

Abstract— Search results clustering, which clusters returned

documents, is the most preferred approach for re-organizing search
results. This paper deals with text clustering problem, namely many
parameters influence the inner operation of the well-known clustering
algorithms, but an average user is not able to set these parameters
accordingly. In this paper a novel approach is proposed, which solves
this problem by an iterative method based on the user feedback. In
our solution some questions are generated for the user in order to
offer the most appropriate result selected from the possible ones. We
have developed a complex clustering algorithm, which automatically
optimizes the parameter values based on the user answers. Our
method calculates some possible results, which are probably one of
the best results from the user’s point of view. The main purpose of
applying the user feedback is to give possibility to interact the search
results and to achieve a better topic understanding about the given
query.

Keywords— query, similarity, text clustering, user interaction,
web search results

I. INTRODUCTION
Search results clustering, which clusters returned

documents, is the most preferred approach for re-organizing
search results. By finding natural groupings of the documents
in the result, document clustering methods discovers hidden
relationships between documents. Groups of documents
consist a hierarchy which gives relationships between
subtopics. By an abstract query the users can focus on a
general topic and take more knowledge about the topic of
his/her interest by drilling down to a specific cluster. Many
commercial search engines succeeded to compose a better
presentation method for search results by clustering them.
Search results clustering is known to provide useful
information to users without much domain knowledge [23].

Search result clustering provides an intuitive overview
toward information contained in the search result. Document
clustering engines have been summarizing documents in a
cluster or extracting phrases shared by them to label the
clusters. Commercial clustering engines including Vivisimo
(www.vivisimo.com), WebClust (www.webclust.com), Fluster
(www.funnelback.com) provides friendlier user experience by

The publication was supported by the TÁMOP-4.2.2.C-11/1/KONV-2012-

0001 project. The project has been supported by the European Union, co-
financed by the European Social Fund.

G. Szűcs is with Inter-University Centre for Telecommunications and
Informatics H-4028 Kassai út 26., Debrecen, Hungary and the Department of
Telecommunications and Media Informatics, BME, Hungary (e-mail:
szucs@tmit.bme.hu).

Z. Móczár is PhD student with Department of Telecommunications and
Media Informatics, BME, Hungary.

clustering the search results. By applying document clustering
methods to web snippets returned by search engines, clustering
engines gave a better topic understanding about the given
query.

Time is an important dimension of any information space
and can be very useful in information retrieval and in
particular clustering and exploration of search results. In the
paper [22] an add-on has been presented to traditional
information retrieval applications in which various temporal
information associated with documents has been exploited to
present and cluster documents along timelines. Temporal
information expressed in the form of, e.g., date and time
tokens or temporal references, appear in documents as part of
the textual context or metadata. It has been shown how such a
time-based document clustering can be achieved when
temporal expressions in documents are readily available. A
cluster algorithm provides great flexibility and allows users to
explore clusters of search result documents that are organized
along well-defined timelines, supporting different levels of
time granularity. The use of time and timelines for clustering
and browsing nicely fits exploratory search systems that go
beyond simply returning some documents or answer in
response to a query.

The primary purpose of the development of a new algorithm
was to find a novel solution for the common problem [1] of the
(i) most well-known clustering algorithms (k-means [2],
variation of k-means algorithm [3], SOM [4], hierarchical
algorithm [5]) and (ii) new approaches (genetic algorithm [6],
frequent itemsets [7][17], comparison of clustering algorithms
[8]) in the literature. A lot of parameters influence the inner
operation of the algorithms, and an average user is not able to
set these parameters accordingly since he does not know how
they should be changed to carry out the best results. In our
approach this issue can be solved iteratively, in which the
users can see the clusters (created by the clustering method)
after each modification step, but this may take a long time.
Hence, the aim is to optimize the parameters of the clustering
algorithm for the user without looking at the results of each
iterative step. The goal of our work is that the user does not
have to deal with parameter tuning.

Text clustering is most commonly treated as a fully
automated task without user feedback. However, some
researchers [19] have explored mixed-initiative clustering
methods which allow a user to interact with and advise the
clustering algorithm. This mixed-initiative approach is
especially attractive for text clustering tasks where the user is

Iterative Text Clustering of Search Results
Gábor Szűcs and Zoltán Móczár

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 7, 2013

127

trying to organize a corpus of documents into clusters for some
particular purpose.

Document clustering engines will gain more accuracy by
taking user feedback information into account, along with
document features. Moreover, user feedback information can
be used to measure similarity between web documents that
have dynamically changing contents.

Semi-supervised clustering [21] is between the extremes of
totally unsupervised clustering and totally supervised learning.
The main goal of semi-supervised clustering is to allow a user
to control the clustering process. The secondary goal of semi-
supervised clustering is to give the human a way to play and
interact with data to better understanding.

Existing methods for semi-supervised clustering fall into
two general approaches [20] that we call search-based and
similarity-based methods. In search-based approaches, the
clustering algorithm itself is modified so that user-provided
labels or constraints are used to bias the search for an
appropriate partitioning. In similarity-based approaches, an
existing clustering algorithm that uses a similarity metric is
employed; however, the similarity metric is first trained to
satisfy the labels or constraints in the supervised data.

In the work [23] a search results clustering engine has been
implemented for general objects. The proposed clustering
method uses users’ feedback information to compute similarity
between objects. This clustering engine provides search result
clustering for various search tasks retrieving items, or objects
whose contents do not contain descriptive text.

But our method focuses only text documents. In this paper
our goal is to allow a user to steer the clustering process with
minimum time and human effort. The paper deals with
document clustering problem where documents can be
different kinds of text: web pages or simple text files. The task
consists of two phases: text pre-processing and unsupervised
learning. In text pre-processing phase we used a general
procedure can be found in the literature [13][14], and for
clustering we worked out a new algorithm instead of using
available ones.

In this paper we present a complex clustering algorithm,
which automatically optimizes the parameter values based on
the user decisions. The parameters are estimated and our
method calculates some possible results, which are probably
one of the best results from the user’s point of view. The
software generates some questions for the user in order to offer
the most appropriate result selected from the possible results
based on the answers. The main purpose of applying the user
feedback is to achieve a significant improvement in the
accuracy of the clustering.

II. CLUSTERING ALGORITHM

A. Text pre-processing for clustering
Before clustering a text pre-processing and indexing phase

should be executed. The pre-processing flow consists of five
steps from text segmentation to stemming:

• segmentation: this step deals with separation of the
continuous text into structural segments;

• dividing to sentences: this step divides these segments
into sentences;

• dividing to tokens: this step divides the sentences into
character series so called tokens;

• stop words filtering: this step is an important in the
speech style classification since a lot of common
words are the same in all speech styles;

• the last step is the stemming, i.e. reduction of words to
their roots.

Excluding numbers, certain characters or sequences of
characters can be done before the indexing of input documents
starts. Furthermore, stop words, i.e. terms that are to be
excluded from the indexing can be defined. Typically, a
default list of English stop words includes “the”, “a”, “of”,
“since”, and many other words that are used in the respective
language very frequently, but communicate very little unique
information about the contents of the document.

Stemming is an important pre-processing step before the
indexing of input documents. The term “stemming” refers to
the reduction of words to their roots so that, for example,
different grammatical forms or declinations of verbs are
identified and indexed as the same word. At the end of the pre-
processing there is a cleaned text with stemmed words
available for each original document, and the list of all these
stemmed words (so called terms) in the set of documents will
be a vocabulary.

We used vector space model for data representation [9]. In
this model every document is represented by a feature vector
of the terms (words) that appear in the document collection.
Let D = (D1, D2, …, Dn) denote the collection of documents
where n is the number of documents can be found in the
collection. The feature vector should include proper features to
represent the object. Assignment of weights to documents may
improve the clustering solution [10]. The weights (usually term
frequencies) of the terms are also contained in each feature
vector. Term weighting is a process of calculating the degree
of relationship (or association) between a term and a
document. An advanced and widely used term weighting
scheme is the TF–IDF (Term Frequency – Inverse Document
Frequency), which can be defined in the following way [9]:











⋅=⋅=

j
ijjijij n

ntfidftfw log (1)

where tfij gives the term frequency (i.e. denotes the ratio of

the term j in document Di), and nj is the number of documents
in which the term j appears. We have implemented and
compared other weighting schemes – investigated in the
literature [15][16] – as well, but in this paper we have focused
the core of the clustering algorithm. We have not used
dimension reduction techniques, like in Tang’s paper [18].

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 7, 2013

128

B. The core of the clustering algorithm

The input of the clustering algorithm is a document set (D)
where the number of documents (n) must be at least three. The
task is to cluster the text documents given by the user based on
their topics at a threshold t. This threshold is a similarity value,
and the similarity between all pairs of documents must be
greater than or equal to it. Let us denote C the set of clusters
during the algorithm, which is empty at the beginning of the
procedure. Let I be the set of document indexes, i.e. I = {1, 2,
…, n}.

Furthermore, we have a similarity function s(i, j) = sij that
gives the similarity value (falling in the interval
[0 , 1]) between the documents di and dj. Accordingly, the
similarity matrix contains the similarity values of all document
pairs. The similarity between two documents is computed with
one of several similarity measures based on two corresponding
feature vectors, e.g. cosine measure, Jaccard measure and
Euclidean distance [9][11].

The core of the algorithm consists of six steps:

1. Determination of the index of the reference item
The reference item plays a role in the order of the
placement of documents into different groups (clusters).
Let us denote csj the sum of the column j, that is

∑
=

=
n

i
ijj scs

1

 nj ...,,2,1= (2)

and the index of the reference item is r = argmax{csj}.

2. Creating a new cluster
The new cluster (c1) will contain the reference item, and
the set of clusters will be extended by this new cluster:

c1 := {r} and C := C ∪ {c1} (3)

3. Construction of a list from document indexes
Let us construct a list L from the document indexes, which
contains all indexes except the index of the reference item.

4. Ordering of the list
Let us sort the document indexes of L in decreasing order
based on the similarity value between the given document
and reference item. The ordered list will be: l1, l2, … l|L|−1.
After the ordering (if the number of items in the list is
greater than one) s(r, li) > s(r, li+1) is true for all i where i =
1, 2, …, |L|−1.

5. Calculation of the average similarity
In this step the algorithm calculates the average similarity
for all items in the list:

∑
=

=
||

1 ||
),(jc

k j

jki
ij c

cls
a (4)

where aij is the average similarity of document i in the
cluster j, cjk is the document k of the cluster j, and j runs
from 1 to the number of clusters. Let M be the maximal
value of aij (M = maxj{aij}) and m = argmaxj{aij}. If M >
t, i.e. the largest average similarity is greater than the
similarity threshold, then the document li will get to the
cluster cm otherwise the algorithm will create a new cluster
c|C|+1, and the document li will be placed in this new
cluster. Furthermore, the algorithm leaves the loop, the
examined items will be removed from the list, and the
reference item will be changed to r = li.

Formally:
if tM > then }{: imm lcc ∪=
otherwise }{:1|| iC lc =+ and 1||: +∪= CcCC ,

LL =: \ }{ il
where i denotes the index of the currently examined
document.

6. End of the loop
Repeat steps 4 and 5 until all items will be placed. The
cluster set C will be the result of the algorithm at the
threshold t.

C. Clustering with different similarity thresholds

Based on the clustering core described above a system was
implemented where the end user can reach the functionality of
the clustering by a graphical user interface (GUI). On the GUI
the user can set the similarity threshold and can execute the
clustering algorithm by the given value, or can choose the
automatic clustering procedure. In case of automatic clustering
the core algorithm runs at different thresholds from zero to
hundred percent in little steps. The step unit should be a small
value, but in order to avoid large calculation efforts later, this
unit could not be too little; in our implementation the step unit
was one percent. In this case the results of the clustering will
be R = {R1, R2, …, R100} where each Ri represents the
generated clusters at the end of the core algorithm and R is the
result set. After that the purpose is to find the most appropriate
result Ri for the end user.

D. Definition and calculation of the concentration
measurement

To select the most adequate result the algorithm calculates a
concentration measurement for each result Ri, then estimates
an interval between zero and hundred percent for the end user,
in which the best results can be found with high probability.
Then the algorithm orders the results based on their

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 7, 2013

129

concentration measurements (the highest probability results
will be found at the beginning of the list).

Let iγ be the concentration measurement of the result Ri:

∑
=

> −=
|}{|max

1

2
}0{)(|| ijj

k

R

k
kn

i
i nkI

n
Rγ (5)

where 1}0{ =>knI if 0>kn otherwise 0}0{ =>knI , Rij

is the cluster j of the result Ri, nk is the number of clusters
containing k documents, and n is the number of items. This
measurement helps to find the optimal result, so the results
with a lot of small clusters or a very few large clusters are not
preferred. At the compromised solution when we get small
concentration measurement value, both of the requirements
will be almost satisfactory.

Table 1 shows an example for the calculation of the

concentration measurement. It can be seen that the smallest
value is zero. In other cases where a lot of small clusters or a
very few large clusters can be found, we get higher
concentration measurement values. Our tests presented in the
next section confirmed that the heuristic concentration
measurement formula is an excellent indicator for showing the
goodness of the clustering output.

Table 1. Calculation of the concentration measurement

(example)

ID Sizes of the clusters Concentration measurement

1 1, 1, 1, 1 9)41(
4
4 2 =−

2 1, 3 2])13()11[(
4
2 22 =−+−

3 1, 1, 2 5.1])12()21[(
4
3 22 =−+−

4 2, 2 0)22(
4
2 2 =−

5 4 25.2)14(
4
1 2 =−

E. Proper interval estimation

The goal of the interval estimation is to find the interval (so
called proper interval) in the range of the threshold t (between
0 and 1), in which the most appropriate results can be found
with high probability. Let nd be the number of items located
below the diagonal of the similarity matrix, and ad is the
average of these items. The ad is calculated by the following
equation:

∑
<∀

=
ij

ij
d

d s
n

a 1
 (6)

where nd = n (n − 1) / 2. Let nt be the number of items where sij
> ad is true, and nb the number of items where
sij ≤ ad can be satisfied. Furthermore, the average of the
difference between ad and the items greater than ad (less than
or equal to ad) is denoted by at (and ab, respectively) as can be
seen in the next equations:

∑
>∀∀

−=
dij asji

ijd
t

t sa
n

a
:

||1
 (7)

∑
≤∀∀

−=
dij asji

ijd
b

b sa
n

a
:

||1
 (8)

Based on these notations the algorithm determines the upper

and lower limits of the proper interval in the range of the
threshold t by the following way:

 }(100,100min{ tdt acai ⋅+= (9)

 })(100,1max{ bdb acai ⋅−= (10)

where c is a constant (in our experience c = 0.2 was an

appropriate value). We considered some different aspects for
the determination of the value c. If the parameter is well-
chosen, (i) the minimal number of questions is generated in the
user interaction phase and (ii) the best results will be fallen in
the proper interval with a very high probability.

F. Selection of the potential results

The results R1, R2, …, R100 and the proper interval with
limits (ib and it where ib ≤ it) are calculated as described above,
thus the most appropriate results can be found among the
results Rib, …, Rit. The next task of the algorithm is the
filtering where the redundancy is reduced: from the same
results only one result is remained, others are eliminated. In
the next step the algorithm orders these filtered results in
increasing order based on the concentration measurements (γ1
≤ γ2 ≤ … ≤ γq), and we get the potential results P1, P2, …, Pq
where q denotes the number of potential results.

G. User interaction

The algorithm examines the potential results P1, P2, …, Pq
produced at the end of the previous phase. The software takes
questions, and based on the answers it can choose the best
potential result.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 7, 2013

130

In order to explore the differences, the algorithm creates a
list – for each potential result – from the item pairs, which are
in the same cluster. Since each potential result is unique,
therefore there is at least one difference between two potential
results. The program finds these differences, then generates
questions for the users. The form of the questions can be seen
in Table 2 where [x, y] represents that these items can be found
in the same cluster while x],[y indicates the opposite one.

Table 2. Questions generated by the algorithm (example)

Order Question
1 [2,6] and 3],[4 ?
2 [3,4] ?
3 [1,2] ?
4 1],[2 ?

The user should answer these questions in the given order.

In the case when the user’s answer is yes, the program will not
take further questions, and the potential result related to the
corresponding question will be the final output for the end
user.

III. TESTING OF THE IMPLEMENTED CLUSTERING ALGORITHM

A. Test bed

In order to verify the effectiveness of our algorithm we
performed many tests based on an online thematic article
database (articledashboard.com), which provides one label for
each article category. More precisely, we made 50 unique test
sets each of them composed of 100 documents. Within a test
set the number of different article categories was chosen from
the interval 6 and 14. At the same time, the article categories
and the number of documents related to a particular category
were determined randomly.

Since the clustering algorithm can give heterogeneous
clusters as result, a cluster can contain documents from
different article categories (henceforward the set of documents
related to the same category in a cluster is called subgroup).
Consequently, the first issue was to carry out a mechanism that
can determine the category of a cluster. It is not easy, because
there can be some subgroups within a cluster and we have to
choose the most appropriate one, which describes the topic of
the cluster. To solve this problem, our method assigns a
priority value to each subgroup as follows (i and j represent
the identifiers of the cluster and the given subgroup,
respectively):









+=

max||10
1

||
1||

cgc
tpij (11)

where t is a set of documents related to the given subgroup,

c is a set composed of the documents found in the examined

cluster, g is a set of documents containing all of the articles
related to the given subgroup by the original labelling and cmax
denotes the size of the largest cluster created by the clustering
algorithm. The constant 10cmax is used to refine the ranking of
possible categories in case of a particular cluster if the method
assigns the same priority value to two or more subgroups. It
can be clearly seen that a priority value depends on the
subgroup size in proportion to the cluster size and the number
of documents related to the same category. A higher priority
value increases the probability of assigning the given subgroup
to the cluster.

To compute the accuracy of the clustering the method
identifies the subgroups of each cluster and calculates their
priority values, then creates a list of subgroups for each cluster
sorted in descending order based on the priority values. After
that constructs a new list of the first elements of these lists and
arranges it in descending order. Thus, we have a list, which
contains the “highest priority – subgroup” pairs for each
cluster. The method scans this list item by item and in every
step it checks whether the category of the examined cluster is
determined. If it is not determined the currently examined
category identified by the subgroup is assigned to this cluster,
otherwise the method continues the scanning without any
modification. After scanning is finished new lists are
constructed (as described above), which contain the second,
third, etc. elements of the lists related to the clusters. Finally,
the method gives a list of “cluster – category” pairs, and the
accuracy can be calculated in the following way:

||
||1

D
dr e−= (12)

where de is the set of misclassified documents. In other

words, the classification is right if the given document is
placed in the cluster, which has the same category.

B. Results

Figure 1 shows the accuracy of the clustering for each test
set. In this interpretation accuracy means the accuracy of the
result selected by the user. It can be observed in the figure that
the average accuracy was near to 98%, and the result was
perfect (100% accuracy) for almost one third of tests.

Figure 2 indicates the highest, lowest and average accuracy
values related to the potential results. As can be seen in this
figure the average accuracy falls in the interval 82% and 100%
while the mean value is 95%. Thus, we can conclude that the
algorithm produced a relatively high accuracy for all of the
potential results.

Figure 3 depicts the accuracy values in a pie chart split into
intervals. In this figure we can see that the clustering algorithm
produced at least 96% accuracy for more than 80% of test sets,
and the lowest accuracy value was greater than 86%.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 7, 2013

131

Figure 1. Accuracy of the clustering algorithm

Figure 2. Average accuracy of the clustering algorithm

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 7, 2013

132

Figure 3. Distribution of the accuracy

Figure 4 demonstrates the difference between the accuracy

of the result chosen by the user and the average accuracy of the
potential results. The horizontal axis represents the identifier
of the test set, and the vertical axis gives the increase of
accuracy. The figure clearly indicates that the user feedback
has unambiguously positive effects on the accuracy. We can
see that 7% is the highest increase and there are only two cases
where an infinitesimal decrease can be observed.

Figure 2. Impact of user interaction on the accuracy

IV. CONCLUSION
The output of text clustering can be used in solving other

problems like abstracting [12]. In case of automatic clustering
algorithms can be found in the literature, a lot of parameters
influence the inner operation of the methods and the accuracy
as well. In contrast, manual clustering when users perform the
grouping procedure is excellent for the accuracy (accuracy can
reach the maximum), but it takes a long time, needs many
human resources, and it is almost impossible to carry out for
large corpus. Automatic and manual approaches have some
advantages, but half-automatic concept such as our solution
has benefits from both of them. The largest challenge in our
method is to determine the potential results for users, and to
find out the questions based on these results. If the potential

results are weak (accuracy is low), then the user will not get
right solution. We developed a complex algorithm, which can
produce very high accuracy for the potential results.

Test results showed that the average accuracy was near to
98%, and the result was perfect (100% accuracy) for almost
one third of tests. However, the accuracy of our algorithm is
excellent, we analyzed its reliability as well. We calculated the
highest, lowest and average accuracy values related to the
potential results. The average accuracy fell in the interval 82%
and 100% while the mean value was 95%. Thus, we can
conclude that the algorithm produced a relatively high
accuracy for all of the potential results. Furthermore, we
investigated the difference between the accuracy of the result
chosen by the user and the average accuracy of the potential
results. The user feedback had unambiguously positive effects
on the accuracy with a maximum increase of 7%.

REFERENCES
[1] J. Kleinberg, “An Impossibility Theorem for Clustering,” Proceedings

of the 15th International Conference on Neural Information Processing
Systems, (Vancouver, Canada,) 2002, pp. 446–453.

[2] A. K. Jain and R. C. Dubes, Algorithms for Clustering Data, Prentice
Hall Advanced Reference Series, 1988.

[3] C. Luo, Y. Li, and S. M. Chung, “Text Document Clustering Based on
Neighbors,” Data & Knowledge Engineering, Volume 68, Issue 11,
2009, pp. 1271–1288.

[4] D. Isa, V. P. Kallimani, and L. H. Lee, “Using the Self Organizing Map
for Clustering of Text Documents,” Expert Systems with Applications,
Volume 36, Issue 5, 2009, pp. 9584–9591.

[5] R. Gil-García and A. Pons-Porrata, “Dynamic Hierarchical Algorithms
for Document Clustering,” Pattern Recognition Letters, Volume 31,
Issue 6, 2010, pp. 469–477.

[6] W. Song, and S. C. Park, “Genetic Algorithm for Text Clustering Based
on Latent Semantic Indexing,” Computers & Mathematics with
Applications, Volume 57, Issues 11–12, 2009, pp. 1901–1907.

[7] W. Zhang, T. Yoshida, X. Tang, and Q. Wang, “Text Clustering Using
Frequent Itemsets,” Knowledge-Based Systems, Volume 23, Issue 5,
2010, pp. 379–388.

[8] M. Rosell, V. Kann, and J.-E. Litton, “Comparing Comparisons:
Document Clustering Evaluation Using Two Manual Classifications,”
Proceedings of the 3rd International Conference on Natural Language
Processing, (Hyderabad, India,) 2004, pp. 207–216.

[9] R. Baeza-Yates, and R. Ribeiro-Neto, Modern Information Retrieval,
Addison Wesley, ACM Press, New York, 1999.

[10] R. M. Aliguliyev, “Clustering of Document Collection – A Weighting
Approach,” Expert Systems with Applications, Volume 36, Issue 4,
2009, pp. 7904–7916.

[11] J. Walters-Williams, and Y. Li, “Comparative Study of Distance
Functions for Nearest Neighbors,” In: K. Elleithy (ed.), Advanced
Techniques in Computing Sciences and Software Engineering,
Springer, New York, 2010, pp. 79–84.

[12] Q. Guo, and M. Zhang, “Multi-documents Automatic Abstracting Based
on Text Clustering and Semantic Analysis,” Knowledge-Based Systems,
Volume 22, Issue 6, 2009, pp. 482–485.

[13] C. D. Manning, P. Raghavan, and H. Schütze, An Introduction to
Information Retrieval, Cambridge University Press, 2009.

[14] C. T. Meadow, B. R. Boyce, D. H. Kraft, and C. Barry: Text
Information Retrieval Systems, Academic Press, London, UK, 2007.

[15] T. Liu, S. Liu, Z. Chen, and W.Y. Ma, “An Evaluation on Feature
Selection for Text Clustering,” Proceedings of the Twentieth
International Conference on Machine Learning (ICML-2003),
Washington DC, 2003.

[16] M. W. Berry, and M. Castellanos, Survey of text mining II: clustering,
classification, and retrieval, Springer, London, UK, 2007.

[17] F. Beil, M. Ester, and X. Xu, “Frequent term-based text clustering,”
KDD '02 Proceedings of the eighth ACM SIGKDD international

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 7, 2013

133

conference on Knowledge discovery and data mining, 2002, pp. 436-
442.

[18] B. Tang, M. Shepherd, E. Milios, and M. I. Heywood, “Comparing and
Combining Dimension Reduction Techniques for Efficient Text
Clustering,” Proc. of Feature Selection for Data Mining: Interfacing
Machine Learning and Statistics in conjunction with the 2005 SIAM
International Conference on Data Mining, April 23, 2005, Newport
Beach, CA, pp. 17-26.

[19] Y. Huang, and T. M. Mitchell, “Text clustering with extended user
feedback,” Proceeding of the 29th annual international ACM SIGIR
conference on Research and development in information retrieval
(SIGIR '06), 2006, pp. 413 - 420.

[20] S. Basu, “Semi-supervised Clustering: Learning with Limited User
Feedback,” PhD Doctoral Dissertation, The University of Texas at
Austin, 2003.

[21] D., Cohn, R., Caruana, and A. McCallum, “Semi-supervised clustering
with user feedback,” (Tech. Report TR2003-1892). Cornell University,
2003.

[22] O. Alonso, M. Gertz, R. Baeza-Yates, “Clustering and exploring search
results using timeline constructions,” Proceedings of the 18th ACM
conference on Information and knowledge management, (CIKM '09),
2009, pp. 97-106.

[23] I. Hwang, M. Kahng, and S-g Lee, “Exploiting user feedback to improve
quality of search results clustering,” Proceedings of the 5th
International Conference on Ubiquitous Information Management and
Communication (ICUIMC '11), Article No. 68.

Gábor Szűcs was born in Hungary in 1970. He has received MSc in
Electrical Engineering from Budapest University of Technology and
Economics (BME) in Budapest in Hungary in 1994.

He is experienced in modeling and simulation, railway systems, traffic
systems; he has received PhD degree in this field from BME in 2002. His
further and currently research areas are data mining, multimedia mining,
content based image retrieval, semantic search. He is associate professor at
Department of Telecommunications and Media Informatics of BME. The
number of his publications is more than 80.

Dr. Szűcs is vice president of the Hungarian Simulation Society
(EUROSIM), deputy director of the McLeod Institute of Simulation Sciences
Hungarian Center. He has earned János Bolyai Research Scholarship of the
Hungarian Academy of Science in 2008.

Zoltán Móczár has received MSc in Computer Science from Budapest
University of Technology and Economics (BME) in Budapest in Hungary in
2011.

He is PhD student at Department of Telecommunications and Media
Informatics of BME.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 7, 2013

134

