

Abstract—Software engineering based on agile methods is

different than plan driven in many aspects. Based on our practical

experience in agile software engineering we concluded that one of

the most important success factors is predicting future change

requests. This article emphasizes importance of the future change

requests frequency as a very important analysis factor for the later

solution selection and software maintenance. It describes a positive

experience related to the agile software engineering of the software

system for the data import in an environment with frequent change

requests, through a case study. The main reason for the success is

that the estimation about future changes is taken into account during

the analysis. Data import is based on the web service for the XML

upload and Oracle database objects for importing, storing and

checking data. Meta-model based design is applied to gain

flexibility and meet customer’s frequent change requests. A change

request is implemented through changing the meta-model

parameters which is fast and reliable. There were many change

requests through the life of this software system and all of them

where low cost changes. Initial higher cost to develop the software

that is easy changeable is reimbursed later during the software

evolution. Also, changes are implemented fast, with a minimum

effort, with the high quality and with the high customer satisfaction.

Keywords—Agile software engineering, database, meta-model,

software change management.

I. INTRODUCTION

GILE software engineering is different than plan driven

in many aspects. Fig. 1 shows a simple comparison of

agile and plan driven software engineering [1]. If we are

building a bridge from point A to point B then it is normal

that we know exactly the starting and ending point of the

bridge – plan driven engineering. If we imagine that we are

building the same bridge using agile methods then our ending

point is not exactly known and we correct our estimation

about the ending point in each iteration. For that reason, final

bridge that is built using agile method is not straight – it is

waved.

Based on our practical experience in agile software

Samir Omanovic is with the Faculty of Electrical Engineering in Sarajevo -

Department for Computer Science and Informatics, Zmaja od Bosne bb, Kampus

Univerziteta, 71000 Sarajevo, Bosnia and Herzegovina (e-mail:

samir.omanovic@etf.unsa.ba).

Emir Buza is with the Faculty of Electrical Engineering in Sarajevo -

Department for Computer Science and Informatics, Zmaja od Bosne bb, Kampus

Univerziteta, 71000 Sarajevo, Bosnia and Herzegovina (e-mail:

emir.buza@etf.unsa.ba).

engineering we concluded that one of the most important

success factors is predicting future change requests – making

good prediction, not only of point B, but also of point C (see

fig.1.). Point C represents a state of the software after some

period of the maintenance.

There are many interesting works related to agile methods

that are focused on specific methods (for example

[2][3][4][5]). This article gives general conclusions related to

all agile methods.

Fig. 1 Agile vs plan driven software engineering [1]

Agile maintenance [6] and dynamic business environment

often requires highly flexible solutions. It is very important to

Predicting Future Change Requests in Agile

Software Engineering

Samir Omanovic, Emir Buza

A

A BN

Agile SE

...

B3

B2

B1

Iterations

1 2 3 ... N

Start End

Start End

Changes of

customer

business needs

A B
Planned SE

BN

C

Agile

maintenance

Iterations Start
Current

state
Agile SE

Good prediction of point C in point A

decreases development and

maintenance time.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 7, 2013

91

estimate how often change requests will be issued in the

future – during the software maintenance [7], and have that

in mind when choosing a solution from the domain of

solutions [8]. Most important is to have in mind systems

theory [9] and observe the software system in its environment

(see fig.2). Forces from the environment (business

environment in this case) represented as change requests

modify software system. If these forces are well predicted then

software system design will include many parameters in

points of change and enable adaptation of the software system

with minimum effort. Software system must have some level

of flexibility to support agile maintenance and satisfy business

needs in efficient way.

Fig. 2 Software system in its environment [1]

This article emphasizes importance of the future change

requests frequency factor [10] as a very important analysis

factor for the later solution selection and software

maintenance. It describes a positive experience related to the

software engineering of the software system for the data

import in an environment with frequent change requests,

through a case study. The main reason for the success is that

the estimation about future changes is taken into account

during the analysis phase [8][11].

II. PROBLEM FORMULATION

In this project, the customer expressed a need to have a

data import system which will integrate the point of sale

(POS System) system and the central production system (Core

System). It was requested that the data are transferred using

XML [12] files, defined by the XSD schema [12] and Java

based web service [13] for upload of files.

A. Problem domain

At the start of each project we are faced with the project

definition phase [8] and as the first step we have to identify

the problem domain [8].

Requested process is described as: The POS System calls

the web service and passes the XML file with new data that

should be placed in the Core System. Data Import System

temporary stores data and validates them according to the

XSD schema. Data that passed validation are placed in the

Core System. The rest of data stays in a temporary storage

until they are corrected to become valid, or deleted by the user

that controls the Data Import System.

B. Problem analysis

Without having a wider perspective and based on the given

process description, this looks like a pretty simple problem for

which it is easy to make a solution (for example – create a

Java based web service [13] that will perform import,

validation and storing data in the database [14]).

But, having the experience in the maintenance of the Core

System for this customer, it was estimated that future change

requests frequency can become a problem. Core System is

constantly growing. POS System must follow that. Finally,

the Data Import System must be enough flexible to adopt and

follow the growth of the Core System and the POS System.

Software evolution [11] is very intensive.

This is all related to costs [11] of implementing change

requests in the Data Import System. It is not logical, nor

acceptable to the customer that cost of a change on an

auxiliary system – the Data Import System, is higher than the

cost of the correspondent changes on the Core System and the

POS System.

C. Solution selection

Based on the quick analysis of the problem, it was

concluded that the change in data transfer like adding a new

column or adding a new XSD schema must be as simple as

changing some easily accessible parameters with minimum

interventions on the source code. If there is a need to change

the code then is better that the change is done on some simple

stored procedure than on the web service application.

Solutions like having most of the processing on the web

service or relaying mostly on the database XML support [15]

are rejected as inadequate regarding the estimated change

requests frequency.

It is decided that most of the processing should be on the

database, and that tables and stored procedures should be

used to create the meta-model [16] (see also metadata [17])

that describes the model of the process, necessary

transformations and validations and which will give the

adequate flexibility related to future high change requests

frequency. This is very similar concept to the data staging

area in the data warehousing [17], which is “a storage area

and a set of processes commonly referred to as extract-

transformation-load (ETL)” [17]. In this case we can name

this as extract-validate-load.

To gain the stated goal, the model of the process should be

highly parameterized and those parameters should be

changeable easily.

Software

system

Area of software system

flexibility – ability to

adapt to new business

requirements

Business

environment

CR1

CR2

CRk

Points of change

FCR1

Change requests

Frequent change

requests

FCRg

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 7, 2013

92

D. Solution constraints

Constraints related to the solution where caused by existing

systems. Core System worked on a database Oracle 8.1.7. [18]

and the Data Import System also had to work on the same

database. POS System was based on Java and used Apache

Tomcat [19], so it is decided that the Data Import System’s

web service must also be based on Java and work on Apache

Tomcat. Additionally, for better performances in working

with large files, the web service should use Message

Transmission Optimization Mechanism (MTOM) [20] and

Apache Axis2/Java [21].

III. SYSTEM DESCRIPTION

Fig.3. shows the overall picture of the main idea. The main

concern was how to achieve low cost and fast changes. Aspect

of change management [11] was very important.

Fig. 3 Data Import System (initial idea) [10]

Fig.4 shows the main process – Data Import System

activity diagram [22]. At the start, the POS System calls the

web service and passes two parameters (step 1). First

parameter is the XML file and the second parameter is the

XSD schema name. Web service accepts the XML file and

stores it in the shared database folder (step 2). After that, the

web service calls the database procedure for import and

passes two parameters – the XML file name and the XSD

schema name. Based on the XSD schema name, meta-model

parameters are taken and the import procedure is configured

(step 3). Import procedure validates data against XSD schema

rules (stored as parameters of the meta-model) and then

dynamically creates INSERT statements based on mappings

between XML tags and columns/tables in the Import schema

(also stored as parameters of the meta-model; step 4). Created

statements are executed and tracing information is added into

log tables (step 5). It is possible that some statement fails

during execution, because it breaks some constraint on

temporary tables. Information about these errors is also

placed into log tables. After importing all data from the XML

file, the database procedure that validates data against

business rules is called and all valid data are transferred in

the Core System. Invalid data are left in temporary tables and

they are handled by the user that monitors the process and

corrects or deletes invalid data (process A on the fig.3).

Fig. 4 Data Import System activity diagram [10]

Most of the rules related to columns format and sizes are in

the XSD schema. In this system they are placed in the meta-

model tables. Besides that, the meta-model contains

mappings of XML tags and columns/tables in the import

schema. Those mappings enable dynamic INSERT statement

creation.

Procedure that moves data from temporary tables to the

Core System checks business rules. For example, the Core

System has strict evidence of issued documents and if the

Change management Customer that sets

change requests

Data import system

developer that

implements change

requests.

Data import system

user monitors process

and corrects or delete

invalid data.

Data import

system

Web server

Axis2 1.3

Apache-tomcat-

6.0.18

Database server

Oracle 8.1.7

POS web client

Core

schema

Tables

Import schema

Meta-

model

DBFOLDER

(XML files)

DB

proced. and

functions

Web

service

(MTOM)
Temp.

tables

Upload (XML file)

1.

2.

3.

4.

5.

6.

7.

B A

 Change

requests
Frequent requests

Short change cycle

(low cost, fast

response to

customer).

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 7, 2013

93

document arrived from the POS is not registered in the strict

evidence it will not pass to the Core System. User can place

that document number in the strict evidence on the Core

System and after that the document will move to the Core

System. Document in this context represents the data from

several tables. For example, an invoice has a header in one

table and items in the other table.

Beside business rules, this procedure detects duplicate

documents (documents that are already imported in the Core

System) based on the content received in the XML file. This

functionality is important when POS sends same document

multiple times. Documents from the received XML file are

validated (validation of data types, data sizes, etc.) and placed

in temporary tables. Procedure then checks is there records in

temporary tables which constitute one document that is

already transferred to the Core System (based on primary

keys). Duplicates are automatically deleted from temporary

tables and information is recorded in log tables.

POS System can send incomplete documents. This

procedure implements higher abstraction validation and if

document has no all necessary parts, contained in several

tables, then it is not moved to the Core System.

User has an interface for viewing the invalid data (data that

didn’t pass different validations). That interface provides

possibility to change some of invalid data and to start the

database procedure for moving data from temporary tables to

the Core System. With that possibility, the user can make the

most correction on the problematic data. Also, there is a

possibility to view log tables content and identify cause of

problems (import problems or move problems). Dynamically

created import statements whose execution failed are stored in

log for the future analysis.

IV. META-MODEL DESCRIPTION

Meta-model designed for this system describes data formats

and business rules for the process of importing XML files.

Any change in the meta-model automatically reflects on the

process of importing XML files. This represents a set of

highly parameterized points of change in software which is in

line with the high flexibility of the software system. That

enables change implementation with the minimum effort,

minimum risk and high customer satisfaction.

The heart of the meta-model includes tables named

XML_COLUMNS and XML_TABLES.

Information stored in XML_COLUMNS table is used for

dynamic creation of the INSERT statement using database

function named CREATE_INSERT_STATEMENT. Columns

TABLENAME and COLUMNNAME define in which temporary

table are stored data and column XMLTAGNAME defines from

which XML attribute to read data. This is the mapping of

columns and XML attributes. Adding, modifying or deleting

records in the XML_COLUMNS table automatically changes

the process of importing XML files.

Information stored in XML_TABLES table enables

mapping of temporary tables and XML tags. Also it

represents the structure of one document – invoice for

example, which should be checked (missing parts, wrong

code from the codebook, etc.)

This enables two level of validation. The first level is

during the reading of the XML file when it is possible to use

information from the table XML_COLUMNS to check data

types, data sizes, etc. This is analogous to the XSD schema

validation. The second level of validation is during inserting

the statement created by the function

CREATE_INSERT_STATEMENT, where the insert can fail if

do not pass the database validation on inserting into

temporary tables. These validations are related to data

relations and document context. All insert statements that do

not pass the second level of the validation are stored in the

IMPORT_ERRORS table with the complete insert statement

and error description for the later analysis.

Table XML_TABLES has a column FILENAME which is

used for defining different import processes. For example, one

process is importing XML files with invoices and the other

process is importing XML files with contracts. Each client

application in these processes (in his call to the web services)

passes his type as parameter – InvoiceClient or

ContractsClient for example. This column is also used

as a parameter for differencing imports of the same

documents in different contexts. For example, invoices for

persons (InvoicePerson) and invoices for companies

(InvoiceCompany) are passing different validation,

although they are placed in the same target tables in the Core

System.

Stored procedures like IMPORT_XML, MOVE_DATA,

DELETE_DOC_FROM_TMP and others are using information

stored in XML_COLUMNS, XML_TABLES and other tables to

dynamically modify their behavior according to current

settings.

V. SOFTWARE SYSTEM EVOLUTION

System evolution is tracked through time and there were

many changes on the Data Import System and they can be

categorized as:

A. Adding a new table(s) or a column(s) in the existing

XSD schema.

B. Changing column(s) properties in the existing XSD

schema.

C. Changing business rules related to moving data from

temporary tables to the Core System.

D. Adding a new XSD schema in transfer.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 7, 2013

94

E. Other change requests.

A. Adding new table(s) or column(s) in the existing XSD

schema

This type of change is most frequent. Meta-model enables

easy implementation since adding new mappings in the meta-

model will enable that the import procedure can import the

XML file with additional column(s) and/or table(s). Also it is

necessary to alter existing temporary tables with new columns

and/or add new temporary tables that are mapped. This is

small change that requires small effort. It is very fast and

costs low. That brings customer’s high satisfaction.

POS System uses the XSD schema for the validation of

XML files before upload. Data Import System do not use the

XSD schema file since elements contained in the XSD

schema file are placed in the database (in the meta-model

parameters). When a new column is added in the POS

System then XSD file and the POS application are changed.

Same column in the Core System is added by altering the

table and changing the Core applications. In the Data Import

System this change is implemented by adding a single row in

the XML_COLUMNS table and by altering a single

temporary table. No change on the upload service or any

other part of the system is required. In the example on fig.5, a

new column named newField is added. Let us assume that

the corresponding table column (we added it by altering the

table) is named NEW_FIELD in the table TMP_TABLE1.

Fig. 5 Example part of the XSD schema after the change of type A

[10]

Then we add a new record to the XML_COLUMNS table

using the following statement (or editing the table using some

tool which is more convenient):

INSERT INTO XML_COLUMNS (

TABLENAME, COLUMNNAME

, XMLTAGNAME, XMLTAGTYPE

, …)

VALUES (

'TMP_TABLE1', 'NEW_FIELD'

, 'newField', 'string'

, …)

This change will cause that the function

CREATE_INSERT_STATEMENT will automatically include

this new column in the insert statement creation. Procedures

for importing XML and moving data from temporary tables to

the Core System will also use this new column.

Change described in this example can be done in a few

minutes and does not require change in the web service

source code or restart of the application or any other

complicated intervention.

B. Changing column(s) properties in the existing XSD

schema

These are less frequent change requests than the type A.

They can be easily implemented in two ways:

1) by changing XSD schema stored in the meta-model, or

2) by altering temporary tables and changing column

properties.

In both ways, data that do not pass XSD schema validation

will be stopped before inserting into temporary tables. Change

requires small effort. It is very fast and costs low.

C. Changing business rules

These are approximately same frequent change requests

like the type B. They are implemented by altering column

properties in temporary tables or by altering stored procedure

for moving data from temporary tables to the Core System.

Change requires small effort. It is very fast and costs low.

D. Adding new XSD schema in transfer

This type of change requests is rare. Meta-model enables

easy implementation – adding new mappings in the meta-

model will enable that import procedure can import XML file

with additional column(s) and/or table(s). Also it is necessary

to create temporary tables for a new schema, change database

procedure that validates and moves data from temporary

tables to the Core System. Change requires moderate effort,

but still is fast and costs low.

E. Other change requests

More than 90% of change requests were of types A, B, C or

D. During more than 3 years of the life of the system and 107

change requests, there were only one change request that

involved change on the web service. This change request was

to enable data import in 3 different databases (instances).

This change added one more parameter in the call to the web

service – database ID.

This change request can be treated like a normal change

request that is not for the fast implementation.

Sometimes, the customer requests that some small

automation related to data corrections is implemented. There

were only few change requests of this type. For example, it is

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 7, 2013

95

necessary to change the value of some data under the

predefined condition. These changes require small effort.

They are very fast and they cost low. One of the ways to

implement such a request is to add/modify trigger on the

corresponding temporary tables.

Few times, customer needed export of some data from the

Core System in the XML file, based on the XSD schema used

for import. For that purpose, database stored procedure for

exporting from the Core System to the XML is created as a

reverse process of importing and is using the same meta-

model mappings of columns/tables and XML tags (see

appendix 1 - example function get_col_select). If

get_col_select function is executed during export

process with some parameters – for example:

SELECT getcolselect (

 'VALUTA'

 , 'currencyCodes'

 , 0

 , 'Codebooks'

 , 1)

 FROM DUAL;

Then it will dynamically form SELECT statement like:

SELECT '<currencyCodes '

 || REPLACE (

 REPLACE (

 REPLACE (

 REPLACE (

 'currencyCodeN="'

 || REPLACE (

 valuta

 , '"'

 , '&' || 'quot;'

)

 || '" name="'

 || REPLACE (

 naziv

 , '"'

 , '&' || 'quot;'

)

 || '" currencyCodeA="'

 || REPLACE (

 kratica

 , '"'

 , '&' || 'quot;'

)

 || '" measure="'

 || REPLACE (

 mjera

 , '"'

 , '&' || 'quot;'

)

 || '" ', '&', '&' || 'amp;'

), '''', '&' || 'apos;'

), '<', '&' || 'lt;'

), '>', '&' || 'gt;'

) || '/>'

 FROM valuta

Execution of the created statement will generate part of the

XML structure that is incorporated in the final XML file. In

this example it will generate part of XML like:

<currencyCodes measure="1"

 currencyCodeA="AUD"

 name="AUSTRALIJSKI DOLAR"

 currencyCodeN="36"/>

<currencyCodes measure="100"

 currencyCodeA="ATS"

 name="ŠILING"

 currencyCodeN="40"/>

...

Any change in the table will automatically reflect behavior

of this function. This functionality is now in use more than it

was initially planned, for exporting codebooks and documents

from the Core System for use by the POS System.

VI. ADVANTAGES OF THE SELECTED SOLUTION

Selected solution showed many advantages in the agile

maintenance process during more than 3 years of life of the

system. Customer is highly satisfied with the provided

solution, in all aspects, especially with the fast response to

change requests.

Comparison of effort needed for the change requests on the

Core System or the POS System on one side and effort needed

for the correspondent change requests on the Data Import

System, on the other side, shows us that the Data Import

System software evolution requires much less effort.

Generally the most important advantage of the Data Import

System is simple software evolution, but there are some other

advantages like:

1) It is possible to import XML files without using the

web service (off-line import). At start, this was an

undocumented feature [23], but later it is used to

import XML files in the situations when the POS

System failed to communicate to the web service. It is

also used for testing purposes.

2) It is not dependant on Oracle database version. There

was a database upgrade from Oracle 8.1.7 to Oracle

10g and it was not necessary to change the system,

since most of database objects are custom-made.

3) User that monitors the Data Import System has the

possibility to correct most of the problems with import.

If he spots some pattern in data errors he can request

introducing some automation related to data

correction.

4) High expandability – it is now in use for data exchange

with additional external systems like Web Shop e-

commerce and Bank cross-selling [24], where data

exchange is performed in the same way like with the

POS System.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 7, 2013

96

VII. CONCLUSION

Usually, when selecting the solution for the given problem,

the future change requests frequency factor is not treated

as an important factor. Actually, in most analyses is not taken

into account at all. This success story shows that this factor is

very important, especially in the agile software development.

Taking this factor into account will probably lead to the

solution that initially costs more (using more process meta-

modeling, selecting solution for the class of problems instead

for the one problem instance, engagement of experienced

software engineers, etc.), but long-term costs will be evidently

decreased. The change implementation time is sometimes

more important for the business than the change

implementation costs.

All described advantages are related to the customer

benefit, but there are also advantages for the software

engineering company. Simplified software maintenance

requires less skilled developers. There is less points of

change in software which reduces possibility to have a bug

in a release. Software testing is simplified.

Flexible solution supports both – the agile maintenance

and fast business response. Agile concept is a result of a

necessity to have fast business response – to be agile in

business. That means that software solutions for business

should have high flexibility, especially in the context when

maintenance is based on agile methods.

APPENDIX

A. Appendix 1 - example function get_col_select

CREATE OR REPLACE FUNCTION get_col_select (

 v_tablename IN VARCHAR2,

 v_tagname IN VARCHAR2,

 v_tab_num IN INT,

 v_filename IN VARCHAR2,

 v_close IN INT

 -- 1 Close tag, 0 Leave tag opened

)

 RETURN VARCHAR2

AS

 CURSOR column_cur

 IS

 SELECT columnname

 , xmltagname

 , xmltagtype

 FROM xml_columns

 WHERE UPPER (tablename)

 = UPPER (v_tablename)

 AND UPPER (file_name)

 = UPPER (v_filename)

 AND toexport = 'Y'

 ORDER BY orderby;

 v_select column_cur%ROWTYPE;

 ret VARCHAR2 (4000);

 ret1 VARCHAR2 (4000);

 tabs VARCHAR2 (20);

 cnt NUMBER;

BEGIN

 -- Uses the word XSELECT instead of SELECT

 -- to avoid leather wrong replacements.

 -- Before use of the statement XSELECT is

 -- replaced to SELECT.

 tabs :=

 CHR (9)

 || CHR (9)

 || CHR (9)

 || CHR (9)

 || CHR (9)

 || CHR (9)

 || CHR (9)

 || CHR (9)

 || CHR (9);

 ret1 :=

 'XSELECT '''

|| SUBSTR (tabs, 1, v_tab_num)

|| '<'

|| v_tagname

 || ' ';

 ret := '';

 OPEN column_cur;

 LOOP

 FETCH column_cur

 INTO v_select;

 EXIT WHEN column_cur%NOTFOUND;

-- If column type is DATE

 IF (v_select.xmltagtype = 'D')

 THEN

 ret :=

 ret

 || v_select.xmltagname

 || '="'''

 || '||REPLACE(TO_CHAR('

 || v_select.columnname

 || ',''YYYY-MM-DD''),'

 || '''"'',''&''||'''

 || 'quot;'')||''" ';

 -- If column type is DATETIME

 ELSIF (v_select.xmltagtype = 'T')

 THEN

 ret :=

 ret

 || v_select.xmltagname

 || '="'''

 || '||REPLACE(REPLACE(TO_CHAR('

 || v_select.columnname

 || ',''YYYY-MM-DD HH24:MI:SS''),'

 || ''' '',''T''),''"'',''&''||'''

 || 'quot;'')||''" ';

 -- If column type is FLOAT

 ELSIF (v_select.xmltagtype = 'F')

 THEN

 ret :=

 ret

 || v_select.xmltagname

 || '="'''

 || '||REPLACE(numbertostring('

 || v_select.columnname

 || '),''"'',''&''||'''

 || 'quot;'')||''" ';

 -- Column is treated as string

 ELSE

 ret :=

 ret

 || v_select.xmltagname

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 7, 2013

97

 || '="'''

 || '||REPLACE('

 || v_select.columnname

 || ',''"'',''&''||'''

 || 'quot;'')||''" ';

 END IF;

 END LOOP;

 -- Replace special characters

 ret :=

 ret1

 || '''||REPLACE(REPLACE(REPLACE('

 || 'REPLACE('''

 || ret

 || ''',''&'',''&''||'''

 || 'amp;''),'''''''',''&''||'''

 || 'apos;''),''<'',''&''||'''

 || 'lt;''),''>'',''&''||'''

 || 'gt;'')||'' ';

 IF (v_close = 1)

 THEN

 ret :=

 SUBSTR (ret, 1, LENGTH (ret) - 2)

|| '/>'' FROM '

 || TRIM (v_tablename);

 ELSIF (v_close = 0)

 THEN

 ret :=

 SUBSTR (ret, 1, LENGTH (ret) - 2)

|| '>'' FROM '

 || TRIM (v_tablename);

 ELSE

 ret := '';

 END IF;

 RETURN SUBSTR (ret, 1, 4000);

END;

REFERENCES

[1] S.Omanovic, “Advanced Software Engineering” - course lecture notes,

unpublished.

[2] E. Corona, F. E. Pani, “An Investigation of Approaches to Set Up a

Kanban Board, and of Tools to Manage it” in Proc. 11th WSEAS

Conference on Telecommunications and Informatics (TELE-INFO '12),

Saint Malo & Mont Sinat-Michel, 2012, pp. 53-58.

[3] V. Mahnic, “Introducing Scrum into the Development of a News Portal” in

Proc. 12th WSEAS International Conference on Applied Informatics and

Communications (AIC '12), Istanbul, 2012, pp. 109-114.

[4] K. Fertalj, N. Hlupić, and D. Kalpić, “Permeation of RUP and XP on

Small and Middle-Size Projects”, in Proc. 5th WSEAS International

Conference on Telecommunications and Informatics (TELE-INFO '06),

Istanbul, 2006, pp. 98-104.

[5] V. Mahnic, N. Zabkar, “Measurement repository for Scrum-based software

development process”, in Proc. 2nd WSEAS Int. Conf on COMPUTER

ENGINEERING and APPLICATIONS (CEA'08), Acapulco, 2008, pp. 23-

28.

[6] M. Pronschinske. (2011, October 14). You can’t be Agile in Maintenance?

[Online]. Available: http://agile.dzone.com/news/you-can%E2%80%99t-

be-agile-maintenance

[7] T. Hung VO. (2007, July 8). Software Maintenance [Online]. Available:

http://cnx.org/content/m14719/1.1/

[8] B. Bruegge and A. H. Dutoit, Object-Oriented Software Engineering

(2nd ed.). Pearson Prentice Hall, 2004.

[9] A.Habul, S.Omanovic, Teorija sistema i informacija, Sarajevo,

Ekonomski fakultet, 2009.

[10] S.Omanovic, E.Buza, “Importance of Future Change Requests Frequency

Analysis Factor for Solution Selection and Software Maintenance” in Proc.

7th WSEAS European Computing Conference (ECC '13), Dubrovnik,

2013, pp. 246-251.

[11] I. Sommerville, Software Engineering (9th ed.). Addison-Wesley, 2010.

[12] w3schools.com. (2013). W3Schools Online Web Tutorials [Online].

Available: http://www.w3schools.com

[13] L. Sandakith. (2007, June 29). Eclipse WTP Tutorials - Creating Bottom

Up Web Service via Apache Axis2 [Online]. Available:

http://www.eclipse.org/webtools/community/tutorials/BottomUpAxis2Web

Service/bu_tutorial.html

[14] Rose India. (2012, September 20). Insert XML file data to database

[Online]. Available:

http://www.roseindia.net/tutorial/java/core/insertXMLFileDataToDatabase

.html

[15] Oracle. (2000, Septembar). Oracle8i Application Developer’s Guide –

XML [Online]. Available:

http://docs.oracle.com/cd/A87860_01/doc/appdev.817/a86030.pdf

[16] J. Mylopoulos (2004), Metamodeling [Online], Available:

http://www.cs.toronto.edu/~jm/2507S/Notes04/Meta.pdf

[17] R.Kimball, M. Ross, The Data Warehouse Toolkit - The Complete Guide

to Dimensional Modeling (2nd ed.). Wiley Computer Publishing, 2002.

[18] Oracle. Oracle8i 8.1.7 Documentation [Online]. Available:

http://www.oracle.com/technetwork/documentation/oracle8i-085806.html

[19] Apache Software Foundation. Apache Tomcat [Online]. Available:

http://tomcat.apache.org/

[20] The W3C website. SOAP Message Transmission Optimization Mechanism

[Online]. Available: http://www.w3.org/TR/soap12-mtom/

[21] Apache Software Foundation. Apache Axis2/Java website [Online].

Available: http://axis.apache.org/axis2/java/core/

[22] D. Donko and S. Omanovic, Objektno orijentirana analiza i dizajn

primjenom UML notacije. Sarajevo, Elektrotehnicki fakultet, 2009.

[23] Wikipedia. Undocumented feature [Online]. Available:

http://en.wikipedia.org/wiki/Undocumented_feature

[24] Wikipedia. Cross-selling [Online]. Available:

http://en.wikipedia.org/wiki/Cross-selling

S.Omanovic is born in Bosnia and Herzegovina,

Visoko on the 1th of February in 1975. He received

Dr.Sc. degree in 2011, Mr.Sc. degree in 2006, and

graduate engineer degree in 2000, all in Computing

and Informatics, from the Sarajevo University –

Faculty of Electrical Engineering in Sarajevo,

Bosnia and Herzegovina.

From 2000 to 2010 he has worked in several

software engineering companies on different

positions – software developer, team leader, senior

software architect, and department leader. In

parallel, from 2003 to 2010 he has worked part-

time on the Faculty of Electrical Engineering in Sarajevo as assistant and senior

assistant. From 2010 he works full-time on the Faculty of Electrical Engineering

in Sarajevo and is now assistant professor and lecturer on master courses

Advanced Software Engineering, and Pattern Recognition and Image Processing.

Most of his faculty research is in the field of artificial intelligence, and most of

his industry expertise is in the field of software engineering.

 Dr. Omanovic’s current research interests are in areas of pattern recognition,

computer vision, image processing and advanced software engineering.

E.Buza is born in Bosnia and Herzegovina, Visoko

on the 10th of September in 1977. He received

Mr.Sc. degree in 2009, and graduate engineer

degree in 2002, all in Computing and Informatics,

from the Sarajevo University – Faculty of Electrical

Engineering in Sarajevo, Bosnia and Herzegovina.

From 2003 to 2007 he has worked in software

engineering company as senior software architect.

In parallel, from 2003 to 2007 he has worked part-

time on the Faculty of Electrical Engineering in

Sarajevo as assistant. From 2007 he works full-time

on the Faculty of Electrical Engineering in Sarajevo and is now senior assistant

and assistant lecturer on courses Fundamental of Database Systems and Advance

Database Systems. Most of his faculty research is in the field of data mining and

bioinformatics, and most of his industry expertise is in the field of software

engineering.

Mr Sc. Buza’s current work is mostly on his doctoral thesis that includes

research related to bioinformatics, data mining, artificial intelligence and

software engineering.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 7, 2013

98

http://agile.dzone.com/news/you-can%E2%80%99t-be-agile-maintenance
http://agile.dzone.com/news/you-can%E2%80%99t-be-agile-maintenance
http://cnx.org/content/m14719/1.1/
http://www.w3schools.com/
http://www.eclipse.org/webtools/community/tutorials/BottomUpAxis2WebService/bu_tutorial.html
http://www.eclipse.org/webtools/community/tutorials/BottomUpAxis2WebService/bu_tutorial.html
http://www.roseindia.net/tutorial/java/core/insertXMLFileDataToDatabase.html
http://www.roseindia.net/tutorial/java/core/insertXMLFileDataToDatabase.html
http://docs.oracle.com/cd/A87860_01/doc/appdev.817/a86030.pdf
http://www.cs.toronto.edu/~jm/2507S/Notes04/Meta.pdf
http://www.oracle.com/technetwork/documentation/oracle8i-085806.html
http://tomcat.apache.org/
http://www.w3.org/TR/soap12-mtom/
http://axis.apache.org/axis2/java/core/
http://en.wikipedia.org/wiki/Undocumented_feature
http://en.wikipedia.org/wiki/Cross-selling

