirement of a software product to find functional defects,
logic defects, and inconsistency defects.

Keywords— software, testing, method, software testing,
software testing method, quality assurance

I. INTRODUCTION: THE MAJOR EXISTING SOFTWARE TESTING
METHODS ARE OUTDATED

Software testing (ST) is the process of identifying and

delivering the software as a product based on the specification
that has been given and required by the users[1]. Software
testing is mainly using the Black-Box method[2] that is being
applied after the entire product is produced, and White-Box[2]
testing method that is being applied after each software unit is
coded. Black-box and White-box methods are applied
separately without internal logic connections. The White-Box

Jay Xiong was with The Acadamy of Science of China, Hitachi in Japan,

and U.C. Berkeley.. Now he is with NSEsoftware, LLC. USA (email:
jay@nsesoftware.com) .

Lin Li is with NSEsoftware, LLC., USA (email: lilin@nsesoftware.com)

testing is mainly performed in unit testing to test an Existing
product rather than a Required product, while the Black-Box
testing is mainly performed in system testing, so that both
methods and the corresponding techniques and tools cannot be
used dynamically in the requirement development process and
the software design process where about 85% of critical
defects are introduced into a software product as shown in Fig.
1. Even if a requirement development defect or a design defect
can be found by both methods after coding, it is too late: the
cost for removing the defect may increase tenfold several
times.

Fig. 1 Current software testing methods cannot be

dynamically used in upstream of software engineering

For those software testing methods, NIST (National

Institute of Standards And Technology) concluded that
“Briefly, experience in testing software and systems has
shown that testing to high degrees of security and reliability is
from a practical perspective not possible. Thus, one needs to
build security, reliability, and other aspects into the system
design itself and perform a security fault analysis on the
implementation of the design.” (“Requiring Software
Independence in VVSG 2007: STS Recommendations for the
TGDC," November 2006
http://vote.nist.gov/DraftWhitePaperOnSIinVVSG2007-
20061120.pdf).

Those software testing methods and the related techniques
and tools are designed to work with the old-established
software engineering paradigm based on linear thinking and
the superposition principle that the whole of a system is the
sum of its parts, so that almost all tasks/activities are
performed linearly, partially, locally, and qualitatively,
making the defects introduced in upper phases easy to
propagate to the lower phases to increase the defect removal

Transparent-Box: Efficient Software Testing Method
Combining Structural and Functional Testing together

Jay Xiong, Lin Li

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 7, 2013

69

cost up to more than 100 times. This old-established software
engineering paradigm is entirely outdated, and should be
replaced by a new revolutionary software engineering
paradigm based on nonlinear thinking and complexity
science[3].

II. THE TRANSPARENT-BOX TESTING METHOD
The Transparent-Box testing method is graphically

described in Fig. 2.

Fig. 2 Transparent-Box testing method

As shown in Fig. 2, with the Transparent-Box testing
method, to each test case, the corresponding tool will not only
check whether the output (if any, can be none when it is
dynamically used in the requirement development phase and
design phase) is the same as what is expected, but also help
users to check whether the execution path covers the expected
one specified in control flow, and whether the execution hits
some modules or branches which are prohibited for the
execution of the corresponding test case, plus that it can
establish the bi-directional traceability among the related
documents and test cases and the source code according to the
description of the test case. Having an output is no longer a
condition to apply this method, so that it can be used
dynamically in the entire software development process for
defect prevention and defect propagation prevention.

The bidirectional traceability between test cases and the
source code tested is established through the use of Time Tags
(when a test case is executed) to be automatically inserted into
the descriptions of the test cases and the database of the source
code test coverage analysis for mapping them together
accurately. Examples of Time Tags that are automatically
inserted into the description part of test cases are shown in
Fig. 3.

Fig. 3 Time Tag Examples

For extending the traceability to include the related

documents, some keywords such as @WORD@, @HTML@,
@PDF@, @EXCEL@, and @BAT@ are used for indicating
the format of the documents and automatically opening the
corresponding documents traced at a location specified by a
bookmark.

The simple rules for designing a test case description are as
follows:
A ‘#’ character at the beginning position of a line means a

comment.
An empty line separates different test cases.
Within comments, users can use some keywords such as

@WORD@, @HTML@, @PDF@, @EXCEL@, and
@BAT@ to indicate the format of a document, followed
by the full path name of the document, and a bookmark.

Within comments, users can use [path] and [/path] pair to
indicate the expected path in three possible ways: module-
level path (a list of modules from the entry-module to the
end-module), segment-level path (a list of segments from
the entry-module to the end-module) , and mix module and
segment path (combination of partial modules and partial
segments from the entry-module to the end-module).
When it is applied to a very long path, users may indicate
some critical modules or the segments of some critical
modules to be covered by the corresponding test case
execution.

Within comments, users can use Expected Output to indicate
the expected value to be produced, used for manual or
automatic comparison.

Within comments, users can also use Not_Hit keyword to
indicate modules or branches (segments) which are
prohibited to enter for the related test case execution.

After the comment part, there is a line to indicate the
directory for running the corresponding program.

The final line in a test case description is the command line
(which may start a program with the GUI) and the options.

An sample test case script file with some test case descriptions
is listed as follows (TestScript1) :

 # test case 1 for New Order
 # @HTML@ C:\Billing_and_Payment10\Requirement_specification.htm#New_Order
 # @WORD@ C:\Billing_and_Payment10\Prototype_design.doc bmname New_Order
 # @WORD@ C:\Billing_and_Payment10\TestRequirements.doc bmname New_Order
 # [path] main(int, char**) {s0, s1, s9} [/path]
 # Expected output : none
 C:\Billing_and_Payment10
 Billing_and_Payment.exe new_order Confirm

 # test case 2 for Pay Invoice
 #@HTML@ C:\Billing_and_Payment10\Requirement_specification.htm#Pay_Invoice
 #@WORD@ C:\Billing_and_Payment10\Protorype_design.doc Pay_Invoice
 # @BAT@ C:\isa_examples\ganttpro\ganttpr9.bat
 #[path] main(int, char**) {s1, s6, s9, }B-Pay_Invoice(void) [/path]
 # Expected output : none
 C:\Billing_and_Payment10
 Billing_and_Payment.exe Pay_Invoice

 About how the segment numbers are assigned for a
program module, let us see the following example:

A sample “main(int, char**)” program:

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 7, 2013

70

 #include <stdio.h>
#include <string.h>

void main(int argc, char** argv)

{

int ERROR_CODE;

if(argc != 3 && argc != 4)

 printf("Error found in the command-line.\n");

else if (argc == 3){

if(strcmp(argv[1],"global_placement")==0)

 ; // calling g_placement(argv[2]);

else if(strcmp(argv[1],"global_routine")==0)

 ; // calling g_routing(argv[2]);

else if(strcmp(argv[1],"detailed_placement")==0)

 ; // calling d_placement(argv[2]);

else if(strcmp(argv[1],"detailed_routing")==0)

 ; // calling d_routing(argv[2]);

else if(strcmp(argv[1],"partititionning")==0)

 ; // calling partitioning(argv[2]);

else if(strcmp(argv[1],"ordering")==0)

 ; // calling ordering(argv[2]);

else

 ; // calling printf("Invalid name:

%s\n",argv[1]);

} else if (strcmp(argv[2],"dbs_build") == 0)

 ; // calling dbs_build(argv[2],argv[3]);

else printf("Error! Invalid name: %s\n",argv[1]);

}

The corresponding segment numbers assigned are shown in
Fig. 4 with that the tested segments are shown in red color
automatically:
Fig. 5 shows the facility for the establishment of automated

and self-maintainable traceability using Time Tags and book
marks.

Fig. 4 The control flow of the main() program with segment
numbers (s0, s1, s2...) assigned

Fig. 5 The facility for automated and self-maintainable
traceability

The major steps for establishing and applying the
bidirectional traceability are as follows:
Step 1: Organize the requirement specification and the related

documents hierarchically with the bookmarks, clearly
indicate each requirement and the corresponding test
scripts and the test case numbers;

Step 2: Design the test case scripts with the corresponding
keywords to indicate the formats and the file paths and
the bookmarks for the related documents;

Step 3: Perform code instrumentation for test coverage
analysis to the entire program;

Step 4: Compile the instrumented program;
Step 5: Execute the test case scripts with the corresponding

tool.
Step 6: Show the modified test case script files with inserted

time tags in a window;
Step 7: Show the program test coverage measurement result

using a control flow diagram in another window;
Step 8: Perform forward tracing from a test case with a tool to

map and highlight the corresponding modules and code
branches tested by the test case through the inserted
time tag – at the same time, open the related documents
according to the document formats, file paths, as well
as the bookmarks (or run the corresponding batch file if
a @BAT@ keyword is used);

Step 9: Perform backward tracing from a program module or
code branch with a tool to map and highlight the
related test cases though the inserted time tags – at the
same time, open the related documents according to the
document formats, file paths, as well as the bookmarks
(or run the corresponding batch tile if a @BAT@
keyword is used);

Step 10：After the implementation of code modifications, go
to step 3.

Step 11: If a related document is modified in the contents
only without changing the bookmarks, there is nothing
to do; but if the bookmarks are modified (such as the
name of a bookmark is changed), modify the
corresponding test case scripts according to the new
bookmarks, then go to step 5;

Step 12: If only the test cases are modified, go to step 5;
Step 13: If the source code is modified, go to step 3;
Step 14: If it is the time to perform requirement validation and

verification (V&V), use the document hierarchy
information organized in step 1 to get each requirement
and the corresponding test cases to perform forward
tracing one by one to see whether the requirement is
completely implemented;

Step 15: If a requirement needs to be modified: (1) get the test
cases related to this requirement to perform forward
tracing to locate the documents that need to be updated,
and the source modules or branches that need to be
modified; (2) perform backward tracing from those
modules or branches to see whether more requirements
are related – if it is related to more requirements, the
implementation of the code modification must satisfy
all of the related requirements to avoid requirement
conflicts.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 7, 2013

71

Step 16: If it is the time to perform regression testing after
code modification, get the modified modules or
branches to perform backward tracing to collect the
corresponding test cases which can be used to re-test
the modified program efficiently. Sometimes, there
may be a need to add new test cases.

 The code instrumentation method used for test coverage
analysis are different for different programming languages.

 For instance, to C++, an “if” statement will be treated using
the “?:” operation to support MC/DC (Modified
Condition/Decision) test coverage analysis.
A statement as:

 if (a && b) printf (“OK\n”);
will be changed to:
 if (((a) ? (aisai_rp -> con[0] |= excc, 1) : (aisai_rp ->
con[0] |= 0x33, 0)) && ((b)? (aisai_rp -> con[1] |= excc, 1)
: (aisai_rp -> con[1] |= 0x33, 0)) ? (aisai_rp -> con[2] |=
excc, 1) : (aisai_rp -> con[2] |= 0x33, 0)) printf(“OK\n”);

Note: the array aisai_rp -> con is used to record the code
coverage data for all condition outcomes, not only for the
branches .

 After test case execution, a relationship table between the
test cases (represented by the Time Tags T1, T2...Tn) and the
modules can be automatically built as follows (here the
number “1” means the module is tested), see Table 1:

Table 1: the relationship between the test cases and the
modules of a program being tested

 T1 T2 T3 T4 T5 T6 T7 ...
M1 0 0 0 1 0 0 0 ...
M2 1 1 0 0 0 0 1 ...
M3 0 1 0 1 0 0 1 ...
M4 1 0 0 0 0 0 0 ...
M5 0 1 0 1 0 0 0 ...
M6 1 0 0 0 0 0 0 ...
M7 0 0 0 0 0 0 1 ...
M8 0 0 0 0 0 0 0 ...
M9 0 0 0 0 0 0 0 ...
M10 0 1 0 0 0 0 0 ...
M11 1 1 0 1 0 0 1 ...
M12 0 0 0 1 0 0 0 ...
...

 Similarly, another relationship table between the test cases
and the code segments of a program module can also be
automatically built as shown in Table 2.

 Table 2: the relationship between the test cases and the
segments of a program module

 T1 T2 T3 T4 T5 T6 T7 …
S1 1 1 0 0 0 0 1 …
S2 0 0 0 1 0 0 0 …
S3 1 0 0 0 0 0 0 …
S4 0 1 0 1 0 0 1 …
S5 0 1 0 1 0 0 0 …
S6 1 0 0 0 0 0 1 …
S7 1 1 0 1 0 0 1 …
S8 0 0 0 0 0 0 0 …
S9 0 0 0 0 0 0 0 …

S10 1 1 0 1 0 0 1 …
S11 0 1 0 0 0 0 0 …
... …

 In the implementation, we use one bit rather than one byte
to represent the test result of each module and each segment to
save needed space greatly.
 With those data, we can easily trace the relationship
automatically using the test case script window and test
coverage window as shown in Fig. 6 to Fig. 8.

The operations for forward tracing – click a test case in the
test case script window, the corresponding tool will highlight
the selected test case in blue, then the segments and modules
that can be tested by the test case will be highlighted in red on
the Source Code window according to the Time Tags - see
Fig. 6 – 7.

Fig. 6 An application example of forward traceability

established

Fig. 7 Another application example of forward traceability

established

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 7, 2013

72

The operations for backward tracing – click a segment (or
module) on the Source Code window to select it, then the
corresponding tool will highlight the selected segment or
module in blue in the Source Code window, while the
corresponding test cases will be highlighted in red in the Test
Case window through the mapping of the Time Tags – see
Fig. 8.

Fig. 8 An application example of backward traceability

established

Why is traceability important to software development?
“... Important benefits from traceability can be realized in the
following areas: project management, process visibility,
verification and validation (V&V), and maintenance [4]:

Project Management
 Traceability makes project management easier by
simplifying project estimates. ...

Process Visibility
 Traceability offers improved process visibility to both
project engineers and customers....

Verification and Validation

Software verification and validation include a set of
procedures, activities, techniques and tools used in parallel to
software development, for ensuring that the product solves
the problem that was designed for [5]. The most significant
benefits provided by traceability can be realized during the
V&V stages of a software project. Traceability offers the
ability to assess system functionality on a per-requirement
basis, from the origin through the testing of each requirement.
Properly implemented, traceability can be used to prove that a
system complies with its requirements and that they have been
implemented correctly. If a requirement can be traced forward
to a design artifact, it validates that the requirement has been
designed into the system. Likewise, if a requirement can be
traced forward to the code, it validates that the requirement
was implemented. Similarly, if a requirement can be traced to
a test case, it demonstrates that the requirement has been
verified through testing. Without traceability, it is impossible
to demonstrate that a system has been fully verified and
validated.

Application examples:

(a) Load the database in the customer site with NSE-

Panorama-APL, see Fig. 9.

Fig. 9 The process to load the database of an
example program

(b) Use the validation tool to load the test database (see Fig.
10).

Fig. 10 Load the test database

(c) Open the corresponding control flow windows, see Fig.
11.

Fig. 11 Open the control flow window

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 7, 2013

73

(d) Perform forward tracing to validate the “Interface” design
requirement, see Fig. 12.

Fig. 12 Perform forward tracing through the corresponding
test case to validate the “Interface” requirement (the result
shows that it has been implemented correctly – see what have
been highlighted in blue lines)

(e) Perform backward tracing through a code branch to

validate the “Operation” requirement (the result shows
that the requirement has been implemented correctly), see
Fig. 13 .

Fig. 13 Backward tracing through a code branch to
validate the “Operation” requirement

(f) Found an error through backward tracing: a typing error,

see Fig. 14.

Fig. 14 Found an error through requirement validation and
acceptance testing (no test case response)

Conclusion: With the traceability established, NSE-
Panorama-APL Acceptance Testing and Requirement
Validation Robot will be very useful for automatic and
dynamic software requirement validation and acceptance
testing.

Maintenance

Traceability is also a valuable tool during the
maintenance phase of a software project for many of the same
reasons that it is valuable for project management. Initially
defined requirements for a software project often change even
after the project is completed, and it is important to be able to
assess the potential impact of these changes. Traceability
makes it easy to determine what requirements, design, code,
and test cases need to be updated to fulfill a change request
made during the software project’s maintenance phase. ”[6]

The major features of the established traceability

The major features include the following:
Automated

This facility works automatically with the capability
to insert the Time Tags into both the test case description part
and the database of the program test coverage measurement
result, and highlight the test cases selected on the
corresponding test script window, and the source code
modules/branches shown in a control flow diagram in the
corresponding source code window, or vice versa, as well as
open the related documents traced from the locations pointed
by the bookmarks.

Self-maintainable

This facility is self-maintainable no matter if the
contents of a document are modified, the parameters of a test
case are modified, or the source code is modified – after
rerunning the test case scripts, the traceability will be
automatically updated without manual rework.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 7, 2013

74

Methodology-independent

This facility is methodology-independent, no matter
which methodology or process models are used to develop the
product.

Nonlinear, bidirectional, and parallel

This facility works in a nonlinear, bidirectional, and
parallel style – when a design defect is found after the product
delivery, the developers can perform backward tracing to
check the related requirement, and forward tracing to find and
fix the related source code.

Accurate

This facility is based on the dynamic execution of the
test cases and test coverage measurement and the time tags to
map the test cases and the source code tested, so that it is
accurate. After code modification or parameter changes of the
test cases, we can re-run the test cases to automatically update
the facility.

Precise

This facility is precise to the highest level – up to the
code statement/segment (a set of statements to be executed
with the same conditions) level, bi-directionally. It is
particularly useful for side-effect prevention in software
maintenance.

III. THE NEW SOFTWARE TESTING PARADIGM BASED ON THE
TRANSPARENT-BOX TESTING METHOD

Based on the Transparent-Box method, a new

revolutionary software testing paradigm is established which
offers comprehensive functions and capabilities for software
testing, including the support for MC/DC (Modified
Condition/Decision Coverage) test coverage analysis, memory
leak and usage violation check, performance analysis, runtime
error type analysis and execution path tracing, GUI operation
capture and selective playback, test case efficiency analysis
and test case minimization for efficient regression testing after
code modification, incremental unit testing and integration
testing combined together seamlessly, semi-automatic test
case design, and more.

This new software testing method can be applied in the
requirement development process for finding logic defects and
inconsistency defects efficiently with the Holistic, Actor-
Action and Event-Response Driven, Traceable, Visual, and
Executable (HAETVE) software requirement development
technique innovated by Jay Xiong to be used to replace the
Use Case approach (which is not holistic, not suitable for
event-response type applications, not traceable, and not
executable for defect removal). Application examples are
shown in Fig. 15 – Fig. 17.

Fig. 15 An application result of the HAETVE

technique for the function decomposition of the functional
requirements of a Billing_and_Payment product through stub
programming using stub modules (there are some function call
statements in the body of a module (or an empty body)
without real program logic)

The stub programming source code of the main()

module is listed as follows:

void main(int argc,char** argv)
{
int key;
if(argc==1 /* Missing a parameter * /
 || argc > 2 /* Having an extra parameter */)
 {
 cout << "Invalid Commands: \n" << argv;
 }
else
{
if(strcmp(argv[1],"New_Order")==0 ||

 strcmp(argv[1],"New_order")==0
 || strcmp(argv[1],"new_order")==0)
 {
 A_New_Order();
 cout << "*** A_New_Order () called. ***\n";
 }
else if (strcmp(argv[1],"Confirm_Order")==0 ||
 strcmp(argv[1],"Confirm_order")==0
 || strcmp(argv[1],"confirm_order")==0)
 {
 C_Confirm_Order();
 cout << "*** C_Confirm_Order () called. ***\n";
 }
else if (strcmp(argv[1],"Invoice_Buyer")==0 ||
 strcmp(argv[1],"Invoice_buyer")==0
 || strcmp(argv[1],"Invoice_buyer")==0)
 {
 D_Invoice_Buyer();
 cout << "*** D_Invoice_Buyer() called. ***\n";
 }
else if (strcmp(argv[1],"Pay_Invoice")==0 ||
 strcmp(argv[1],"Pay_invoice")==0
 || strcmp(argv[1],"pay_invoice")==0)
 {
 B_Pay_Invoice();
 cout << "\n *** B_Pay_Invoice() called. ***\n";}

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 7, 2013

75

else if (strcmp(argv[1],"Send_Reminders")==0 ||
 strcmp(argv[1],"Send_reminders")==0
 || strcmp(argv[1],"send_reminders")==0)
 {
 E_Send_Reminders ();
 cout << "\n *** E_send_Reminders() called. ***\n";}
else
 cout << "Invalid Commands: \n" << (char**) argv

 <<endl;
 cout << " *** Executed. *** \n" << (char**) argv

 <<endl;
 }
}

After the execution of the test script file, TestScript1, using
this new software testing paradigm through the Panorama++
product, one logic defect and another inconsistency defect
were found as shown in Fig. 16.

Fig. 16 Two defects found through dynamic testing

After checking the source code, we can easily find that there
is a defect coming from an extra space character:

An extra space character found |

 V

if(argc==1 /* Missing a parameter * /

 || argc > 2 /* Having an extra

parameter */)

 {

 cout << "Invalid Commands: \n" <<

argv;

 }

else

{

if(strcmp(argv[1],"New_Order")==0 ||

strcmp(argv[1],"New_order")==0

 || strcmp(argv[1],"new_order")==0)

 {

 A_New_Order();

 cout << "*** A_New_Order () called.

***\n";

 }
After checking the bookmarks, we found that in the
TestRequirements.doc file the bookmark
Now_Oder is pointing to the Pay Invoice Treatment
position rather than the New Order Treatment position.

After removing the two defects, a correct result is obtained
as shown in Fig. 17.

Fig. 17 After modification, the two defects shown in Fig.
4 are removed

When this new software testing paradigm is applied
to test a software program without the source code, we can
design a virtual main() to indicate the corresponding
operations and call the program indirectly through stub
programming too. In this way the GUI operation can be
captured and automatically played back after code
modification with the capability to establish bidirectional
traceability to find the inconsistency defects among the test
cases, the test requirements, and user’s manual, and other
related documents even if the source code is not available.

IV. THE MAJOR FEATURES OF THE NEW SOFTWARE TESTING
PARADIGM

The new presented software testing paradigm brings

revolutionary changes to software testing. The major features
of the new software testing paradigm include:

It is based on the Transparent-Box testing method
which combines functional testing and structural
testing together seamlessly with close logic
connection and a capability to automatically establish
bidirectional traceability among the related
documents and test cases and the corresponding
source code tested.

It can be used in the entire software development
processes dynamically, from the requirement
development process down to the maintenance
process.

It can be used to find functional defects, structural
defects, and inconsistency defects.

It supports MC/DC test coverage analysis required for
the RTCA/DO-178B level A [7] standard, being able
to show the test coverage analysis results graphically
with untested branches and conditions highlighted as
shown in Fig. 18.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 7, 2013

76

Fig. 18 MC/DC test coverage analysis and the
analysis results shown graphically

Why is MC/DC (Modified Condition/Decison Coverage)
essential to commercial software products?

Often people believe that statement-level test coverage is
not good enough for the quality assurance of commercial
software, but branch-level test coverage may meet the quality
assurance requirements. Is it true?

Before answering the question, let’s see some examples.
func1 is a C program module with the source code as

follows:

int func1 (int a, int b, int c)

{

 if(a && b && (c==1 || c==11

||

 c==111 || c==1111 ||

c==11111))

 return c + c/10 + c/100 + c/1000

+ c/10000;

 else

 return 0;

}

 If we consider branch-level test coverage only, then there
are two logic paths; but if we consider MC/DC test coverage,
there are eight logic paths as shown in Fig. 19.

Fig. 19 The logic paths of the func1 program module

 func2 is another C program module with the same
functionality as func1 but written in different style without
using multiple conditions in a decision statement:

int func2 (int a, int b, int c)

{

if (a)

 {

 if (b)

 {

 switch (c)

 {

 case 1:

 return 1;

 case 11:

 return 12;

 case 111:

 return 123;

 case 1111:

 return 1234;

 case 11111:

 return 12345;

 default:

 return 0;

 }

 }

 }

return 0;

}

 The number of source lines of func2 is 25, while the
number of source lines of func1 is 8.

The number of logic paths for func2 is eight too as shown in
Fig. 20.

Fig. 20 The number of logic paths of func2 program module

In a software development project, conducting a unit test is

an important task but not an easy process[8]. With the
presented software testing paradigm, unit testing and
integration testing are combined together incrementally
according to the bottom-up testing order assigned on the
corresponding call graph (an example is shown in Fig. 21)
without designing and using stub units in real cases (if a stub
unit is used, it will not return the real value) .

Fig. 21 Bottom-up unit testing order assigned

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 7, 2013

77

Appendix 1 provides an example about how to realize
100% of MC/DC (Modified Condition/Decision Coverage)
test coverage (we call it J-Coverage here) for a program unit.

It supports memory leak analysis and memory usage

violation check. It is a part of software security testing [9].
An application example is shown in Fig. 22.

Fig. 22 A report on memory leak and usage violation check
 It supports performance analysis with the capability to report

the branch execution frequency to locate performance
bottlenecks better as shown in Fig. 23.

Fig. 23 An application example of performance analysis

performed by Panorama++

It supports efficient test case design by automatically

choosing a typical path with the most untested branches and
automatically extracting the execution conditions of the
chosen path as shown in Fig. 24.

Fig. 24 Assisted test case design performed by Panorama++

It supports embedded software testing too, as shown in Fig.
25.

Fig. 25 An application example shows that the MC/DC test

coverage data are sent from the target to the test server

It combines software testing and debugging

together visually

The NSE software testing paradigm combines
software testing and debugging together closely as
shown in the following examples:

(a) The source code of a sample program module
“trouble” with seven defects, and the
corresponding “main” module is listed as
follows:

/* File: main.c */

 1 #include <stdio.h>
 2 static char *tp=NULL;
 3 int r=1, x=0, y=1000000, z=0;
 4 FILE *fd=NULL;
 5 void trouble();
 6
 7 main(argc, argv)
 8 int argc;
 9 char **argv;
 10 {
 11 int k=0;
 12 if(argc>1) trouble(atoi(argv[1]));
 13 if(fd) fclose(fd);
 14 }

/* File: trouble.c */

 1 /* trouble.c */
 2
 3 #include <stdio.h>
 4 #include <malloc.h>
 5
 6 #ifdef ERROR_SIMULATION
 7 #include "ISA_simu.h"
 8 #endif
 9 extern int x,y,z;
 10 extern FILE *fd;
 11 FILE *fi, *fo;
 12
 13 trouble (x)
 14 int x;
 15 {
 16 int i, t=1;

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 7, 2013

78

 17 char c,*pc=NULL,ch[10],*p=NULL,*e=NULL;
 18 if((e=malloc(4))==NULL)printf("Out of memory,x=%s",x), exit(-1);
 19 for(i = x; i <= 8 && t; p=&ch[i++])
 20 if(i % 2 ==1) {
 21 p=&c; t=0; }
 22 ch[0] = *p; /* seg. fault when x > 8 */
 23 i = x ;
 24 while (i > -2 && i<=7){/*dead loop if x=7 or x=3*/
 25 switch (x + z) {
 26 case 0: case 1: x = z = 1; break;
 27 case 2: y = 1; break; }
 28 if (i < 7)
 29 i += 4; }
 30 if (x < 5)
 31 pc = ch;
 32 if(x < 6)
 33 fd=fopen("trouble.c", "r");
 34 c = getc (fd); /* seg. fault when x = 6 */
 35 strcpy (pc, "ab"); /* seg. fault if x = 5 */
 36 c = ch[y]; /* seg. fault when x = 4 */
 37 z = x / z; /* Arith. excep. when x = 2 */
 38 if((p=malloc(3))!=NULL) strcpy(p,"OK");
 39 }
 40

(b) The following shows what are provided by a typical test
tool using statement / block test coverage metric after the
execution that the main() function called the trouble(x)
function with x=0 :

 #include <stdio.h>
 static char *tp=NULL;
 int r=1, x=0, y=1000000, z=0;
 FILE *fd=NULL;
 void trouble();

 main(argc, argv)
 int argc;
 char **argv;
 1 -> {
 int k=0;
 if(argc>1) trouble(atoi(argv[1]));
 1 -> if(fd) fclose(fd);
 1 -> }

 100.00 Percent of the file executed

 /* trouble.c */
 #include <stdio.h>
 #include <malloc.h>

 #ifdef ERROR_SIMULATION
 #include "ISA_simu.h"
 #endif
 extern int x,y,z;
 extern FILE *fd;
 FILE *fi, *fo;

 trouble (x)
 int x;
 1 -> {
 int i, t=1;
 char c,*pc=NULL,ch[10],*p=NULL,*e=NULL;
 if((e=malloc(4))==NULL)printf("Out of memory,x=%s",x), exit(-1);
 1, 2 -> for(i = x; i <= 8 && t; p=&ch[i++])
 2 -> if(i % 2 ==1) {
 1 -> p=&c; t=0; }
 1 -> ch[0] = *p; /* seg. fault when x > 8 */
 i = x ;
 while (i > -2 && i<=7){/*dead loop if x=7 or x=3*/

 2 -> switch (x + z) {
 1 -> case 0: case 1: x = z = 1; break;
 1 -> case 2: y = 1; break; }
 2 -> if (i < 7)
 2 -> i += 4; }
 1 -> if (x < 5)
 1 -> pc = ch;
 1 -> if(x < 6)
 1 -> fd=fopen("trouble.c", "r");
 1 -> c = getc (fd); /* seg. fault when x = 6 */
 1 -> strcpy (pc, "ab"); /* seg. fault if x = 5 */
 c = ch[y]; /* seg. fault when x = 4 */
 z = x / z; /* Arith. excep. when x = 2 */
 if((p=malloc(3))!=NULL) strcpy(p,"OK");
 1 -> }

 100.00 Percent of the file executed

It means that the tool offering statement test coverage
analysis capability reported 100% of the program have been
tested without finding any defect.

(c) Comments on a typical statement / block test coverage
analysis tool:

o The analysis result is coding style dependent.
 Suppose there are two statements as follows:

 if(0) printf (" Can't be executed. \n");

 and

 if(0)
 printf (" Can't be executed. \n");

and only the condition parts of them are tested but has never
been satisfied, the first statement will report that the entire
statement has been tested, but the second one will not.

o It can't identify whether an invisible segment (such as a "if"

statement without the "else" part) has been executed or not.
o If several "case" statements share an execution body such as
 case 0: case 1:
 printf(" Less than 2.\n");
 break;
but only one of the conditions of the cases is satisfied (such as

case 0: is satisfied), it can't indicate that other cases are not
executed.

o It can't identify whether the high end of a loop boundary is
executed or not.

o It can't identify whether a condition outcome or the
combination of some condition outcomes are executed or
not.

 (d) After compilation and execution of the program directly
with X=6

 Without using NSE tools, the system shows an error message
with no detailed information (see Fig. 26):

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 7, 2013

79

/C:/apt/web/panweb.dir/www/define.htm

Fig. 26 An error message given by the system without
showing the error location

In this case, the system debugger can be used to report the
related information in object code format as shown in Fig.
27.

Fig. 27 The system debugger can only show the location of the
object code which is not very useful

(e) But with NSE the detailed error information will be
reported with the error type and the source code location as
shown in Fig. 28

Fig. 28 When it is executed under NSE, an error message is
given with the error type and the detailed source code location
(line 133 in file trouble.c)

(f) Debugging can also be performed visually with the NSE
software engineering paradigm as shown in Fig. 29 to Fig. 33:

 See Fig. 29 - after the execution where the main () function
called the function trouble(x) with x=0, NSE’s support
platform Panorama++ will report that only 64% of the
program have been tested using the MC/DC test coverage
metric.

Fig. 29 The corresponding program test coverage shown in J-

Chart

See Fig. 30 - the untested branches/segments and conditions
can be highlighted in J-diagram.

 Fig. 30 The corresponding logic diagram shown in J-Diagram
notation with untested branches and conditions highlighted in
small black boxes

The untested branches and condition can also be highlighted
in a J-Flow diagram as shown in Fig. 31.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 7, 2013

80

Fig. 31 The corresponding J-Flow diagram shown with the
untested branches and conditions highlighted

See Fig, 32 - when a runtime error happens during the

testing process, users can directly find the corresponding
source code location using J-Flow diagram through searching
a word “EXIT” which is automatically added into the J-Flow
diagram to indicate the error location (sometimes the defect
may be introduced earlier but the program is terminated later).

Fig. 32 Finding the location where a program terminated

unexpectedly using J-Flow diagram through searching the
added word “EXIT”

 (g) With all the untested branches and conditions being tested,
the seven defects can be found and fixed by modifying the
source code. After that the logic diagram will show that 100%
of the branches and the conditions are all tested as shown in
Fig. 33.

Fig. 33 The final result after removing all defects with the
trouble module

V. A GENERAL COMPARISON BETWEEN THE NEW SOFTWARE
TESTING PARADIGM AND THE OLD ONE

(a) The defect finding efficiency

The old testing paradigm used for incremental software
development is shown in Fig. 34[10].

Fig. 34 Traditional software testing performed with
incremental software development

The old testing paradigm used for the iterative software
development is shown in Fig. 35.

Fig. 35 The old testing paradigm used for the iterative
software development[10]

The presented new software testing paradigm used for
incremental or iterative software development is shown in
Fig. 36.

Fig. 36 The presented new software testing paradigm used for
incremental or iterative software development

Comparing Fig. 34, Fig. 35, and Fig. 36, it is clear that the

new software testing paradigm is much more efficient in
finding defects in a software product development process.

(b) The timing in finding the defects

The traditional software testing methods can be
performed after coding, but it is too late; in comparison, the
new presented software testing paradigm can be used in the
entire software development processes, including the
requirement development process and the design process.

(c) The defect types that can be found

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 7, 2013

81

The traditional black-box method can be used to find
functional defects; the traditional structural white-box
method can be used to find some structural defects for the
Existing product no matter if it is the customer-required
product or not.

The presented new software testing paradigm can be used
to find functional defects, structural defects, logic defects,
and inconsistency defects.

Some functional defects cannot be found by the black-
box method, but can be found by the new software testing
paradigm as shown in Fig. 37.

Fig. 37 An application example of transparent-box testing: a
bug found even if the output is the same as what is expected
(this defect comes from that a “break” statement is missing, so
that the result “4” is produced through 2 times 2 rather than 2
plus 2)

(d) The graphical representation techniques for
displaying the test results

The test results obtained from the applications of most
traditional software testing methods and tools are shown in
textual formats or value tables. But the test results obtained
from the applications of the presented new software testing
paradigm is graphically shown in the system-level and in
the detailed source code level as shown in Fig. 38.

Fig. 38 An example of test coverage analysis result

obtained using the presented new software testing paradigm

(the untested branches and conditions are highlighted with
small black boxes)

(e) The capability to support automated traceability

It is only supported by the presented new software testing
paradigm.

V. CONCLUSION
This paper presented a new software testing paradigm based

on the Transparent-Box testing method combining structural
testing and functional testing together seamlessly with internal
logic connections and a capability to establish bi-directional
traceability among the related documents and test cases and
the source code, and can be used dynamically in the entire
software development processes from requirement
development down to maintenance to find out functional
defects, structural defects, and inconsistency defects.

Appendix 1: An example about how to realize

100% of MC/DC (Modified Condition/Decision
Coverage) test coverage (we call it J-Coverage
here) for a program unit
In this appendix, an example is used for illustrating the test
coverage measurement metrics using the NSE support
platform Panorama C/C++ for Windows.

With NSE unit testing and integration testing are combined
together through Bottom-up unit testing ordering without
designing and using stub units:

Here SUM_PRODUCT is a sample program which requests
the input of three integers: Low, High and Max. The integers

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 7, 2013

82

should not be negative, otherwise an error message will be
given. When SUM_PRODUCT receives three integers, it
outputs for each number k in the

The source code of SUM_PRO.cpp is listed below:

The Makefile of SUM_PRO.exe is listed below:

Note: if for Panorama C, the file name SUM_PRO.cpp must
be renamed by SUM_PRO.c.

A SUM_PRO.hsi file is generated from the Makefile of
SUM_PRO.exe and loaded into the Main Menu of Panorama .
Then, a .dbs file is created for SUM_PRO.exe. To capture the
dynamic test coverage data, SUM_PRO.exe is executed with
several groups of integers as listed below:

LOW HIGH MAX

2 8 0

10 20 12

10 1 11

2 8 -2

2 -2 8

-2 2 8

A series of J-Flow and J-Diagrams in OO-Diagrammer are
listed to show the changes of accumulated test coverage each
time when SUM_PRO.exe is executed.

Note: In this Appendix, the test coverage refers to the
Accumulated test coverage in order to show the result of all
the executions.

Before the execution of SUM_PRO.exe, the test coverage of
the code is zero. This is reflected in the bar graph and
diagrams below:

Figure A-1. Bar graph in OO-Diagrammer:

The test coverage data are all zero.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 7, 2013

83

Figure A-2. J-Diagram in OO-Diagrammer:

Accumulated test coverage: All the elements are untested and
highlighted.

To execute the sample program, type SUM_PRO.exe under
appropriate directory at prompt:

C: >\Func\SUM_PRO\sum_pro.exe
Enter positive integers LOW, HIGH, and MAX: 2 8 0

LOW = 2 HIGH = 8 MAX =0

The bold characters above are typed in at the prompts, while
the italic characters are displayed by the sample program

SUM_PRO.

Then check the Bar graph, J-Flow and J-Diagram in OO-
Diagrammer. Select the Accumulated test coverage on the
corresponding Options dialog box, then click OK. The test
coverage data are automatically updated:

Figure A-3. Bar graph in OO-Diagrammer:

After the first execution of sum_pro.exe, the test coverage
results are to be improved.

Figure A-4. J-Diagram in OO-Diagrammer:

After the first execution of sum_pro.exe.

Now, execute SUM_PRO.exe again. This time three integers
10, 20, and 12 are inputted. SUM_PRO.exe outputs, from 10
to 20, 11 groups of equations:

C: >\Func\SUM_PRO\sum_pro.exe
Enter positive integers LOW, HIGH, and MAX:10 20 12

LOW = 10 HIGH = 20 MAX =12

10 + 10 = 20 10 * 10 = 100
11 + 11 = 22 11 * 11 = 121
12 + 12 = 24 12 * 12 = 144
13 + 13 = 26 13 * 13 = 169
14 + 14 = 28 14 * 14 = 196
15 + 15 = 30 15 * 15 = 225
16 + 16 = 32 16 * 16 = 256
17 + 17 = 34 17 * 17 = 289

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 7, 2013

84

18 + 18 = 36 18 * 18 = 324
19 + 19 = 38 19 * 19 = 361
20 + 20 = 40 20 * 20 = 400

The bold characters above are typed in at the prompts, while
the italic characters are displayed by the sample program
SUM_PRO.exe.

Then check the Bar graph, J-Flow and J-Diagram in OO-
Diagrammer. Select the Accumulated Test Coverage Data on
the corresponding Options dialog box, then click OK. The test
coverage data on the diagrams are automatically updated:

Figure A-5. Bar graph in OO-Diagrammer:

The test coverage data have increased significantly.

Figure A-6. J-Diagram in OO-Diagrammer:

Accumulated Test Coverage: The number of unexecuted
elements highlighted has been greatly decresed compared to
the diagrams before.

Now, execute SUM_PRO.exe again to increase its test
coverage furthermore. This time integers 10, 1, 11 are
inputted.

C: >\Func\SUM_PRO\sum_pro.exe
Enter positive integers LOW, HIGH, and MAX:10 1 11

LOW = 10 HIGH = 1 MAX =11

The bold characters above are typed in at the prompts, while
the italic characters are displayed by the sample program
SUM_PRO.exe.

Since Low=10 > High=1, no equation is outputted this time.

Then check the Bar graph, J-Flow and J-Diagram in OO-
Diagrammer. Select the Accumulated Test Coverage on the

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 7, 2013

85

corresponding Options dialog box, then click OK. The test
coverage data are automatically updated:

Figure A-7. Bar graph in OO-Diagrammer:

Accumulated Test Coverage: Compared to Figure A-6, one
more branch and one more segment are tested. Consequently,
J-Coverage is increased by one too.

Accumulated test coverage: Compared to Figure A-6, one
more segment (branch) is tested.

Figure A-8. J-Diagram in OO-Diagrammer:

Accumulated Test Coverage: Compared to Figure A-6, one
more segment (branch) is tested.

Now, carefully observe the J-Flow or J-Diagram, you may
find out that the condition test coverage should be increased.
Since Condition True has reached 100% coverage, the
Condition False needs to be increased.

C: >\Func\SUM_PRO\sum_pro.exe
Enter positive integers LOW, HIGH, and MAX:2 8 -2

LOW = 2 HIGH = 8 MAX =-2

Error! The input data are incorrect!

The bold characters above are typed in at the prompts, while
the italic characters are displayed by the sample program
SUM_PRO.exe.

Since a negative integer is inputted, an error message is given
this time.

Then check the Bar graph, J-Flow and J-Diagram in OO-
Diagrammer. Select the Accumulated test coverage on the
corresponding Options dialog box, then click OK. The test
coverage data are automatically updated:

Figure A-9 Bar graph in OO-Diagrammer:

The accumulated test coverage of SC0, branch have reached
100%. J-Coverage is increased too.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 7, 2013

86

Figure A-10. J-Diagram in OO-Diagrammer:

Accumulated Test Coverage: only 2 conditions are untested.

To increase the coverage of Condition False, run
SUM_PRO.exe again and input another group of integers.
This time, integer High is negative.

C: >\Func\SUM_PRO\sum_pro.exe
Enter positive integers LOW, HIGH, and MAX:2 -2 8

LOW = 2 HIGH = -2 MAX =8

Error! The input data are incorrect!

The bold characters above are typed in at the prompts, while
the italic characters are displayed by the sample program
SUM_PRO.exe.

Since negative integer High is inputted, an error message is
given too.

Then check the Bar graph, J-Flow and J-Diagram in OO-
Diagrammer. Select the Accumulated test coverage in the
corresponding Options dialog box, then click OK. The test
coverage data are automatically updated:

Figure A-11. Bar graph in OO-Diagrammer:

J-Coverage has been increased.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 7, 2013

87

Figure A-12. J-Diagram in OO-Diagrammer:

Accumulated Test Coverage: only 1 False condition is
untested.

To cover all the conditions, run SUM_PRO.exe again and
input another group of data with negative Low integer.

C: >\Func\SUM_PRO\sum_pro.exe
Enter positive integers LOW, HIGH, and MAX:-2 2 8

LOW = -2 HIGH = 2 MAX =8

Error! The input data are incorrect!

The bold characters above are typed in at the prompts, while
the italic characters are displayed by the sample program
SUM_PRO.exe.

Since negative integer Low is inputted, an error message is
given too.

Then check the Bar graph, J-Flow and J-Diagram in OO-
Diagrammer. Select the Accumulated test coverage on the
corresponding Options dialog box, then click OK. All the
conditions should have been covered:

Figure A-13. Bar graph in OO-Diagrammer:

Accumulated test coverage: all the test coverage metrics have

been reached 100%.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 7, 2013

88

Figure A-14. J-Diagram in OO-Diagrammer:

Accumulated test coverage: The program sum_pro.exe is
completely tested.

From the example above, it is clearly shown how test coverage
data are displayed on J-Flows and J-Diagrams, and how the

result shown may help you to increase the coverage of your
program.

Similarly, other tools of Panorama C/C++, such as the
structure charts, software metrics diagrams, reports,
ActionPlus diagrams, etc., can also show the dynamic test data
vividly and help you successfully plan the further testing.

REFERENCES
[1] RUSLI ABDULLAH (2012), Towards Developing Software Testing As a

Service (Staas) Model in Cloud Computing: A Case of Collaborative
Knowledge Management System.

[2] Glenford J. Myers ,(2004) The Art of Software Testing, Second Edition,
John Wiley & Sons, Inc.

[3] Jay Xiong, Tutorial, A Complete Revolution in Software Engineering

Based on Complexity Science, WORLDCOMP'09, Las Vegas, July 13-17,
2009.

[4] JOAN F. CHIPIA LOBO, GLORIA MOUSALLI-KAYAT, and
FRANCKLIN RIVAS (2011), Methodologies development and software
quality metrics in educational applications.

[5] Palmer, J.D. “Traceability.” Software Requirements Engineering. Richard
H. Thayer and Merlin Dorfman, eds. New York: IEEE Computer Society
Press, 1997.

[6] Andrew Kannenberg, Garmin International
Dr. Hossein Saiedian, The University of Kansas, Why Software

Requirements Traceability Remains a Challenge, CrossTalk, Jul/Aug
2009 Issue.

[7] RTCA/DO-178B. Software Considerations in Airborne Systems and
Equipment Certification, RTCA, Washington D.C., USA, 1992.

[8] Yuhei Otani, Hiroaki Hashiura, and Komiya Seiichi (2011),
A Software Testing Tool with the Facilities to Restore the
State at Program Execution of a Program under Test. [9]
DONGHONG LI 1, SHUANGHUI YI (2011), Security Functional
Testing of Distributed software,.

 [9] Alistair Cockburn, Using Both Incremental and Iterative Development,

CrossTalk, May 2008

Jay Xiong , the President of NSEsoftware, LLC, USA
and the President of Aisai Shanghai, Ltd. He has
brought his 20 years of experience in CAD/EDA to
software engineering automation with his innovative
techniques for nonlinear software engineering,
graphical representation, software testing, quality
assurance, and maintenance. Trained at Zhong Shan

University and in integrated circuit design at the Chinese Academy of
Science, Jay Xiong invented the “Shortest Path Routing Algorithm Using
Wave Diffraction” at the Hitachi Research Center in Japan. This major
technical achievement brought him to the University of California, Berkeley
as the foremost Chinese scientist in the Computer Aided Integrated Circuit
Layout Project jointly sponsored by The National Science Foundation of the
United States and the Chinese Academy of Science. He founded Advanced
Software Automation, Inc. (1987) and International Software Automation,
Inc. (1992) in Silicon Valley. He is the designer of Hindsight and Panorama
products (“Panorama : developed by International Software Automation, Inc.
encompasses a complete set of tools for object-oriented software development
including tools that assists test case design and test planning.” (ROGER S.
PRESSMAN, "Software Engineering: A Practitioner’s Approach"). Being
invited, he offered a tutorial to WORLDCOMP’09 with the title “Complete
Revolution in Software Engineering Based on Complexity Science”

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 7, 2013

89

http://www.rtca.org/

(http://www.world-academy-of-
science.org/worldcomp09/ws/tutorials/tutorial_xiong).He is the author of the
book, "New Software Engineering Paradigm Based on Complexity Science",
published in 2011 by Springer in US
(http://www.springer.com/physics/complexity/book/978-1-4419-7325-2).

Lin Li , the CEO of Aisai Shanghai Ltd, China, She is
an inventor of several inventions. She is the co-
author of the following papers published in the 1st
International Conference on Innovative Computing
and Information Processing (INCIP '13) to be held at
Rhodes Island, Greece, July 16-19, 2013
(http://naun.org/wseas/cms.action?id=4593):
(1) Nonlinear and Quantitative Software Engineering
Method Based on Complexity Science

(2) Automated Generation of Software Documents Consistent with and
Traceable to and from Source Code
(3) Transparent-Box Method Combining Structural and Functional Software
Testing together Seamlessly

:

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 7, 2013

90

http://www.world-academy-of-science.org/worldcomp09/ws/tutorials/tutorial_xiong
http://www.world-academy-of-science.org/worldcomp09/ws/tutorials/tutorial_xiong
http://www.springer.com/physics/complexity/book/978-1-4419-7325-2
http://naun.org/wseas/cms.action?id=4593

