
 

 

  
Abstract— Search results clustering, which clusters returned 

documents, is the most preferred approach for re-organizing search 
results. This paper deals with text clustering problem, namely many 
parameters influence the inner operation of the well-known clustering 
algorithms, but an average user is not able to set these parameters 
accordingly. In this paper a novel approach is proposed, which solves 
this problem by an iterative method based on the user feedback. In 
our solution some questions are generated for the user in order to 
offer the most appropriate result selected from the possible ones. We 
have developed a complex clustering algorithm, which automatically 
optimizes the parameter values based on the user answers. Our 
method calculates some possible results, which are probably one of 
the best results from the user’s point of view. The main purpose of 
applying the user feedback is to give possibility to interact the search 
results and to achieve a better topic understanding about the given 
query. 
 

Keywords— query, similarity, text clustering, user interaction, 
web search results  

I. INTRODUCTION 
Search results clustering, which clusters returned 

documents, is the most preferred approach for re-organizing 
search results. By finding natural groupings of the documents 
in the result, document clustering methods discovers hidden 
relationships between documents. Groups of documents 
consist a hierarchy which gives relationships between 
subtopics. By an abstract query the users can focus on a 
general topic and take more knowledge about the topic of 
his/her interest by drilling down to a specific cluster. Many 
commercial search engines succeeded to compose a better 
presentation method for search results by clustering them. 
Search results clustering is known to provide useful 
information to users without much domain knowledge [23].  

Search result clustering provides an intuitive overview 
toward information contained in the search result. Document 
clustering engines have been summarizing documents in a 
cluster or extracting phrases shared by them to label the 
clusters. Commercial clustering engines including Vivisimo 
(www.vivisimo.com), WebClust (www.webclust.com), Fluster 
(www.funnelback.com) provides friendlier user experience by 
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clustering the search results. By applying document clustering 
methods to web snippets returned by search engines, clustering 
engines gave a better topic understanding about the given 
query. 

Time is an important dimension of any information space 
and can be very useful in information retrieval and in 
particular clustering and exploration of search results. In the 
paper [22] an add-on has been presented to traditional 
information retrieval applications in which various temporal 
information associated with documents has been exploited to 
present and cluster documents along timelines. Temporal 
information expressed in the form of, e.g., date and time 
tokens or temporal references, appear in documents as part of 
the textual context or metadata. It has been shown how such a 
time-based document clustering can be achieved when 
temporal expressions in documents are readily available. A 
cluster algorithm provides great flexibility and allows users to 
explore clusters of search result documents that are organized 
along well-defined timelines, supporting different levels of 
time granularity. The use of time and timelines for clustering 
and browsing nicely fits exploratory search systems that go 
beyond simply returning some documents or answer in 
response to a query. 

The primary purpose of the development of a new algorithm 
was to find a novel solution for the common problem [1] of the 
(i) most well-known clustering algorithms (k-means [2], 
variation of k-means algorithm [3], SOM [4], hierarchical 
algorithm [5]) and (ii) new approaches (genetic algorithm [6], 
frequent itemsets [7][17], comparison of clustering algorithms 
[8]) in the literature. A lot of parameters influence the inner 
operation of the algorithms, and an average user is not able to 
set these parameters accordingly since he does not know how 
they should be changed to carry out the best results. In our 
approach this issue can be solved iteratively, in which the 
users can see the clusters (created by the clustering method) 
after each modification step, but this may take a long time. 
Hence, the aim is to optimize the parameters of the clustering 
algorithm for the user without looking at the results of each 
iterative step. The goal of our work is that the user does not 
have to deal with parameter tuning. 

Text clustering is most commonly treated as a fully 
automated task without user feedback. However, some 
researchers [19] have explored mixed-initiative clustering 
methods which allow a user to interact with and advise the 
clustering algorithm. This mixed-initiative approach is 
especially attractive for text clustering tasks where the user is 
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trying to organize a corpus of documents into clusters for some 
particular purpose.  

Document clustering engines will gain more accuracy by 
taking user feedback information into account, along with 
document features. Moreover, user feedback information can 
be used to measure similarity between web documents that 
have dynamically changing contents. 

Semi-supervised clustering [21] is between the extremes of 
totally unsupervised clustering and totally supervised learning. 
The main goal of semi-supervised clustering is to allow a user 
to control the clustering process. The secondary goal of semi-
supervised clustering is to give the human a way to play and 
interact with data to better understanding. 

Existing methods for semi-supervised clustering fall into 
two general approaches [20] that we call search-based and 
similarity-based methods. In search-based approaches, the 
clustering algorithm itself is modified so that user-provided 
labels or constraints are used to bias the search for an 
appropriate partitioning. In similarity-based approaches, an 
existing clustering algorithm that uses a similarity metric is 
employed; however, the similarity metric is first trained to 
satisfy the labels or constraints in the supervised data. 

In the work [23] a search results clustering engine has been 
implemented for general objects. The proposed clustering 
method uses users’ feedback information to compute similarity 
between objects. This clustering engine provides search result 
clustering for various search tasks retrieving items, or objects 
whose contents do not contain descriptive text. 

But our method focuses only text documents. In this paper 
our goal is to allow a user to steer the clustering process with 
minimum time and human effort. The paper deals with 
document clustering problem where documents can be 
different kinds of text: web pages or simple text files. The task 
consists of two phases: text pre-processing and unsupervised 
learning. In text pre-processing phase we used a general 
procedure can be found in the literature [13][14], and for 
clustering we worked out a new algorithm instead of using 
available ones. 

In this paper we present a complex clustering algorithm, 
which automatically optimizes the parameter values based on 
the user decisions. The parameters are estimated and our 
method calculates some possible results, which are probably 
one of the best results from the user’s point of view. The 
software generates some questions for the user in order to offer 
the most appropriate result selected from the possible results 
based on the answers. The main purpose of applying the user 
feedback is to achieve a significant improvement in the 
accuracy of the clustering.  

II. CLUSTERING ALGORITHM 

A. Text pre-processing for clustering 
Before clustering a text pre-processing and indexing phase 

should be executed. The pre-processing flow consists of five 
steps from text segmentation to stemming: 

• segmentation: this step deals with separation of the 
continuous text into structural segments; 

• dividing to sentences: this step divides these segments 
into sentences; 

• dividing to tokens: this step divides the sentences into 
character series so called tokens; 

• stop words filtering: this step is an important in the 
speech style classification since a lot of common 
words are the same in all speech styles; 

• the last step is the stemming, i.e. reduction of words to 
their roots. 

Excluding numbers, certain characters or sequences of 
characters can be done before the indexing of input documents 
starts. Furthermore, stop words, i.e. terms that are to be 
excluded from the indexing can be defined. Typically, a 
default list of English stop words includes “the”, “a”, “of”, 
“since”, and many other words that are used in the respective 
language very frequently, but communicate very little unique 
information about the contents of the document. 

Stemming is an important pre-processing step before the 
indexing of input documents. The term “stemming” refers to 
the reduction of words to their roots so that, for example, 
different grammatical forms or declinations of verbs are 
identified and indexed as the same word. At the end of the pre-
processing there is a cleaned text with stemmed words 
available for each original document, and the list of all these 
stemmed words (so called terms) in the set of documents will 
be a vocabulary.  

We used vector space model for data representation [9]. In 
this model every document is represented by a feature vector 
of the terms (words) that appear in the document collection. 
Let D = (D1, D2, …, Dn) denote the collection of documents 
where n is the number of documents can be found in the 
collection. The feature vector should include proper features to 
represent the object. Assignment of weights to documents may 
improve the clustering solution [10]. The weights (usually term 
frequencies) of the terms are also contained in each feature 
vector. Term weighting is a process of calculating the degree 
of relationship (or association) between a term and a 
document. An advanced and widely used term weighting 
scheme is the TF–IDF (Term Frequency – Inverse Document 
Frequency), which can be defined in the following way [9]: 

 











⋅=⋅=

j
ijjijij n

ntfidftfw log  (1) 

 
where tfij gives the term frequency (i.e. denotes the ratio of 

the term j in document Di), and nj is the number of documents 
in which the term j appears. We have implemented and 
compared other weighting schemes – investigated in the 
literature [15][16] – as well, but in this paper we have focused 
the core of the clustering algorithm. We have not used 
dimension reduction techniques, like in Tang’s paper [18]. 
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B. The core of the clustering algorithm 

The input of the clustering algorithm is a document set (D) 
where the number of documents (n) must be at least three. The 
task is to cluster the text documents given by the user based on 
their topics at a threshold t. This threshold is a similarity value, 
and the similarity between all pairs of documents must be 
greater than or equal to it. Let us denote C the set of clusters 
during the algorithm, which is empty at the beginning of the 
procedure. Let I be the set of document indexes, i.e. I = {1, 2, 
…, n}. 

Furthermore, we have a similarity function s(i, j) = sij that 
gives the similarity value (falling in the interval 
[0 , 1]) between the documents di and dj. Accordingly, the 
similarity matrix contains the similarity values of all document 
pairs. The similarity between two documents is computed with 
one of several similarity measures based on two corresponding 
feature vectors, e.g. cosine measure, Jaccard measure and 
Euclidean distance [9][11]. 
 

The core of the algorithm consists of six steps: 
 

1. Determination of the index of the reference item  
The reference item plays a role in the order of the 
placement of documents into different groups (clusters). 
Let us denote csj the sum of the column j, that is 
 

∑
=

=
n

i
ijj scs

1

          nj ...,,2,1=   (2) 

 
and the index of the reference item is r = argmax{csj}. 
 
2. Creating a new cluster 
The new cluster (c1) will contain the reference item, and 
the set of clusters will be extended by this new cluster: 
 
c1 := {r}  and  C := C ∪ {c1}  (3) 
 
3. Construction of a list from document indexes 
Let us construct a list L from the document indexes, which 
contains all indexes except the index of the reference item.   

 
4. Ordering of the list 
Let us sort the document indexes of L in decreasing order 
based on the similarity value between the given document 
and reference item. The ordered list will be: l1, l2, … l|L|−1. 
After the ordering (if the number of items in the list is 
greater than one) s(r, li) > s(r, li+1) is true for all i where i = 
1, 2, …, |L|−1. 

 
5. Calculation of the average similarity 
In this step the algorithm calculates the average similarity 
for all items in the list: 

 

∑
=

=
||

1 ||
),(jc

k j

jki
ij c
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a  (4) 

 
where aij is the average similarity of document i in the 
cluster j, cjk is the document k of the cluster j, and j runs 
from 1 to the number of clusters. Let M be the maximal 
value of aij (M = maxj{aij}) and m = argmaxj{aij}. If M > 
t, i.e. the largest average similarity is greater than the 
similarity threshold, then the document li will get to the 
cluster cm otherwise the algorithm will create a new cluster 
c|C|+1, and the document li will be placed in this new 
cluster. Furthermore, the algorithm leaves the loop, the 
examined items will be removed from the list, and the 
reference item will be changed to r = li. 

 
Formally: 
if tM > then  }{: imm lcc ∪=  
otherwise }{:1|| iC lc =+  and 1||: +∪= CcCC , 

LL =: \ }{ il  
where i denotes the index of the currently examined 
document. 

 
6. End of the loop 
Repeat steps 4 and 5 until all items will be placed. The 
cluster set C will be the result of the algorithm at the 
threshold t. 

C. Clustering with different similarity thresholds 

Based on the clustering core described above a system was 
implemented where the end user can reach the functionality of 
the clustering by a graphical user interface (GUI). On the GUI 
the user can set the similarity threshold and can execute the 
clustering algorithm by the given value, or can choose the 
automatic clustering procedure. In case of automatic clustering 
the core algorithm runs at different thresholds from zero to 
hundred percent in little steps. The step unit should be a small 
value, but in order to avoid large calculation efforts later, this 
unit could not be too little; in our implementation the step unit 
was one percent. In this case the results of the clustering will 
be R = {R1, R2, …, R100} where each Ri represents the 
generated clusters at the end of the core algorithm and R is the 
result set. After that the purpose is to find the most appropriate 
result Ri for the end user.   

D. Definition and calculation of the concentration 
measurement 

To select the most adequate result the algorithm calculates a 
concentration measurement for each result Ri, then estimates 
an interval between zero and hundred percent for the end user, 
in which the best results can be found with high probability. 
Then the algorithm orders the results based on their 
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concentration measurements (the highest probability results 
will be found at the beginning of the list). 

Let iγ  be the concentration measurement of the result Ri: 
 

∑
=

> −=
|}{|max

1

2
}0{ )(|| ijj

k

R

k
kn

i
i nkI

n
Rγ  (5) 

 
where      1}0{ =>knI   if 0>kn   otherwise  0}0{ =>knI , Rij 

is the cluster j of the result Ri, nk is the number of clusters 
containing k documents, and n is the number of items. This 
measurement helps to find the optimal result, so the results 
with a lot of small clusters or a very few large clusters are not 
preferred. At the compromised solution when we get small 
concentration measurement value, both of the requirements 
will be almost satisfactory.  

 
Table 1 shows an example for the calculation of the 

concentration measurement. It can be seen that the smallest 
value is zero. In other cases where a lot of small clusters or a 
very few large clusters can be found, we get higher 
concentration measurement values. Our tests presented in the 
next section confirmed that the heuristic concentration 
measurement formula is an excellent indicator for showing the 
goodness of the clustering output.  

 
Table 1. Calculation of the concentration measurement 

(example) 
 

ID Sizes of the clusters Concentration measurement 

1 1, 1, 1, 1 9)41(
4
4 2 =−  

2 1, 3 2])13()11[(
4
2 22 =−+−  

3 1, 1, 2 5.1])12()21[(
4
3 22 =−+−  

4 2, 2 0)22(
4
2 2 =−  

5 4 25.2)14(
4
1 2 =−  

E. Proper interval estimation 

The goal of the interval estimation is to find the interval (so 
called proper interval) in the range of the threshold t (between 
0 and 1), in which the most appropriate results can be found 
with high probability. Let nd be the number of items located 
below the diagonal of the similarity matrix, and ad is the 
average of these items. The ad is calculated by the following 
equation: 

 

∑
<∀

=
ij

ij
d

d s
n

a 1
 (6) 

 
where nd = n (n − 1) / 2. Let nt be the number of items where sij 
> ad is true, and nb the number of items where 
sij ≤ ad can be satisfied. Furthermore, the average of the 
difference between ad and the items greater than ad (less than 
or equal to ad) is denoted by at (and ab, respectively) as can be 
seen in the next equations: 
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Based on these notations the algorithm determines the upper 

and lower limits of the proper interval in the range of the 
threshold t by the following way: 

 }(100,100min{ tdt acai ⋅+=  (9) 
 

 })(100,1max{ bdb acai ⋅−=  (10) 
 
where c is a constant (in our experience c = 0.2 was an 

appropriate value). We considered some different aspects for 
the determination of the value c. If the parameter is well-
chosen, (i) the minimal number of questions is generated in the 
user interaction phase and (ii) the best results will be fallen in 
the proper interval with a very high probability. 

F. Selection of the potential results 

The results R1, R2, …, R100 and the proper interval with 
limits (ib and it where ib ≤ it) are calculated as described above, 
thus the most appropriate results can be found among the 
results Rib, …, Rit. The next task of the algorithm is the 
filtering where the redundancy is reduced: from the same 
results only one result is remained, others are eliminated. In 
the next step the algorithm orders these filtered results in 
increasing order based on the concentration measurements (γ1 
≤ γ2 ≤ … ≤ γq), and we get the potential results P1, P2, …, Pq 
where q denotes the number of potential results. 

G. User interaction 

The algorithm examines the potential results P1, P2, …, Pq 
produced at the end of the previous phase. The software takes 
questions, and based on the answers it can choose the best 
potential result.  
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In order to explore the differences, the algorithm creates a 
list – for each potential result – from the item pairs, which are 
in the same cluster. Since each potential result is unique, 
therefore there is at least one difference between two potential 
results. The program finds these differences, then generates 
questions for the users. The form of the questions can be seen 
in Table 2 where [x, y] represents that these items can be found 
in the same cluster while x],[y indicates the opposite one. 
 

Table 2. Questions generated by the algorithm (example) 
 

Order Question 
1 [2,6] and 3],[4 ? 
2 [3,4] ? 
3 [1,2] ? 
4 1],[2 ? 

 
The user should answer these questions in the given order. 

In the case when the user’s answer is yes, the program will not 
take further questions, and the potential result related to the 
corresponding question will be the final output for the end 
user. 

 

III. TESTING OF THE IMPLEMENTED CLUSTERING ALGORITHM 

A. Test bed 

In order to verify the effectiveness of our algorithm we 
performed many tests based on an online thematic article 
database (articledashboard.com), which provides one label for 
each article category. More precisely, we made 50 unique test 
sets each of them composed of 100 documents. Within a test 
set the number of different article categories was chosen from 
the interval 6 and 14. At the same time, the article categories 
and the number of documents related to a particular category 
were determined randomly.  

Since the clustering algorithm can give heterogeneous 
clusters as result, a cluster can contain documents from 
different article categories (henceforward the set of documents 
related to the same category in a cluster is called subgroup). 
Consequently, the first issue was to carry out a mechanism that 
can determine the category of a cluster. It is not easy, because 
there can be some subgroups within a cluster and we have to 
choose the most appropriate one, which describes the topic of 
the cluster. To solve this problem, our method assigns a 
priority value to each subgroup as follows (i and j represent 
the identifiers of the cluster and the given subgroup, 
respectively): 

 









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max||10
1

||
1||

cgc
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where t is a set of documents related to the given subgroup, 

c is a set composed of the documents found in the examined 

cluster, g is a set of documents containing all of the articles 
related to the given subgroup by the original labelling and cmax 
denotes the size of the largest cluster created by the clustering 
algorithm. The constant 10cmax is used to refine the ranking of 
possible categories in case of a particular cluster if the method 
assigns the same priority value to two or more subgroups. It 
can be clearly seen that a priority value depends on the 
subgroup size in proportion to the cluster size and the number 
of documents related to the same category. A higher priority 
value increases the probability of assigning the given subgroup 
to the cluster. 

To compute the accuracy of the clustering the method 
identifies the subgroups of each cluster and calculates their 
priority values, then creates a list of subgroups for each cluster 
sorted in descending order based on the priority values. After 
that constructs a new list of the first elements of these lists and 
arranges it in descending order. Thus, we have a list, which 
contains the “highest priority – subgroup” pairs for each 
cluster. The method scans this list item by item and in every 
step it checks whether the category of the examined cluster is 
determined. If it is not determined the currently examined 
category identified by the subgroup is assigned to this cluster, 
otherwise the method continues the scanning without any 
modification. After scanning is finished new lists are 
constructed (as described above), which contain the second, 
third, etc. elements of the lists related to the clusters. Finally, 
the method gives a list of “cluster – category” pairs, and the 
accuracy can be calculated in the following way: 

 

||
||1

D
dr e−=  (12) 

 
where de is the set of misclassified documents. In other 

words, the classification is right if the given document is 
placed in the cluster, which has the same category. 

B. Results  

Figure 1 shows the accuracy of the clustering for each test 
set. In this interpretation accuracy means the accuracy of the 
result selected by the user. It can be observed in the figure that 
the average accuracy was near to 98%, and the result was 
perfect (100% accuracy) for almost one third of tests. 

Figure 2 indicates the highest, lowest and average accuracy 
values related to the potential results. As can be seen in this 
figure the average accuracy falls in the interval 82% and 100% 
while the mean value is 95%. Thus, we can conclude that the 
algorithm produced a relatively high accuracy for all of the 
potential results.  

Figure 3 depicts the accuracy values in a pie chart split into 
intervals. In this figure we can see that the clustering algorithm 
produced at least 96% accuracy for more than 80% of test sets, 
and the lowest accuracy value was greater than 86%. 
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Figure 1. Accuracy of the clustering algorithm 
 
 
 

 
 

Figure 2. Average accuracy of the clustering algorithm 
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Figure 3. Distribution of the accuracy 
 
Figure 4 demonstrates the difference between the accuracy 

of the result chosen by the user and the average accuracy of the 
potential results. The horizontal axis represents the identifier 
of the test set, and the vertical axis gives the increase of 
accuracy. The figure clearly indicates that the user feedback 
has unambiguously positive effects on the accuracy. We can 
see that 7% is the highest increase and there are only two cases 
where an infinitesimal decrease can be observed. 

 

 
 

Figure 2. Impact of user interaction on the accuracy 
 

IV. CONCLUSION 
The output of text clustering can be used in solving other 

problems like abstracting [12]. In case of automatic clustering 
algorithms can be found in the literature, a lot of parameters 
influence the inner operation of the methods and the accuracy 
as well. In contrast, manual clustering when users perform the 
grouping procedure is excellent for the accuracy (accuracy can 
reach the maximum), but it takes a long time, needs many 
human resources, and it is almost impossible to carry out for 
large corpus. Automatic and manual approaches have some 
advantages, but half-automatic concept such as our solution 
has benefits from both of them. The largest challenge in our 
method is to determine the potential results for users, and to 
find out the questions based on these results. If the potential 

results are weak (accuracy is low), then the user will not get 
right solution. We developed a complex algorithm, which can 
produce very high accuracy for the potential results.  

Test results showed that the average accuracy was near to 
98%, and the result was perfect (100% accuracy) for almost 
one third of tests. However, the accuracy of our algorithm is 
excellent, we analyzed its reliability as well. We calculated the 
highest, lowest and average accuracy values related to the 
potential results. The average accuracy fell in the interval 82% 
and 100% while the mean value was 95%. Thus, we can 
conclude that the algorithm produced a relatively high 
accuracy for all of the potential results. Furthermore, we 
investigated the difference between the accuracy of the result 
chosen by the user and the average accuracy of the potential 
results. The user feedback had unambiguously positive effects 
on the accuracy with a maximum increase of 7%. 
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