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Abstract—Genetic algorithms are used to solve complex 

problems in various areas. Research related to genetic algorithms 

mainly focuses on its three operators: selection, crossover, and 

mutation. The need to improve the algorithm has led to the creation 

of different operators out of the three mentioned, many of which are 

adapted to specific problems. This paper deals with the most 

commonly used selection operators, and their influence on the 

efficiency and robustness of the genetic algorithm. The idea behind 

this paper is to combine selection operators inside the genetic 

algorithm during its execution to decrease the risk of selecting the 

inappropriate selection operator for the considered test function. 

Operators are combined so that preference in the current generation is 

given to the operator which produces the most suitable population 

according to the set criteria after crossover and mutation. The criteria 

used in this paper are the best average overall fitness of the 

population and the best individual fitness. This research has shown 

that the change in selection operators within genetic algorithm has 

positive effects on its functionality. 

 

Keywords—Fitness, genetic algorithm, mathematical model, 

population estimation, selection operators. 

 

I. INTRODUCTION 

HE study of genetic algorithm (GA) is aimed at 

improving the algorithm efficiency, and mainly focuses on 

three operators: selection, crossover, and mutation. Each of 

these operators is important for the operation of the algorithm. 

This paper deals with the selection operator. Selection 

operator is of great importance because of its impact on GA in 

general [1] - [4]. The selection determines the evolutionary 

direction of GA and directly reflects “the survival of the 

fittest” theory of biological evolution. A higher selection 

pressure enables a higher number of copies of the best 

chromosome which is involved in the creation of a new 

population. A lower selection pressure is desirable at the 

beginning of the GA to provide a uniform search of the 
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domain. A high selection pressure is recommended at the end 

of the algorithm in order to exploit the parts of the domain 

identified during the search as potential parts (sub domains) in 

which the solution to the problem could be found. At the 

beginning of the algorithm, a wide diversity of genetic 

materials is preferred. The initial population is thus chosen 

randomly to cover the domain as uniformly as possible (if it is 

assumed that no additional information about the considered 

problem is known). Through this, it can be directly seen that 

the selection operator has a significant impact on the GA 

efficiency, which is verified in some papers which deal with 

selection operators [5] - [7]. The most commonly used 

selections are roulette wheel, tournament and ranking 

selection. The importance of elitism is particularly pointed out 

as well as the possibility of combining two different selections 

when selecting individuals which will take part in creating a 

new generation offspring [8]. 

The development of different types of selection has opened 

room for the discussion about their suitability for solving a 

specific problem. There are claims which champion and 

question the superiority of a certain selection within the GA. It 

is not possible to assess which selection operator is more 

suitable for a particular type of problem. This paper focuses on 

the possibility of improving the GA by using multiple selection 

operators (modified GA).  

Certain functions from the test functions group [9] were 

utilised to test the modified GA. The problem of searching for 

the global optimum (minimum or maximum) of the functions 

with one or more extremes (local or global) is discussed as 

well. The GA can fall into the local extremes; therefore the 

probability of finding the solution in the domain of optimum (ε 

area) is taken as one of the algorithm efficiency criteria.  

Available literature did not provide the GA which combines 

multiple selection operators within it. In a related paper, 

adjustment of tournament selection has been performed by 

using fuzzy systems [10]. Furthermore, combinations of 

multiple GAs have also been used to exclude the possibility of 

selecting an inappropriate algorithm for the given problem 

[11]. Modified GA will be derived from the classic GA by 

making changes in a part of the selection (classifier). Classic 

GA operates with a single, parameter fixed selection operator, 

so its comparison with the modified algorithm shows how 

selection affects efficiency of GA. Crossover and mutation 

parameters remain unchanged. A large number of GAs and 

selection operators makes it impossible to test of all of their 

Modified GA with the possibility of selecting a 

selection operator according to a set criterion 
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combinations. Therefore, one of the existing GAs and three 

most commonly used selection operators have been selected. 

II. THE MODIFIED GENETIC ALGORITHM 

The GA’s performance is affected by encoding methods, 

operators, GA’s initial parameter settings and success criteria 

(fitness) [12] - [14]. This research uses a classic GA with 

binary coding, elitism, fixed crossover and mutation operator 

values, which is the reference algorithm for comparing the 

results obtained with the modified GA. All experiment groups 

have the same initial parameters. The only difference is the 

number of selection operators. 

In order to create the initial population, individuals are 

chosen in a manner defined within a given classic GA. 

Generally, the initial population should be chosen randomly, 

and the entire domain, within which a solution is sought after, 

should be covered. The initial population size remains 

unchanged throughout the algorithm, and is given as one of the 

input parameters. The original algorithm also works with a 

single selection operator. The termination criterion for this 

algorithm is reaching the number of generations set 

beforehand. 

The existing papers dealing with selection operators have a 

different approach than those specified herein [4], [11], [15], 

[16]. Selection dictates the manner of selection of parent 

individuals. Different selection methods raise the question 

which of them should be used. Modified GA was developed to 

examine the difference between individual selection operators 

and their combination for the selected test functions. 

Classic GA is modified so that it uses multiple selections in 

parallel: ranking selection function based on a normalised 

geometric distribution (norm. geom.), roulette and tournament 

selection. Classic GA is extended to include a new component 

and we will call it classifier S. The function of classifier S is to 

select, according to a set criterion, one (the most favourable) 

population out of multiple populations offered, each created 

with a different selection operator. This eliminates the need to 

select one type of selection, and offers the possibility for 

adapting the algorithm to the given problem. Modified GA is 

given in Fig.1.  

In one of the scenarios, classifier is defined to compare the 

fitness value of the best individual for given populations, as 

well as the average overall fitness value of the given 

populations, and select the population with the best individual 

and the best overall fitness. If it happens that one population 

has an individual with the best fitness, while the other 

population has the best overall average fitness, the following 

criterion is used: if the difference in fitness values of the best 

individuals is small enough (10
-2

) to be disregarded, the 

population with the best overall average fitness is selected. If 

that is not the case, the next criterion is used: if the difference 

in the populations’ overall average fitness values is so 

insignificant that they can be disregarded, the population with 

the best individual is selected. If none of these conditions are 

met, the absolute difference between the best individuals 

within populations, and the absolute difference between 

average overall fitness values of given populations are 

analysed separately. If the difference is greater in fitness 

values of the individuals, the population with the best 

individual becomes the one to continue the GA. If the 

difference is larger in average overall fitness values of the 

populations, then the leading population becomes the one to 

continue the GA.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Modified Genetic Algorithm 

The development of the modified GA (programme), as well 

as the simulations, was performed in MATLAB. A program 

called GAOTv5 was used to represent the performance of a 

simple (classic) GA (created in MATLAB by C.R. Houck, J.A. 

Joines, M.G. Kay). This program solves the problem of 

searching for the global optimum of the given function with 

one or more variables. Following programme modifications, 

simulation was performed using classic and modified 

algorithm on the same group of test functions, and the result 

were analysed. 
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III. MATHEMATICAL MODEL OF THE MODIFIED GA 

Block-scheme of classic GA can be represented as in Fig. 2. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Classic genetic algorithm 

Let , , and 

, be sets of m random variables. Size m is 

the number of individuals in the population.  

Classic GA can be presented using the following 

mathematical model: 

                                       
whereby  

 the crossover operator defines the mapping function f, 

 the mutation operator defines the mapping function g,  

 the selection operator defines the mapping function h.  

 

A simplified block-scheme of classifier S is illustrated in 

Fig. 3, whereby size k stands for the number of populations 

classifier operates with. This number depends on the number 

of selections used for modified GA. Let the classifier output be  

the set  defined by the relation:  

                               ,   

where  is a set of m random variables. 

Classifier S selects the best  from the set  using 

the given criterion ω. According to this . 

 

 

 

 

 

 

 

 

Figure 3. Classifier S 

The aim is to determine the function of criterion ω that will 

give the highest probability of finding the optimum test 

function in the given area (  area) of the global test function 

extremum. 

The following values can be considered for the criterion 

function ω: 

1. the fitness value of the best individual for the given 

population, 

2. the best average overall fitness value of the population, 

3. min/max dispersion value of individuals comparing to 

the average value of individuals, 

4. min/max  dispersion value of individuals in relation to 

the best individual in the population, 

5. combinations of criteria.   

A.  Area 

Let  be the n-dimensional function which 

is optimum in the point .  

Let  be the domain of the 
th

 component of 

the function . 

Let  area around the optimal point  be defined with 

points that deviate by ±5% of the domain size 

. 

The  area is then defined with the relation 

. In this paper, any solution of 

the n-dimensional function , belonging to the ε area of 

optimum  defined in such a way, is satisfactory. 

IV. TWO–DIMENSIONAL FUNCTIONS 

A. Description of the Experiment  

This experiment will include three separate selection 

operators (norm. geom. (N), roulette (R) and tournament (T)) 

and their combinations. It makes the total of 7 combinations 

(Table I).   

Table I: Selections and their combinations 

 

Selection operator 

1. norm. geom. N 

2. roulette  R 

3. tournament  T 

4. norm. geom. and roulette  NR 

5. norm. geom. and tournament  NT 

6. roulette and tournament  RT 

7. norm. geom., roul. and tourn.  NRT 

 

The aim of this group of experiments is to analyse if any of 

those 7 combinations offer the best results in the process of 

searching for the given function’s global optimum. The best 

operator is the one which provides the best chance of finding 

the optimum, and the one which finds the optimum with the 

smallest margin of error. 

Mutation and crossover are invariant in all the experiments. 

Depending on the test function, s simpleXover program 

function with the crossover probability of 0.4 or 0.6 is used for 

crossover, and a binary mutation with the mutation probability 

of 0.005 or 0.05, is used for mutation. Each selection receives 

additional parameters if needed. These parameters are 

invariant for all the experiments. Norm. geom. selection has 

0.08 probability of selecting the best individual, the roulette 

selection has no other additional parameters, and the 

tournament selection operates with the tournament size 4.  

When combining selection operators, the selection of the 

most suitable selection was performed based on the biggest 
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average overall fitness value, and the best individual criteria. 

Three types of selection are applied separately on the current 

population, followed by crossover and mutation, while 

determining which one of the three resulting populations yields 

the best results based on the set criterion. The best population 

is selected in continuing the process.  

All experiments span over 25 generations. The number of 

individuals within populations varies. The number of 

individuals is 5, 10, 15, 20, 30, 40 and 45, and it remains the 

same for all generations. The programme draws two graphs. 

One graph represents the appearance of the function as well as 

the individuals which constitute the initial population, and 

individuals from the final population. The other graph consists 

of two curves which represent the population’s average fitness 

value and the best individual value in every generation. The y-

axis in second graph represents fitness value, while x-axis 

represents the number of the generation.  

Each experiment which fixates the selection and the number 

of individuals was successively performed 30 times. 7 different 

population sizes with 7 abovementioned selection operator 

combinations are used. The overall number of experiments is 

7·7·30 = 1470. The quality of success in finding the extremum 

with a certain operator is determined by: 

 the probability of falling into a pre- defined  area 

(local extremum avoided). 

 the relative error which defines the deviation of the 

discovered extremum in relation to the actual 

extremum.  

Three test functions will be used: one is the function with 

one independent variable, and the other two are functions with 

two independent variables.  

B. Test functions and results 

The following three test functions were selected: one-

dimensional function with 7 local extremums (F2), and two 

two-dimensional functions, Goldstein Price (F3) and Six-

Hump Camel Back (F4).  

The analytical form of the F2 function is f(x)=x+10sin (5x)+ 

+7cos(4x). The function maximum is established within the 

interval [a b]  (a = 0 and b = 9), and its value is 25. Fig.4 

represents the results of one of the experiments for which the 

size of the population is 20, and for norm.geom. selection 

operator.  

Goldstein Price function (F3) with two independent 

variables is shown on Fig. 5.  The absolute minimum of the 

given function is at the point (0,-1), and the value of the 

function is 3. The highest value of the function is 1 014 600. 

Since the difference between the minimum and the maximum 

value of the function is large for such a small domain of 

independent variables, it can cause even double digit 

deviations from the optimum even when the final individual is 

within its domain. 

Table II shows the results of the experiment for the F3 

function (results for the F2 function are not presented). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Norm. geom. selection with 20 individuals for the F2 

function  

Figure 5: Goldstein-Price Function 

 

Table II. Statistics for Goldstein Price Function (F3) 

pop. size 

Selections  

 

N 

 

R 

 

T 

 

NRT 

no prob no prob no prob no prob 

5 23 0.77 21 0.7 17 0.57 19 0.63 

10 26 0.87 16 0.53 21 0.7 28 0.93 

15 28 0.93 17 0.57 24 0.8 29 0.97 

20 29 0.97 11 0.37 29 0.97 30 1 

30 29 0.97 16 0.53 30 1 30 1 

40 30 1 24 0.8 29 0.97 30 1 

45 30 1 19 0.63 30 1 30 1 

pop. size 

Selections  

 

NR 

 

NT 

 

RT  

no prob no prob no prob  

5 19 0.63 14 0.47 21 0.7  

10 27 0.9 23 0.77 25 0.83  

15 30 1 28 0.93 28 0.93  

20 30 1 29 0.97 29 0.97  

30 30 1 30 1 30 1  

40 30 1 30 1 30 1  

45 30 1 30 1 30 1  
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Column 1 represents the size of the population. Two 

columns are given for each of the 7 operators (N, R, T, NRT, 

NR, NT, RT), where the first (no) represents the overall 

number of the solutions found in the domain of the global 

extremum in 30 experiments, and the second column (prob) 

represents the probability of being in the domain of the global 

extremum (  area). 

Six-hump Camel Back function (F4) is presented in Fig. 6. 

The function has two global and two local minima. Global 

extremums are at points (0.089842, -0.712656) and                

(-0.089842, 0.712656). The function value at these points is       

-1.031628453.  

  

 

 

 

 

 

 

 

Figure 6. Six-Hump Camel Back Function (F4) 

Table III shows the statistical results for the F4 function. 

Table III: Statistics for Six-Hump Camel Back function (F4) 

pop. size 

Selections  

 

N 

 

R 

 

T 

 

NRT 

no prob no prob no prob  no prob 

5 28 0,93 18 0,6 27 0,9 29 0,97 

10 29 0,97 24 0,8 30 1 30 1 

15 30 1 17 0,57 28 0,93 30 1 

20 30 1 23 0,77 30 1 30 1 

30 30 1 25 0,83 30 1 30 1 

40 30 1 29 0,97 30 1 30 1 

45 30 1 29 0,97 30 1 30 1 

 

 

 

pop.size 

Selections  

 

NR 

 

NT 

 

RT  

no prob  no prob no prob  

5 28 0,93 30 1 27 0,9  

10 30 1 30 1 30 1  

15 30 1 30 1 30 1  

20 30 1 30 1 30 1  

30 30 1 30 1 30 1  

40 30 1 30 1 30 1  

45 30 1 30 1 30 1  

 

C. Analysis of the Results  

Based on previously mentioned experiments for the F2 

function, it can be observed that the norm. geom selection in 

some cases yields better results than multiple selection 

combinations. In the F3 function it is obvious that the roulette 

selection is unfavourable and that any of the multiple selection 

combinations provides better results for all sizes of the 

population, with the exception of the population size 5.  

The F3 function, unlike the F2 function, shows a large span 

between the minimum and the maximum, which causes large 

deviations from the global extremum even in the cases when it 

is found in its  area. A large span of the function’s value at 

the small interval from which independent variables x1 and x2 

are selected causes large deviations. The table which presents 

the deviation of the best individual fitness from the extremum 

fitness (not shown here) shows that in the roulette selection the 

best individual rarely approaches the optimum with the fitness 

value under 10 (optimum is 3). Furthermore, when combining 

the roulette selection with other selections, in the case of 10 

and more individuals, it gives better results. This demonstrates 

that a wrong choice of selection can significantly affect the 

result of the GA. In the F2 function, all the deviations are 

within the range of 1% to 4%. In the F4 function, if the 

individual is found within its domain, deviations from the 

extremum are lesser when compared to the F3 function (table 

not shown). The reason for this is the nature of the function. 

Table IV offers the overview of the best operators for all 

three test functions, and all population sizes. For each 

function, the Table offers two best operators for all 7 

population sizes. Quality assessment of the operator is 

performed based on the probability of finding the solution 

approaching the global optimum (  area). 

The experiment with 45 individuals within the population 

has not been done for the F2 function, as well as the 

experiments which combine two selection operators for the 

population of 40. Seeing that there are cases where certain 

operators and their combinations offer almost equal 

probabilities of finding the solution approaching the optimum, 

multiple operators are listed. If two or more operators offer the 

same probability, they are bold. The mark 2S means that all 

three combinations of the two operators are implied. The mark 

*-R means that all the operators and their combinations, with 

the exception of the roulette selection, are implied.  

Table IV. The best selections for individual test functions and 

population sizes 

pop. 

size 

Selection combinations yielding best results  

 

F2 

 

F3 

 

F4 

5 NR RT 

 

NRT N   NRT N NR 

10 NR NRT       N NRT   T NRT 2S 

15 NRT NT   N RT   N NRT 2S 

20 NT N   NR NT RT *-R     

30 NR N   T NRT   *-R     

40 R T   N NRT 2S *-R     

45 - - - *-R     *-R     

 

After completing the experiments, it is obvious that it is 

impossible to give preference to one selection operator or its 

combination over the other(s). The nature of the function and 

the size of the population affect the probability of finding the 

solution approaching the optimum, and deviation as well. The 

optimal size of the population depends on the domain of the 

independent variables and the nature of the function. This 
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includes: the number of global and local optimums, the 

probability that the individual falls within the domain of the 

global optimum, the function’s co-domain span, and the 

number of independent variables. When a function has a big 

gradient influx in the optimum domain, the final individual’s 

fitness deviates from the global extremum fitness more than in 

a function with a smaller gradient influx in the optimum 

domain. The F3 function has the largest gradient influx in the 

optimum domain of all the tested functions.  

Table V gives the overview of the worst operators and their 

combinations for the three given functions. The remarks are 

the same as for Table IV. 

 
Table V: The worst selections for individual test functions and 

individual population sizes  

 

pop. 

size 

Selection combinations yielding worst results 

 

F2 

 

F3 

 

F4 

5 T R NT R NR   R 

  10 R     R T NR R 

  15 N     R T   R 

  20 R T NRT R     R 

  30 NRT     R NR   R 

  40 NRT     R T   R 

  45 - - - R     R 

   

In order to check which of the selections and selection 

combinations has the highest probability of finding the 

solution, the average value of each selection and its 

combinations is calculated. The last row in Table VI ,AVR, 

represents the average probability value of finding the solution 

approaching the optimum for individual test functions. 

 

Table VI: Average value of the probability (AVR) to find the 

solution approaching the optimum of individual test functions 

 

fun. 

Selections 

 

N 

 

R 

 

T 

 

NRT 

 

NR 

 

NT 

 

RT 

F2 0.578 0.550 0.556 0.594 0.613 0.553 0.533 

F3 0.871 0.142 0.819 0.857 0.800 0.823 0.857 

F4 0.986 0.714 0.976 0.995 0.990 1.000 0.986 

AVR 0.812 0.469 0.784 0.815 0.801 0.792 0.792 

 

The table shows that the NRT combination offers the 

highest average probability of finding the solution. Next in line 

is the N selection, followed by three selections which combine 

two selection operators. 

Even though one of these selections or their combinations 

cannot be given preference over the other(s), it can be noted 

that combining the selections improves the probability of 

finding the solution when, among the chosen combined 

selections, there is one which offers much worse results than 

the average of other combinations. In functions F3 and F4 it is 

found that the roulette selection is the least favourable for 

these types of function. The probability of finding the solution 

approaching the optimum using the roulette selection is lower 

compared to these probabilities for other operators and their 

combinations. This means that combining the roulette selection 

with other selections gives better results than using only the 

roulette selection.  

Figure 7 summarizes the results of 20 experiments. The 

chart on the left shows the probability of individual selections 

giving the best results out of 20 experiments, while the chart 

on the right shows the probability of individual selections 

giving the worst results out of 20 experiments. The assessment 

of the selections’ quality is done based on the probability of 

finding the solution approaching the optimum.  

 

 

 

 

 

 

Figure 7: Selections with the best results (left) and selections 

with the worst results (right) 

 

This segment presents results related to only one tested 

classifier criterion. This criterion gave the best results and was 

chosen as such to be used in subsequent tests with the n-

dimensional functions. The results with dispersion did not 

prove to be efficient and were excluded from further analysis. 

Dispersion gives good results if it includes n copies of the best 

individual, but this experiment combines individuals from 

different populations and does not belong to this group of 

experiments. 

V. N-DIMENSIONAL FUNCTIONS  

Experiments in the following segment will be performed as 

in previous research but with the n-dimensional functions. 

A. Description of the Experiment  

Scientists have used various function groups in order to 

study the performance of GA, and a lot of research involves 

the definition of control parameters and their potential 

adjustment. There are still no general conclusions when it 

comes to the optimum parametrisation of operators. The paper 

[17] offers the most commonly used sets of test functions in 

the analysis of various GA models, and proposed sets of 

parameters. 

Three functions have been selected from this set of 

functions. The first one is known as De Jong function F1. It is 

a smooth, unimodal, strongly convex and symmetric function. 

The other two functions are Schwefel and Rastrigin functions 

and are typical examples of non-linear multimodal functions. 

Rastrigin's function is a difficult issue for GA due to the large 

area that needs to be searched (domain), and a large number of 

local minima. Schwefel's function is easier than Rastrigin's 

function. It is characterised by a second-best minimum which 
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is far from the global optimum. To make it easier to follow, 

functions will be abbreviated to: F1 (De Jong function), F6 

(Schwefel's function), and F7 (Rastrigin's function).  

Experiments will be performed on these three functions with 

10 and 20 independent variables. Since crossover and mutation 

are not subject to the analysis in these experiments, their 

probabilities are fixed at 0.7 for crossover and 0.01 for 

mutation. Population size plays an important role in GA. 

Optimal population size depends on the domain complexity. In 

order to use the same population size for all experiments, a 

population size of 80 or 240 is chosen. This size satisfies 10 

independent variables for Rastrigin's function, but the 

probability to find a solution near the optimum is low. For 20 

independent variables the selected population size is 

insufficient to find a solution near the optimum. Increasing the 

population size will not be performed in this experiment, 

because necessary information is obtained from 10 

independent variables, if we consider the difficulty of 

Rastrigin's function. 

Finding a suitable set of test problems is not an easy task, 

since a particular combination of properties represented by any 

given set of test functions does not allow making general 

statements about GA performances. It is only possible to draw 

limited general conclusions on the effectiveness of GA. It is 

very likely that there are test functions which will give 

different results.  

For the computational limited GA, a too large or too small 

population reduces the quality of the final solution. The paper 

[17] suggests that the population size should be 200-250, and 

that the crossover probability percentage should be 0.7-0.75. 

According to these recommendations, the population size is set 

to 240 and the crossover probability to 0.7. The GA stops after 

500 generations. Each experiment is performed 20 times. 

Classifier will have one or 3 selections (N, R, T, 3N, 3R, 

3T, and NRT combinations). The results of the GA success 

will be determined by the probability of finding the solution in 

the given extremum area (  area). There will be two different 

criterion functions:  

 the average overall fitness value of the given population 

(C1)  

 the average overall fitness value of the given population 

and the fitness value of the best individual (C2). 

 

Classic elitism will be used in both cases. Dispersion 

criterion is left out in these experiments since the tests on two-

dimensional functions using this criterion did not provide 

favourable results. 

B. Results and analysis of the Results  

A series of experiments is performed on the F1, F6 and F7 

test functions with 10 and 20 independent variables. Classifier 

uses the criterion of the highest average overall fitness value of 

the given population (C1). Table VII shows the statistical 

results of all experiments. Column 1 and 2 represent the 

selection operators and the population size respectively. The 

table contains three columns for each test function (10 and 20 

independent variables). The first column (gen) is the average 

number of generations needed to get in the  area, the second 

column (no) represents the number of experiments for which 

the solution was found in  area, out of 20 experiments, and 

the third column (prob) is the probability of finding the 

solution. The results for Rastrigin's function with 20 

independent variables are left out, because the solution is not 

found in this case. 

Experiments use N, R, T selections, and their combinations: 

3N, 3R, 3T i NRT. The population size in experiments is 80 or 

240. For populations with 240 individuals only 4 combinations 

are used: N, R, T and NRT. Two different combinations are 

performed for N, R and T in case of 80 individuals in the 

population. The first one works with classic GA, and the 

second one works with the same algorithm as the NRT 

combination, but uses the same selection operators: 3N, 3R 

and 3T.  

 

Table VII: Statistic values for criterion C1 and functions F1, F6 and 

F7 

 
Sel. Pop. Function 

size De Joung 1 (F1) Rastrigin (F7) 

  10 20 10 

  gen no prob gen no prob gen no prob 

NRT 240 10,5 20 1 23 20 1 29,5 2 0,1 

N 240 9,4 20 1 20 20 1 25,1 2 0,1 

R 240 0 0 0 0 0 0 0 0 0 

T 240 14,8 20 1 35,5 20 1 60,8 6 0,3 

NRT 80 18,4 20 1 39,3 20 1 0 0 0 

N 80 16,4 20 1 37,2 20 1 36 2 0,1 

R 80 0 0 0 0 0 0 0 0 0 

T 80 21,2 20 1 45,2 20 1 22,2 2 0,1 

3N 80 16 20 1 35,4 20 1 0 0 0 

3R 80 0 0 0 0 0 0 0 0 0 

3T 80 19,3 20 1 41,9 20 1 14,1 1 0,05 

  

       

      

Sel. Pop. Schwefel (F6) 

 

AVR   

size 10 20 

  

  

  gen no prob gen no prob       

NRT 240 86,1 19 0,95 263 16 0,8   0,77   

N 240 129 20 1 201 16 0,8   0,78   

R 240 46,6 10 0,5 14 1 0,05   0,11   

T 240 41,7 20 1 166 16 0,8   0,82   

NRT 80 178 13 0,65 54,8 3 0,15   0,56   

N 80 144 14 0,7 35 2 0,1   0,58   

R 80 105 11 0,55 0 0 0   0,11   

T 80 201 19 0,95 134 8 0,4   0,69   

3N 80 153 14 0,7 216 16 0,8   0,7   

3R 80 93,2 7 0,35 72,2 10 0,5   0,17   

3T 80 182 16 0,8 150 17 0,85   0,74   

 

Population size 80 and classic selections N, R and T give 

the following results: N and T find always the solution near the 

optimum for the F1 function with 10 variables, and R cannot 

find the area of optimum at all. The same is the case with 20 

variables. T gains the best results for the F6 function, with the 

probability of 0.95 and 0.4, in case of 10 and 20 variables 

respectively. Selection R does not find the optimum solution. 

For the F7 function with 10 variables the best results are 

obtained with N and T with the probability of 0.1, and R 

cannot find the area of optimum. In case of 240 individuals in 

the population, N and T again find the solution for F1 and 10 
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variables with the probability of 1, and R cannot find the 

optimum solution at all. For function F6 with 10 variables, N 

and T have the probability of 1, and R of 0.5. For 20 variables 

N and T have the probability of 0.8, and R of 0.05. T (0.3) 

obtains the best results for the F7 function with 10 variables. R 

cannot find the optimum solution. 

For population size 80 and combination of selections, each 

combination in case of the F1 function (10 and 20 variables) 

has the probability of 1, excluding 3R, which cannot find the 

optimum solution. 3T (0.8) has the highest probability for the 

F6 function with 10 variables, while NRT has the probability 

of 0.65. For 20 variables 3T has the probability of 0.85, and 

NRT of 0.15. In the F7 function with 10 variables only 3T can 

find the solution with the probability of 0.05. 

In this group of experiments, classifier uses the average 

overall fitness value of the given population and the fitness of 

the best individual as the criteria (C2). The selection of the 

most suitable population according to these two criteria was 

described in detail earlier. Table VIII shows the statistical 

results of all experiments, each of which is performed  20 

times. 

 

Table VIII: Statistic values for criterion C2 and functions F1, F6 and 

F7 

 
Sel. Vel. Function 

pop. De Joung 1 (F1) Rastrigin (F7) 

  10 20 10 

  gen no prob gen no prob gen no prob 

NRT 240 10,9 20 1 21,8 20 1 19,3 2 0,1 

N 240 9,4 20 1 20,7 20 1 31,5 3 0,15 

R 240 0 0 0 0 0 0 0 0 0 

T 240 14,5 20 1 35,5 20 1 137 13 0,65 

NRT 80 15,5 20 1 36,3 20 1 13,8 1 0,05 

N 80 15,9 20 1 37,9 20 1 0 0 0 

R 80 0 0 0 0 0 0 0 0 0 

T 80 20,1 20 1 46,6 20 1 59,2 3 0,15 

3N 80 14,5 20 1 31,8 20 1 49,1 3 0,15 

3R 80 0 0 0 0 0 0 0 0 0 

3T 80 17,3 20 1 38,1 20 1 0 0 0 

  

          Sel. Vel. Schwefel (F6) 

 

AVR 

 pop. 10 20 

     gen no prob gen no prob 

   NRT 240 87,9 20 1 190,85 16 0,8 

 

0,78 

 N 240 92,5 20 1 187,95 15 0,75 

 

0,78 

 R 240 58 10 0,5 0 0 0 

 

0,167 

 T 240 36,2 20 1 191,7 17 0,85 

 

0,9 

 NRT 80 193,55 20 1 87,7 6 0,3 

 

0,67 

 N 80 199,8 17 0,85 12,8 1 0,05 

 

0,58 

 R 80 91,35 8 0,4 0 0 0 

 

0,13 

 T 80 208,15 17 0,85 40,1 2 0,1 

 

0,62 

 3N 80 219,55 20 1 72,75 5 0,25 

 

0,68 

 3R 80 68,65 11 0,55 10,85 1 0,05 

 

0,2 

 3T 80 114,7 20 1 152,1 8 0,4 

 

0,68 

  

Population size 80 and classic selections N, R and T give 

the following results: N and T find always the solution near the 

optimum and R cannot find the optimum solution at all for the 

F1 function (with 10 and 20 variables). N and T gain equal 

probability (0.85) for the F6 function in case of 10 variables, 

while selection R is weaker more than twice (0.4). For F6 and 

20 variables T (0.1) gives the best results, and R cannot reach 

the area of optimum. In the F7 function with 10 variables only 

T can find the solution with the probability of 0.15. In case of 

240 individuals in the population, N and T again find the 

solution with the probability of 1, and R cannot find the area of 

optimum at all. For the F6 function with 10 variables, N and T 

have the probability of 1, and R is twice weaker (0.5). For 20 

variables T has the best results (0.85), and R the worst (0). T 

(0.65) obtains the best results for the F7 function with 10 

variables. R cannot find the optimum solution. 

Results for population size 80 and combination of 

selections are: for the F1 function, for 10 and 20 variables, the 

probability for all combinations is 1, besides 3R, which cannot 

find the optimum solution. The same is true for the F6 function 

with 10 variables, with difference that the probability of R 

increases from 0 to 0.55. In case of the F6 function with 20 

variables the best combination is 3T (0.4), followed by NRT 

(0.3), and the worst combination is 3R (0.05). In the F7 

function with 10 variables only 3N and NRT can find the 

solution with the probability of 0.15 and 0.1 respectively. Two 

additional combinations cannot find the area of optimum. 

Fig. 8 shows the average probability of finding the solution 

in  area for single selections and their combinations for both 

criteria (C1 and C2). 

In case of C1 and individual selections, T gives the best 

results for all three functions regardless of the population size. 

R has the worst results. For all three functions combination 

3R provides the worst results, except in one case, while 3T 

combination provides the best results in all cases. NRT can 

partly neutralise the worst selection (in this case R), apart from 

the F6 function with 20 variables. The combination of 

different selections cannot achieve such good results as the 

combination of the same selections, if the most appropriate 

selection for the considered function is chosen. It should be 

noted that the dominant selection in experiments with one and 

two variables is selection N. The worst selection in this case is 

also selection R. It can be concluded that it is not possible to 

predict which selection will give the best results for particular 

functions. It is not even possible to make this estimation for 

the same function, because the number of variables can play an 

important role as well.  

In case of C2 and individual selections, T gives the best 

results for all three functions regardless of the population size, 

while N can achieve equally good values in some cases. R has 

the worst results. For all three functions combination 3R gives 

the worst results. There is no best combination for C2. NRT 

combination mainly neutralises the worst selection R. NRT 

does not achieve such good results as the combination of the 

same selections, if the most appropriate selection for 

considered problem is chosen. C2 significantly increases the 

probability of finding the solution in the area of optimum for 

the NRT combination, but it can have a negative influence on 

other combinations (the F6 function with 20 variables). In this 

experiment selection N is again pointed out as a good 

selection, like it was in experiments performed on one- and 

two-dimensional functions. These experiments show that the 

selection choice has a significant influence on GA 
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performances, thus there is a risk of choosing the inadequate 

selection for the considered function. 

Figure 8: Results for individual selections, C1 and C2 

 

Combining selections can improve the results of the 

algorithm. In some cases, it is better to combine the same 

selections, but the problem is to estimate which selection is 

adequate for which type of problem. If this is not possible, as 

is usually the case, it is better to combine different selections, 

rather than risk to chose the worst possible selection for the 

considered problem. Classifier criterion used to determine 

specified selections, i.e. the selection which creates the most 

appropriate population, has a significant role in the GA 

efficiency. 

VI. CONCLUSION 

The original idea behind this paper is the introduction of a 

new module—classifier—into the classic GA. 

The function of the classifier is to choose the most suitable 

population among multiple populations, from which each was 

generated using a different selection operator, using set criteria 

 in order to increase the GA efficiency. This choice is made 

in each cycle when forming a new population. N, R and T 

selection operators and their combinations are used in this 

paper. The criterion  uses the best individual fitness, the best 

average population fitness and their combinations. The 

following test functions were used: one-dimensional, two-

dimensional, 10-dimensional and 20-dimensional function. 

The efficiency of GA is measured by the probability of finding 

the functions optimum in the  area of the optimum point given 

beforehand. The population size was different depending on 

the complexity of the test function. 

The aim of this research was to try to determine the 

selection operator combination and criterion function  that 

will give the best results to determine the optimum of all 

considered test functions and other potential test functions. 

Modified GA is in fact an extension of the classic GA with the 

classifier. This paper presents a mathematical model of the 

modified GA that also describes its functionality. 

Experiments were carried out using simulation. Each 

experiment was repeated 20 or 30 times. Results were analysed 

statistically. It was not possible to determine which selection 

operator or its combination is the best for all considered test 

functions under the given constraints. But, in general, classifier 

with the NRT combination can conditionally be considered the 

most favourable for two reasons: 

1. NRT combination gives the best results or was in top 

three selection operators in most experiments; 

2. using classifier with different selection operators can 

significantly decrease the risk of selecting an 

inadequate selection operator for the considered test 

function. 

For further research, it is necessary to: performs a similar 

analysis for other selection operators and their combinations; 

explore the influence of other criterion functions  used and 

mentioned in this paper in relation to this problem; consider 

this research particularly from the aspect of clusters, fuzzy-

logic and neural networks. 
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