

Abstract— Object-oriented frameworks provide reusable design,

implementation, and testing for a family of software systems that
share common features. They are implemented at the framework
domain engineering stage and extended at the application
engineering stage to build the particular required applications. Places
at which the framework is extended are called hooks. These hooks
are useful in testing both the framework and its applications. Several
non-integrated hook-based testing techniques are introduced to test
the frameworks and their applications at different engineering stages
and testing levels. This paper discusses the integration of four
framework-based testing techniques such that the testing redundancy
is minimized and the testing reusability is maximized. The testing
techniques are originally introduced to test the framework and hooks
during the domain engineering stage, and to re-test the framework
and test the framework interface classes during the application
engineering stage. Finally, the paper illustrates the design of the tools
that support the automation of the integrated techniques.

Keywords — object-oriented framework, object-oriented testing,
test case generation, testing automation.

I. INTRODUCTION
EUSABILITY is one of the fundamental goals of
software engineering. Object-oriented frameworks

achieve this goal by providing reusable design, code, and
testing for a family of software systems. A framework
contains a collection of reusable concrete and abstract classes,
and it reduces the cost of a product line (i.e., family of
products that share common features) and increases the
maintainability of software products [1]. Developers can reuse
and extend the design and implementation of a suitable
framework to build their particular applications instead of
developing them from scratch. Places at which developers can
extend the framework and add their own classes are called
hooks [2]. Object-oriented framework engineering is divided
into separate domain and application engineering tasks.
During domain engineering, the framework classes are
produced. During application engineering, the users of the
framework complete or extend the framework classes to build
their particular applications.

To build an application using a framework, application
developers create two types of classes: (1) classes that use the

 Manuscript received August 30, 2008: Revised version received December

1, 2008.
Jehad Al Dallal is with Department of Information Science, Kuwait

University, P.O. Box 5969, Safat 13060, Kuwait (e-mail:
jehad@cfw.kuniv.edu).

framework classes, and (2) classes that do not. Classes that
use the framework classes are called Framework Interface
Classes (FICs) [1, 3] because they act as interfaces between
the framework classes and the second type of the classes
created by application developers. Fig. 1 shows the
relationship between the framework classes, the hooks, the
FICs, and the other application classes. FICs use the
framework classes in two ways: either by subclassing them or
by using them without inheritance. Hooks define how to use
the framework, and therefore, they define the FICs and
specify the pre-conditions and post-conditions of the FIC
methods. Froehlich [2] provides a special purpose language
and grammar in which the hook description can be written.
The hook description includes the implementation steps and
the specifications (i.e., pre-conditions and post-conditions) of
the FIC methods.

Fig. 1: Framework application classes

Software testing is an important and critical verification

activity considered to be a time-consuming and labor-
intensive task. It aims at finding software errors in order to
increase the level of confidence in development software.
Central to the testing activities is the design of a test suite. The
basic element of a test suite is a test case that describes the
input test data, the test pre-conditions, and the expected
output. A test driver is a software implementation of a test
case.

Testing has recently been addressed to complete the
framework development life-cycle. Testing the framework
before instantiating it is essential; otherwise, if the framework
contains defects, these defects will be passed on to the
applications developed from the framework. Framework
defects are hard to discover at the time the framework is
instantiated. Therefore, it is important to remove all defects
before instantiating the framework. In addition, it is important

Integrating Hook-Based Object-Oriented
Framework Testing Techniques

Jehad Al Dallal

R

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 2, 2008

269

to verify that the framework hooks are specified correctly.
Otherwise, the generated implementations of the hook
methods will not function properly. Several techniques are
proposed to test the framework reusable code and design (e.g.,
[4-8]) and to test the framework hooks (e.g., [9, 10]).

Testing the framework increases confidence that the
framework is designed and implemented correctly. However,
due to the infiniteness of the possible test data, the framework
testing does not guarantee the correctness of the framework
design and implementation; and, therefore, it is important to
reconsider framework testing during the application
engineering stage [11]. In addition, testing the framework
applications includes testing the implemented FICs, the other
classes created by the application developers, and the relations
among the application classes. Several techniques are
proposed to test the framework applications (e.g., [12-17]).

In a product line, increasing reusability and decreasing
redundancy are essential goals. However, researchers have
dealt with each of the above framework testing areas in
isolation from the others, despite the fact that these testing
areas are close to each other. Ignoring the application of
testing performed at one stage when testing a related area in
another stage in a product line increases the chance of work-
redundancy.

In this paper, we propose an integrated environment that
considers the testing of the framework and its applications at
both domain and application engineering stages. At the
domain engineering stage, the integrated environment
considers the framework testing at system level and the hook
testing. At the application engineering stage, the integrated
environment considers the framework re-testing and the FICs
testing. The main goal of this integrated environment is to
reduce redundancy in framework and application testing and
to increase the reusability of the various stages and levels of
framework and application testing. The proposed integrated
testing environment relies on the testing techniques previously
introduced by the author, including [1, 6, 9, and 11].

The paper is organized as follows. Sections II and III
overview related work and already existing models used for
testing object-oriented frameworks and their applications,
respectively. Sections IV, V, VI, and VII introduce the
integrated framework-based testing environment and discuss
the automation issues related to the four testing techniques
integrated in the environment. Finally, Section VIII concludes
the paper.

II. RELATED WORK
The environment proposed in this paper integrates and

modifies the testing techniques introduced in [1, 6, 9, and 11].
All these technuqies are hook-based ones. This section
summarizes the hook notation and already existing techniques
for testing object-oriented frameworks and their applications.
In addition, this section gives an overview of the other related
work in the same testing area.

A. Framework hooks
In [2], the issue of documenting the purpose of a framework

and how it is intended to be used using the hooks is described

and formalized. Hooks describe how to extend or customize
parts of the framework to build an application.

Froehlich [2] provided a special-purpose language and
grammar in which the hook description can be written. Each
hook description consists of the following parts. (1) a unique
name, (2) the requirement (i.e., the problem the hook is
intended to help solve), (3) the hook type. (4) the other hooks
required to use this hook, (5) the components that participate
in this hook, (6) the pre-conditions (i.e., the constraints on the
parameters [or the context] that must be true before the hook
can be used), (7) the changes that can be made to develop the
application, (8) the post-conditions (i.e., constraints on the
parameters that must be true after the hook has been used), (9)
a general comment section. It is not necessary to have all the
above parts for each hook.

Fig. 2 shows a hook description example for the creation of
an account in a banking framework. The Initialize Account
hook creates a constructor method for the NewAccount class
(i.e., an FIC defined in the framework hooks). In the
constructor method, the account money currency is selected.
There are three pre-built classes in the framework for money:
USMoney, EURMoney, and Money. Moreover, the user must

specify the bank branches in the system. Finally, the user must
specify the maxPeriod variable value.

Fig. 2. Description of the Initialize Account hook of a
banking framework

Name: Initialize Account
Requirement: Initialize an account (i.e., set the currency and

bank branches).
Type: Template
Uses: None
Participants: Account(framework), NewAccount(app),

Amoney(app);
Pre-conditions: amount>=0;
Changes:
 NewAccount.NewAccount(int amount) extends
 Account.Account(int amount);
 Choose AM from (Money, USMoney, EURMoney);
 Create Object Amoney as AM() in MyAccount.
 NewAccount(int);
 Create Object branches as Branches() in
 NewAccount.NewAccount(int);
 Repeat as necessary {
 Acquire BranchName: string
 NewAccount.NewAccount(int) ->
 branch.addBranch(BranchName);
 }
 Acquire maxPeriod : integer domains:0-999999;
 NewAccount.NewAccount(int) ->
 NewAccount.setMaxPeriod(maxPeriod);
Post-conditions:
 Operation NewAccount. NewAccount (int);
 NewAccount.balance>=0;
 ! NewAccount.frozen;
 NewAccount.getUpdate()< NewAccount.MaxPeriod
Comments:

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 2, 2008

270

The introduced hook description supports the framework

application test design. The hook description identifies the
FICs and their methods. In addition, it identifies the pre-
conditions and post-conditions of the FIC methods. These pre-
conditions and post-conditions are essential to determine the
FIC behaviors and sequential constraints. Moreover, post-
conditions hold the expected outputs. The pre-conditions and
post-conditions of a method are called method specifications.
When an FIC extends a framework class (i.e., in case of a
white-box framework), the inherited methods are either used
in the context of the FIC without modifications or extended.
For both cases, the hook descriptions show how to use the
inherited methods of the framework classes and identify their
pre- and post-conditions in the context of the FICs. When an
FIC uses a framework class (i.e., in case of a black-box
framework), there are no methods inherited from the
framework classes. In this case, the hook descriptions
introduce methods for the FICs and show how to use the
introduced methods.

B. Testing Frameworks Through Hooks (TFTH)
Al Dallal and Sorenson [6] propose a technique called

Testing Frameworks Through Hooks (TFTH) to generate a
test suite to test hook-documented object-oriented
frameworks. The hook-documented frameworks are those
provided with hook descriptions. Hook descriptions give
specifications for the FICs and guidelines to implement them.
In TFTH testing technique, the test suite is designed to test
framework implementation at the system level as well as the
framework FICs. The technique uses an extended state model
for the FICs and a construction flow graph to model the
construction sequence of the hook methods. Round-trip path
trees [4] are generated from the FICs state models. The trees
and the construction flow graphs are traversed to produce the
required test suite.

C. The hook method testing technique
Al Dallal [9] proposes a technique and a supporting tool to

build a test suite for the FICs methods. These methods are
called hook methods because their implementation and
construction process is specified in the hook descriptions. The
technique produces different demo implementations for the
hook methods using the same construction flow graph used in
the TFTH technique. In addition, the technique generates test
data for all variables used in the hook method. The test cases
are generated using a combination of demo implementations
and the test data. Finally, the technique uses the specifications
of the hook methods given in the hook descriptions to
evaluate the test cases.

D. The framework part test-case-reusing technique
Al Dallal and Sorenson [11] propose a test-case-reusing

technique to reuse the framework test suite already applied
during the domain engineering stage to test the framework
during the application engineering stage. The test-case-reusing
technique uses the same framework testing models proposed
in the TFTH technique. The test-case-reusing technique first

identifies the non-tested portion of the framework. Then, it
remodels the round-trip path tree used during the framework
domain engineering stage to eliminate the inclusion of the
non-implemented hook methods and to ignore unnecessary
tested hook methods. Finally, the technique identifies the
framework test cases that can be reused as-is or augmented.

E. Testing framework FICs
In [1, 3], a technique is introduced to generate reusable test

cases for the FICs during the domain engineering stage and to
apply them to testing the FICs at class-level during the
application engineering stage. A technique is introduced to
automate the construction of the class-based testing model,
using the method specifications provided in the hooks [13]. In
addition, a technique called all paths-state is introduced; it
uses the constructed testing model to generate the class-based
reusable test cases at the domain engineering stage [3]. At the
application engineering stage, the application developers may
need the flexibility to ignore or modify part of the
specifications used to generate the reusable class-based test
cases and to add new specifications not covered by the
reusable test cases. The technique introduced in [1] shows
how to deal effectively with such modifications so that testing
becomes easy and straightforward during the application
development process.

F. Other related work
Several recent research studies address the problem of

object-oriented testing at different levels in general (e.g., [4],
[18-21] and [28]). Some testing techniques are specifically
proposed to test object-oriented frameworks and their
instantiations (e.g., [1, 3-17]).

Binder [4] suggests two different approaches for testing
frameworks according to the availability of application-
specific instantiations. The first approach, called New
Framework Test, develops test cases for a framework that has
few, if any, instantiations. The second approach, called
Popular Framework Test, develops test cases for an enhanced
version of a framework that has many application-specific
instantiations. Tsai et al. [5] discuss the issues of testing
instantiations developed with design patterns using object-
oriented frameworks. The paper addresses testing from two
viewpoints: that of framework developers and that of
instantiation designers. Framework developers test to make
sure the extensible patterns do allow the instantiation
developer to extend the framework functionality. The
instantiation designers should verify that the extension points
are properly coded and tested. Wang et al. [7] propose
providing the framework with reusable test cases that can be
applied during the instantiation development stage. However,
these test cases are limited to testing that ensures the inherited
framework features work correctly in the context of the
instantiation classes that inherit them. Kauppinen et al. [10]
propose a criterion to evaluate the hook coverage of a test
suite used to test hook methods. RITA [22] is a software tool
that supports framework testing and automates the calculation
of the hook method coverage measure. Al Dallal and Sorenson
[15] propose a methodology to estimate the coverage of the
cluster-based reusable test cases for framework instantiations.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 2, 2008

271

The work on testing the software product line and product
family is relevant to the problem of testing frameworks. A
software product family is a set of software products that
share common features [23, 24, 27]. The natural core of a
product family is a set of software assets that is reused across
products [25]. Variation points are points at which the
products of a software family differ (i.e., each product has a
different implementation, which is called a variant, for an
abstract class associated with a variant point) [26]. In
framework-based software product families, the variation
points are the hook points, and implementations of the FICs
are the variants. Cohen et al. [26] suggest using combination
testing strategies (e.g., [29]) to build test cases to test product
line variants. Tevanlinna et al. [25] identify and compare four
different strategies for modeling product family testing.

III. TESTING MODELS
In this paper, we consider the integration of four

framework-related testing areas: testing the framework at
system level, testing the hook methods, re-testing the re-used
part of the framework at system level, and testing the
implemented FICs using reusable test cases. The former two
areas are considered during the domain engineering stage, and
the other two areas are considered during the application
engineering stage. Multiple testing modules are used in [3, 6,
9, 11] to achieve the coverage of the four framework-related
testing areas as follows.

A. State Transition Diagram (STD)
A class behavior can be graphically represented in a state

transition diagram. In this case, a state is a set of instance
variable value combinations of the class object. A transition is
an allowable two-state sequence caused by an event. An event
is a method call. An STD consists of nodes and direct links.
Each node represents a state and each link represents a
transition. Fig. 3 shows the STD representation of a
NewAccount banking framework interface object
specification introduced by the framework hooks. The STD
contains two special states: α and ω, to represent the states of
the object before being constructed and after being destructed,
respectively. Moreover, the STD contains the Open,
Overdrawn, Inactive, and Frozen states to model the states of
the object.

In [13], the state transition diagrams of the FICs are
constructed automatically using the specifications given in the
hook descriptions provided with the framework. The diagram
is traversed using an all paths-state coverage technique [1],
illustrated below, to determine the sequence of message
executions required to build the test cases. These test cases are
built once during the framework domain engineering stage and
reused each time an application is developed during the
application engineering stage to test the implemented FICs.

B. All paths-state tree
At the application engineering stage, the application

developer can implement part of the specification introduced
by the framework hooks for FICs and decide that the rest of
the specification is not required to be implemented and used in
the application. This can affect the baseline test cases

generated from the full specification provided through the
hook descriptions. Therefore, the unaffected test cases can be
insufficient to cover all implemented transitions in the
specification model of the FIC under test. This problem exists
when applying any of the already existing state-based
specification coverage criteria. In [12], the problem is solved
by introducing a specification coverage criterion that produces
test cases sufficient to cover all reused transitions in the
modified specification models of the implemented FICs under
test. The introduced coverage criterion is called all paths-state
and it is used to construct a set of test cases T from a
specification graph SG (e.g., UML statechart or finite state
machine of the FIC under test). T covers all simple paths to
each state in the SG. A simple path includes only an iteration
of a loop, if a loop exists in some sequence.

Fig. 3 The STD of the NewAccount object defined in the

banking framework hooks.

The set of paths that satisfy the criterion can be shown in a

tree. The construction process of the tree starts from the α
state of the SG. In the process, whenever a state is reached all
outgoing transitions from the state are traversed. The process
terminates when each root-leaf tree path terminates at the final
(i.e., ω) state or a state already encountered on the path.

Fig. 4 shows the all paths-state tree of the STD of Fig. 3. In
the STD, if any transition is deleted, reachable states from the
deleted transition can still be reached by some other paths of
the tree. For example, if all paths-state technique is used to
build the test cases and the application developer chooses not
to implement the transition originating from the Open state
and ending at the Inactive state, the test cases that include the
transition are considered broken; therefore, they cannot be
used as-is. This results in breaking the test cases built from the
paths that include the transition sequences labeled as
(1,20,13,21), (1,20,13,14), (1,20,13,19), (1,20,13,5),
(1,20,15), (1,20,18), and (1,20,4). Note that the remaining test
cases still cover all outgoing transitions from the Inactive
state, and therefore, can be deployed.

Test cases are generated by traversing each path in the tree
from the tree root to a leaf node. The number of generated test
cases is equal to the number of leaf nodes in the tree. The

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 2, 2008

272

number of leaf nodes in the tree shown in Fig. 4 is 22;
therefore, the number of generated test cases is 22.

Fig. 4. All paths-state tree of the STD example shown

in Fig. 3.

C. Hook State Transition Diagram (HSTD)
An HSTD is a state transition diagram that has two types of

links: solid and dotted, which represent transitions associated
with explicit and implicit events, respectively. Implicit events
are implicit calls for methods (i.e., those caused by calling
other methods). The implicit events are modeled in the HSTD
such that the different implementations of hook methods that
can only be called implicitly are considered when building the
test cases. The HSTD is semi-automated using the framework
hooks and it is traversed using a round-trip path coverage
technique [4] to determine the sequence of message
executions required to build the test cases. These test cases are
used to test the framework at system-level during the
framework domain engineering stage [6]. In addition, these
test cases are re-used to test the re-used part of the framework
during the application engineering stage [11].

D. Construction Flow Graph (CFG)
The CFG is a graphical representation of the control

structure of the construction sequence of the hook method
contents. It consists of nodes and direct links. A node in the
CFG can be a process, a decision, or a junction node. The
process node presents a sequence of hook statements that are
uninterrupted by a construction decision or a construction
junction. The decision node is a hook method description
point where the construction flow diverges. Finally, the hook
method description point where the construction flow merges
is called the junction node. Fig. 5 shows the CFG of the init()
method described in the Initialize Account hook (Fig. 2) of the
banking framework. The hook statement ‘Create Object
Amoney …’ is represented by three nodes because there are
three possible framework money classes: Money, USMoney,
and EURMoney.

Fig. 5. The CFG of the init() method defined in the
Initialize Account hook

In [6] and [9] the CFG is used to build different

implementations of hook methods. In [6], the combinations of
these implementations are exercised by the test cases
determined using the HSTD, whereas in [9], each
implementation of a hook method is exercised to satisfy some
well-known method testing coverage criteria, such as domain
boundary and equivalence partitioning [4]. In [11], the CFG is
used to identify the hook methods that have to be reconsidered
when retesting the framework during the application
engineering stage.

IV. TESTING FRAMEWORK
In [6], the framework testing starts with building the HSTD

for the FICs. The sequences of method executions considered
for building the test cases are determined by applying the
round-trip path coverage technique. When generating the test
cases for the FICs, the testing models for the FICs are covered
using all paths-state coverage which is proved to subsume the
round-trip path coverage [3]. As a result, to produce test cases
that satisfy the coverage required for both testing the
framework and testing the FICs, the testing models for the
FICs must be covered using the all paths-state coverage
technique. The inputs and outputs of the framework testing
tool and the testing process are described as follows.

A. Tool Inputs
The modified framework testing tool requires several inputs

as follows:
1. Framework hook descriptions. The hook changes section

describes the changes that can be made to develop a hook
method. The hook changes section describes the creation of
hook methods and their contents (i.e., code statements). In
addition, the syntax of the hook changes section includes
calling up other hooks and creating classes (i.e., FICs),
objects, and properties. The syntax also allows the user to
prompt data or select options, and it allows iterating through a
set of change statements. For example, the changes section of
the Initialize Account hook (see Fig. 2) describes how the
constructor method is built: (1) an constructor method is
created, (2) a user is asked to choose one of the money classes

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 2, 2008

273

defined in the framework, (3) an object of the selected money
class is created inside constructor’s method block, (4) an
object of the framework class Branches is created inside
constructor’s method block, and (5) the user is prompted for
the number of iterations of the repeat loop. In the repeat loop,
the user is prompted for a name to be assigned to the
BranchName variable, and the addBranch method is invoked
inside constructor’s method block. Finally, the user is
prompted for a value to be assigned to the maxPeriod variable
and the setMaxPeriod method is called inside constructor’s
method block.

2. Illegal behaviors. Given the hook descriptions, the
HSTDs that model the legal behaviors of the FICs can be
extracted automatically. The framework tester has to use other
framework specification documents or communicate with
framework developers to determine the illegal behaviors of
the FICs to complete the HSTDs.

B. Tool Outputs
The modified framework testing tool produces several

outputs as follows:
1. Implemented hook methods. The modified framework

testing tool uses the Hook Master tool [2] to produce multiple
Java implementations of the hook methods and comments on
them with the corresponding pre-conditions and post-
conditions specified in the hook description. These
implementations of the hook methods are stored in the
framework database to be used in the hook testing process.

2. Framework test cases. The framework test cases are
formed by combining the implementation of the hook methods
and the all paths-state test drivers. The test cases are stored in
the framework database to be used in the FICs testing and
framework re-testing processes.

3. Test case execution results. The framework testing tool
executes the test cases and uses the Jcontract tool [29] to
evaluate the testing results.

C. Testing Process
The modified framework testing process is shown in Fig. 6.

In this process, the tester selects the framework to be tested
using a browser. The framework is stored in a database that
contains the framework code and descriptions of the hooks. In
the tool, the hook descriptions are passed to the Hook Master
tool. The Hook Master tool parsers the hook description and
stores it in hook statement objects. The hook statement objects
are stored in the framework database and passed as parameters
to the HSTD Master tool, which analyzes the hook statements,
builds the HSTDs, and stores them in a tabular form. A
framework tester can edit the HSTD tables to describe the
behavior of the FIC in response to illegal events. The HSTD
Master tool uses the updated tables to generate the all paths-
state Java-coded test cases to be used in constructing the
framework test cases.

Simultaneously, the Hook Master tool produces different
Java implementations of the hook methods and comments on
them with the corresponding pre-conditions and post-
conditions specified in the hook description. The pre-
condition and post-conditions are written in DbC language
[30]. TCs builder obtains the all paths-state test cases

generated by the HSTD Master tool and the different
implementations of the DbC commented hook methods
generated by the Hook Master tool, combines them, and
produces the framework test cases. The test cases are then
stored in the framework database.

The Test cases executer module compiles the test cases
using the dbc_javac compiler of the Jcontract tool [29]. The
Jcontract compiler checks the DbC specifications in the
Javadoc comments, generates instrumented .java files with
extra code to check the contracts (i.e., pre-conditions and
post-conditions) in the Javadoc comments, and compiles the
instrumented .java files with the javac compiler. The
resulting .class files are instrumented with extra bytecodes to
check the contracts at runtime. Finally, the framework testing
tool executes the test cases and uses Jcontract tool to
automatically check the contracts at runtime, report any
violations, and stack trace information in the Jcontract GUI
Monitor, the Jcontract TEXT Monitor, or a file. This helps
users determine exactly when and where a violation occurs.

Fig. 6. Modified framework testing process

V. TESTING FRAMEWORK HOOKS
In [9], the hook testing process requires building multiple

implementations for the hook methods using the CFGs. This
step is already performed when testing the framework, and its
results are stored in the framework database as illustrated
above. These implementations are exercised with the test data
generated for the parameters of the hook methods to complete
the hook testing process. The inputs and outputs of the
framework hooks testing tool and the testing process are
described as follows.

A. Tool Inputs
The modified framework hook testing tool requires several

inputs as follows:
1. Selected hook descriptions. The user of the tool selects

the hooks to be tested.
2. Selected test data generation technique. The user can

select one of the three combination-of-test-data generation
techniques implemented in the tool. The tool implements two

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 2, 2008

274

test data generator techniques for the variables specified in the
hook description, the domain boundary analysis and
equivalence partitioning techniques. Combinations of test data
are generated using two approaches, boundary-typical and all-
combinations. In the boundary-typical approach, the variable
under consideration is assigned one of the test data and all
other variables are assigned typical values. In the all-
combinations approach which is more sophisticated, all
combinations of test data are used to generate the required
combinations.

3. Implemented hook methods. These implemented hook
methods are stored in the framework database as a result of
the framework testing process described in Section IV.

4. Framework Code. The framework code is stored in the
database and used together with the test cases to test the hooks
and obtain the testing results.

B. Tool Outputs
The modified framework hook testing tool produces several

outputs as follows:
1. Hook methods test drivers. Each test driver checks the

hook method’s pre-conditions before enacting the hook
method, enacts an implementation of the hook method and
checks the post-conditions after enacting the hook method. As
a result, a test driver is a class that includes an implementation
for the hook method and a TestHook method that invokes the
hook method and compares the actual results with the
expected ones.

2. Drivers for the test drivers. The tool generates a driver
that enacts the hook methods test drivers.

3. Testing results. The framework hook testing tool uses
the Junit tool [31] to obtain the testing results.

C. Testing Process
The modified framework hook testing process is shown in

Fig. 7. In this process, the user of the tool selects a framework
through a browser. The tool loads the names of the available
hook descriptions and shows them on the tool’s GUI. When
the user selects one of these names, the Hook Method Parser
block of the tool parses the corresponding implemented hook
methods produced in the framework testing process described
in Section IV. The user can select one of the three
combination-of-test-data generation techniques implemented
in the tool. When the user selects the combination-of-test-data
generation technique, the Test Cases Builder block of the tool
uses the parsed hook methods and the selected combination of
test data generation technique to generate the hook method
test cases. Each test case describes an implementation for the
hook method. The tool stores the test cases in the framework
database. The Test Drivers Builder block of the tool enacts the
test cases and generates corresponding test drivers. Each test
driver is a Java implementation of a test case. The Test
Drivers Builder block of the tool also generates a driver for
the test drivers. Finally, the Test Drivers Executor block of the
tool invokes the Junit tool [31] that invokes the TestHook
method of each test driver and reports the testing results. The
modified hook method testing tool tests the hook methods
involved in the selected hook description. To test all the hook
methods, the user of the tool has to select all the hook

descriptions one at a time. When a hook description is
selected, only the involved FICs are generated. The
framework with the generated FICs are considered a
framework application. Typically, it is not required to
implement all hook methods to build a framework application.

Fig. 7. Modified framework hooks testing process

VI. RE-TESTING THE FRAMEWORK USED PART
In [11], the re-testing framework used part process assumes

that the round-trip path coverage is applied in the TFTH to
produce the test cases. In the modified environment, as
discussed above, the all paths-state coverage is applied to
produce the test cases. In [11], when the application developer
decides not to use a transition modeled in the HSTD, the
round-trip path tree has to be remodeled such that all
reachable transitions remain connected in the tree. This step
becomes unnecessary when using the all paths-state tree
because the later one is constructed in such a way that if a
transition is deleted, the remaining transitions remain
reachable in the tree. Therefore, in our modified environment,
reusing the test cases generated by using the all paths-state
coverage approach will not cause incompatibility problems;
instead it eases the required testing process. The inputs and
outputs of the framework re-testing tool and the testing
process are described as follows.

A. Tool Inputs
The modified framework re-testing tool requires several

inputs as follows:
1. Implemented hook methods. These implemented hook

methods are stored in the framework database as a result of
the framework testing process described in Section IV.

2. Framework test cases. These implemented hook methods
are also stored in the framework database as a result of the
framework testing process described in Section IV.

3. Implemented FICs. These classes are part of the
framework application developed by a framework user.

4. Framework code. The framework code is stored in the
database and used together with the test cases to re-test the
used part of the framework and obtain the testing results.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 2, 2008

275

B. Tool Outputs
The modified framework re-testing tool produces several

outputs as follows:
1. Applicable test cases. These test cases are subset of the

test cases generated to test the framework at the framework
engineering stage and they have to be applied to retest the
framework during the application engineering stage.

2. Testing results. The framework re- testing tool uses the
Jcontract tool [29] to obtain the testing results.

C. Testing Process
The modified framework re-testing process is shown in Fig.

8. In this process, the user of the tool, the framework
application developer, selects the framework to be retested
using a browser. The framework database includes the
framework code, the framework hook descriptions, the
framework test cases produced by the framework testing tool,
and the implemented hook method data files produced by the
framework testing tool. The Test Case Parser module of the
framework re-testing tool parses the framework test cases and
stores them in objects organized in a link list data structure.
Simultaneously, the Implemented Hook Methods Parser
module of the tool parses the implemented hook method data
and stores them in objects organized in a link list data
structure.

Fig. 8. Modified framework used part re-testing process

The parsed implemented hook method data are used by the

Nontested Hook Methods Detector module of the tool to
identify the nontested hook methods. The parsed implemented
hook method data are also used with the parsed test cases by
the Test Case Modifier module of the tool to modify the test
cases. The modified test cases and the names of the hook
methods marked untested are used by the Applicable Test
Case Detector module of the tool to decide on the test cases
that have to be applied to retest the framework during the
application engineering stage. The applicable test cases are
stored in the framework database and corresponding Java
code is generated by the Test Drivers Builder module of the
tool. The Test Drivers Builder module instruments the test
drivers (i.e., implementations of the test cases) by the state

invariants written in DbC language [30] and stored in the
framework database.

The Test Drivers Executer module of the tool compiles the
test drivers and the implemented FICs using the dbc_javac
compiler of the Jcontract tool. The Jcontract compiler checks
the DbC specifications in the Javadoc comments, generates
instrumented .java files with extra code to check the contracts
in the Javadoc comments, and compiles the instrumented .java
files with the javac compiler. The resulting .class files are
instrumented with extra bytecodes to check the contracts at
runtime. Finally, the Test Drivers Executer module executes
the test drivers and uses Jcontract tool to automatically check
the contracts at runtime and report any violations found.

VII. TESTING FRAMEWORK INTERFACE CLASSES
In [6], the cases generated to test the framework during the

domain engineering stage were built using the round-trip path
coverage approach. Since this coverage is not suitable for
testing FICs, in [3], special reusable class-based test cases are
built during the domain engineering stage and applied during
the application engineering stage to test the implemented
FICs. These test cases are generated using the same testing
models used for the framework test cases. However, the
testing models are covered using the all paths-state covering
approach. In our modified environment, the all paths-state
coverage is applied to generate the test cases to test the
framework. Therefore, the same test cases can be used also to
test the FICs. The only difference would be in the ways in
which these test cases are applied. Ref [1] discusses how these
test cases can be applied effectively. The inputs and outputs of
the tool that generates the test cases for the FICs and the test
case generation process are described as follows.

A. Tool Inputs
The tool requires several inputs at the framework

development stage as follows:
1. Framework hooks. Framework hooks define the

specifications (i.e., preconditions and postconditions) of the
FIC methods introduced by the hooks. These method
specifications are used to synthesize the state-based testing
model of the FIC at the framework development stage. In
addition, they are used as test oracles at the application
development stage.

2. Non-event-driven transitions. Non-event-driven
transitions cannot be synthesized automatically using the
algorithms illustrated in [13]. The user of the tool has to
determine the source and destination states of the non-event-
driven transitions. The tool automatically produces the
predicates of the transitions.

3. Predicate implementation. Transitions of the FIC
synthesized testing model can be associated with predicates
that have to be satisfied to execute the transitions. The
predicates can be as simple as a variable definition or they can
involve defining a large data structure for which it is difficult
to generate code to satisfy the predicate. The user of the tool
has to provide the code required to satisfy the predicates of the
transitions at the framework development stage. Writing the
pieces of code that implement complex predicates can be a

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 2, 2008

276

costly task; however, this cost cannot be avoided in any state-
based testing technique. The good news is that the
implementation of the predicates is provided just once at the
framework development stage and reused each time an
application is developed at the application development stage.
In most situations, the original investment can be recouped
after producing a few framework applications.

B. Tool Outputs
At the framework development stage, the tool has several

outputs. These outputs are used later at the application
development stage to test the framework applications. The
outputs are as follows.

1. Class state-based testing model. The tool synthesizes the
class state-based testing models of the FICs at the framework
development stage.

2. Model checking report. The tool checks that the class
state-based testing model has one entry and one exit state and
each state can be reached from the entry state. It then reports
the checking results.

3. FIC test drivers. The tool uses the class state-based
testing models of the FICs to generate test drivers using the all
paths-state coverage technique [1]. The test drivers are
executed later at the application development stage to test the
implemented FICs in the framework applications.

4. Stubs. The tool analyzes the hook descriptions and uses
the information provided in the changes section of the hook
description to determine and generate the stubs. These stubs
are required at the application testing stage to isolate the FICs.
The developed prototype version of the tool does not produce
the stubs; instead, the user of the tool has to provide the stubs.

C. Testing Process
Fig. 9 shows the high-level design of the tool when used at

the framework development stage. The user (typically the
framework developer in a test case generation role) selects the
framework. The framework is stored in a database that
contains the framework code and the descriptions of the
hooks. The tool passes the hook descriptions to the FIC state-
transition table builder module. The FIC state-transition table
builder module parses the preconditions and postconditions of
the FIC methods, analyzes them, and produces the state-
transition table for the FIC. The framework developer can edit
the generated table to add the code required to satisfy the
predicates of the transitions and to add the non-event-driven
transitions. The tool translates the tabular form of the state-
transition model into a text and stores the text in a file in the
framework database. The user can use the Model Checker
module of the tool to check the correctness of the model.

The All paths-state test drivers builder component of the
tool uses the state-transition table to generate the all paths-
state test drivers and associates the test driver identifiers with
the model transitions. In addition, it uses the hook descriptions
to determine and generate the stubs required at the application
testing stage to isolate the FICs. The test drivers and stubs are
stored in the framework database and provided to the user.

Fig. 9. The FIC test case generation process

VIII. CONCLUSIONS
This paper introduces an integrated environment for testing

object-oriented frameworks and their applications. The
environment integrates four testing processes in such a way
that redundant testing efforts are reduced. The main
reductions are summarized as follows: (1) the same testing
models (i.e., HSTD and CFG) are used in all the processes; (2)
the same implementations of the hook methods are used in the
framework and hook testing processes; (3) the same test cases
are used differently in the framework testing, framework re-
testing, and FICs testing processes; and (4) the applicable test
cases are not required to be modified in the framework re-
testing process. On the other hand, the number of test cases to
be generated and managed in the framework testing process is
enlarged because we propose using all paths-state coverage,
which subsumes the round-trip path coverage applied
originally. However, this modification allows using the same
test cases in two other testing processes.

ACKNOWLEDGMENT
The author would like to acknowledge the support of this

work by Kuwait University Research Grant WI01/06.

REFERENCES
[1] J. Al Dallal and P. Sorenson, Reusing class-based test cases for testing

object-oriented framework interface classes, Journal of Software
Maintenance and Evolution: Research and Practise, 17(3), 2005, pp.
169-196.

[2] G. Froehlich, Hooks: an aid to the reuse of object-oriented frameworks,
Ph.D. Thesis, University of Alberta, Department of Computing Science,
2002.

[3] J. Al Dallal, Class-Based Testing of Object-Oriented Framework
Interface Classes, Ph.D. Thesis, University of Alberta, Department of
Computing Science, 2003.

[4] R. Binder, Testing object-oriented systems, Addison Wesley, 1999.
[5] W. Tsai, Y. Tu, W. Shao, and E. Ebner, Testing extensible design

patterns in object-oriented frameworks through scenario templates, 23rd
Annual International Computer Software and Applications Conference,
Phoenix, Arizona, 1999.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 2, 2008

277

[6] J. Al Dallal and P. Sorenson, System testing for object-oriented
frameworks using hook technology, Proc. of the 17th IEEE
International Conference on Automated Software Applications
(ASE’02), Edinburgh, UK, 2002, pp. 231-236.

[7] Y. Wang, D. Patel, G. King, I. Court, G. Staples, M. Ross, and M.
Fayad, On built-in test reuse in object-oriented framework design, ACM
Computing Surveys (CSUR), 32(1es), 2000, pp. 7-12.

[8] J. Al Dallal, Adequacy of object-oriented framework system-based
testing techniques, International Journal of Computer Science, 3(1),
2008, pp. 36-43.

[9] J. Al Dallal, Testing object-oriented hook methods, Kuwait Journal of
Science and Engineering, 35(1B), 2008, pp. 103-122.

[10] R. Kauppinen, J. Taina, and A. Tevanlinna, Hook and template
coverage criteria for testing framework-based software product
families, In Proceedings of the International Workshop on Software
Product Line Testing, Boston, Massachusetts, USA, 2004.

[11] J. Al Dallal and P. Sorenson, Testing software assets of framework-
based product families during application engineering stage, Journal of
Software, 3(5), 2008, pp. 11-25.

[12] J. Al Dallal and P. Sorenson, Generating class based test cases for
interface classes of object-oriented black box frameworks, Transactions
on Engineering, Computing and Technology, 16, 2006, pp. 90-95.

[13] J. Al Dallal and P. Sorenson, Generating state based testing models for
of object-oriented framework interface classes, Transactions on
Engineering, Computing and Technology, 16, 2006, pp. 96-102.

[14] J. Al Dallal and P. Sorenson, The coverage of the object-oriented
framework application class-based test cases, Transactions on
Engineering, Computing and Technology, 16, 2006, pp. 103-107.

[15] J. Al Dallal and P. Sorenson, Estimating the coverage of the framework
application reusable cluster-based test cases, Journal of Information
and Software Technology, 50(6), 2008, pp 595-604.

[16] J. Al Dallal, Testing object-oriented framework applications using
FIST2 tool: a case study, International Journal of Computer Systems
Science and Engineering, 4(2), 2008, pp. 119-126.

[17] J. Al Dallal and Paul Sorenson, Generating class based test cases for
interface classes of object-oriented gray-box frameworks, International
Journal of Computer Science and Engineering, 2(3), 2008, pp. 135-
143.

[18] D.A. Sykes and J.D. McGregor, Practical Guide to Testing Object-
Oriented Software, Addison Wesley, 2001.

[19] L. C. Briand, Y. Labiche, and M. Sówka, Automated, contract-based
user testing of commercial-off-the-shelf Components, Pro-ceedings of
the 28th International Conference on Software Engineering (ICSE),
Shanghai, China, 2006.

[20] L. Gallagher and J. Offutt, Automatically testing interacting software
components, Workshop on Automation of Software Test (AST 2006),
Shanghai, China, 2006.

[21] L. Gallagher, J. Offutt, and A. Cincotta, Integration testing of object-
oriented components using finite state machines, Journal of Software
Testing, Verification and Reliability, 17(1), 2007, pp. 215-266.

[22] A. Tevanlinna, Product family testing with RITA, Proceedings of the
Eleventh Nordic Workshop on Programming and Software
Development Tools and Techniques, Turku, Finland, 2004.

[23] J. Bosch, Design and Use of Software Architectures. Addison-Wesley,
2000.

[24] M. Jaring, Software Product Family Architectures - Engineering Run-
Time Variability Dependencies in an FPGA-based Signal Processing
Board, WSEAS Transactions on Information Science and Applications,
1(1), 2004, pp. 240-245.

[25] A. Tevanlinna, J. Taina, and R. Kauppinen, Product family testing: a
survey, ACM SIGSOFT Software Engineering Notes, 29(2), 2004, pp.
12-18.

[26] M. B. Cohen, M. B. Dwyer, and J. Shi, Coverage and adequacy in
software product line testing, Proceedings of the International
Symposium on Software Testing and Analysis 2006 workshop on Role
of software architecture for testing and analysis, Portland, Maine, USA,
2006.

[27] F. Ahmed, L. Capretz and M. A. M. Capretz, Framework for Version
Control & Dependency Link of Components & Products in a Software
Product Line, WSEAS Transactions on Computers, Vol. 3, No. 6, pp.
1782-1787, Dec. 2004.

[28] Sani, N. F., Zin, A. M., Idris, S., and Shukur, Z., Designing an
understanding and debugging tool (UDT) for object-oriented

programming language. In Proceedings of the 4th WSEAS international
Conference on Artificial intelligence, Knowledge Engineering Data
Bases, Salzburg, Austria, February 13 - 15, 2005.

[29] Jcontract, November 2008, http://www.parasoft.com/jsp/
products/home.jsp?product=Jcontract, ParaSoft Corpo-ration.

[30] B. Meyer, Design by contracts, IEEE Computer, 1992, Vol. 25(10), 40-
52.

[31] Junit 2008. http://junit.sourceforge.net/.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 2, 2008

278

