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Abstract—Data Mining(also known as Knowledge Discovery) is 

defined as the non-trivial extraction of implicit, previously unknown, 
and potentially useful information from data. It includes not only 
methods for extracting information from the given data, but also 
visualizing the information. Formal Concept Analysis(FCA) is one of 
Data mining research fields, and it has been applied to a number of 
areas such as medicine, psychology, library, information science, and 
software re-engineering and others. FCA is based on a mathematical 
order theory for data analysis, which extracts concepts and builds a 
conceptual hierarchy from given data. In order to analyze vague data 
set of uncertainty information, Fuzzy Formal Concept Analysis(Fuzzy 
FCA) incorporates fuzzy set theory into FCA. In this paper, we 
introduce basic notions of FCA and Fuzzy FCA, and developed the 
Fuzzy FCA-Wizard, that supports Fuzzy FCA’s features. We 
demonstrate the process for discovering knowledge from uncertain 
data with Fuzzy FCA-Wizard. 
 

Keywords— Data Mining, Knowledge Discovery, Fuzzy Set, 
Formal Concept Analysis  

I. INTRODUCTION 
ESIDES the ordinary set, fuzzy set theory permits 

uncertainty information that is directly represented by 
membership value in the range of [0, 1](Fig 1). The 
membership value which is taken through membership 
function indicates the grade of membership of set elements. If 
an element is mapped to the value 0, the element is not included 
in the fuzzy set, and 1 describes a fully included element[1]. In 
decision and organization sciences, fuzzy set theory has a great 
impact in preference modeling and multi-criteria evaluation. 
Applications can be found in many areas such as management, 
production research, and finance[2]. In order to analyze vague 
data set of uncertainty information, Fuzzy Formal Concept 
Analysis(Fuzzy FCA) incorporates fuzzy set theory into FCA. 
It extracts useful information with a unit of fuzzy concept from 

given fuzzy formal context with a confidence threshold, and 

constructs fuzzy lattice by order relations between the fuzzy 
concepts[3]. 

Fig. � The ordinary set and the fuzzy set 

 
Manuscript received December 3, 2008: Revised version received March 4, 

2008.  
Kyoung-Mo Yang is with the Department of Computer Science & 

Engineering, SunMoon University,100, Kalsan-ri, Tangjeong-myeon, Asan-si, 
Chungnam, 336-708, KOREA (e-mail: yjj0309@ gmail.com).  

Eung-Hee Kim is with Biomedical Knowledge Engineering Laboratory, 
Seoul National University, 103, Yongon, Daehangno, Jongno-gu, Seoul, 
110-749, KOREA (e-mail: eungheekim@snu.ac.kr). 

Suk-Hyung Hwang is with the Department of Computer Science & 
Engineering, SunMoon University,100, Kalsan-ri, Tangjeong-myeon, Asan-si, 
Chungnam, 336-708, KOREA (e-mail: shwang@sunmoon.ac.kr). 

Sung-Hee Choi is with the Department of Computer Science & Engineering, 
SunMoon University,100, Kalsan-ri, Tangjeong-myeon, Asan-si, Chungnam, 
336-708, KOREA (e-mail:  shchoi@sunmoon.ac.kr). 

Formal Concept Analysis(FCA)[4] is one of Data Mining 
research fields, and it has been applied to a number of areas 
such as medicine, psychology, library, information science, and 
software re-engineering and others[5-10]. There are so many 
implementation of FCA such as ConExp[11], FCA-Wizard[12], 
Galicia[13] and ToscanaJ[14](Table I). ConExp is an 
open-source project and it has been extended several times, 
because it is easy to use and has powerful visualization system. 
FCA-Wizard is an extension of ConExp, adding various scales. 
Galicia is an open-source platform for creating, visualizing and 
storing concept and Galois lattices. ToscanaJ is a 
reimplementation of a classic FCA tool called Toscana. FCA is 
based on a mathematical order theory for data analysis, which 
extracts concepts and builds a conceptual hierarchy from given  
 

Table. I FCA Tools 

 One-valued 
context 

Lattice 
visualization 

Multi-valued 
context Scaling 

ConExp O O X X 

FCA-Wizard O O O O 

Galicia O O O O 

ToscanJ O O O O 

 

B 

INTERNATIONAL JOURNAL OF COMPUTERS 
Issue 3, Volume 2, 2008

279



data which is represented with a formal context. The basic 
structure of FCA is the formal context which is binary-relation 
between a set of objects and a set of attributes. The formal 
context is based on the ordinary set, which elements have on 
the two values, 0 or 1(Fig 1).  

Although there is well defined Fuzzy FCA theory, it is 
impossible for human to manually analyze huge amounts of 
data without appropriate Fuzzy FCA tools. Therefore, we need 
assistances in the well defined Fuzzy FCA tool’s functionalities. 
In this paper, we introduce basic notions of FCA and Fuzzy 
FCA, and develop the Fuzzy Formal Concept Analysis 
Wizard(Fuzzy FCA-Wizard). In order to evaluate usefulness of 
Fuzzy FCA-Wizard, we experiment on our tool with users and 
tags data extracted from the online social tagging system such 
as BibSonomy. 

The rest of the paper is organized as follows: in Section II, we 
introduce some basic notions of the formal concept analysis 
and the fuzzy formal concept analysis. In Section III, we 
describe our tool and the experiment to evaluate our tool. Lastly, 
we conclude the paper with a summary and explain our future 
directions of our research in Section IV. 

II. BASIC NOTIONS OF FCA AND FFCA 

A. Formal concept Analysis 
We introduce the basics of formal concept analysis that is 

given in [4]. 
 
Definition 1. A formal context is a triple K := (G, M, I) consists 
of two finite set of objects G and set of attributes M, and a 

binary-relation I between the objects and the attributes(i.e., I ك 

G ০ M). In order to express that an object g א G has an attribute 

m א M, we write gIm or (g, m) א I.ז 

 
The formal context can be easily represented by a cross-table 

as shown in Table II. In this example, the header of columns is a 
set of attributes as M = {a, b, c, d}, and the header of rows is a 
set of objects as G = {O1, O2, O3, O4}. The binary-relation I is 
represented by putting “X” in the cross-table. For example, 
object “O1” has two attributes “a” and “d”. 

A formal concept has extension and intension which are 
subset of objects and attributes. The extension and the intension 
are derived by two functions, which are defined as; 

intent(A)={mאM | ׊gאA:(g,m)אI}  for A ك G, 

extent(B)={gאG | ׊mאB:(g,m)אI}  for B ك M. 

 
Definition 2. Let (G, M, I) be a context, a formal concept is 

defined as a pair(A, B) with A ك G is called extension, B ك M 

is called intension and intent(A)=B ٿ extent(B)=A. 

 
For example, intension of {O1, O3} is {a} and extension of 

{a} is {O1, O3}, therefore, ({O1, O3}, {a}) is a formal concept. 
We can extract every formal concept in Table II by definition 2. 
The set of all concepts are represented at Table III. 

The concepts are partially ordered by inclusion of 
extension(and intension). For example, extension of C6 include  

Table. II Formal context 

Fig. � Concept lattice of the Table II 
 

 a b c d 
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O1 X   X 

O2  X X  

O3 X  X  

O4   X  

 
Table. III Formal concept of Table II 

 Extensions Intensions 

C1 {} {a, b, c, d} 

C2 {O1} {a, d} 

C3 {O3} {a, c} 

C4 {O2} {b, c} 

C5 {O1, O3} {a} 

C6 {O2, O3, O4} {c} 

C7 {O1, O2, O3, O4} {} 

 

extension of C4 as {O2} ك {O2, O3, O4} and intension of C4 

include intension of C6 as {c} ك {b, c}. 

 
Definition 3. Let (A1, B1) and (A2, B2) be two formal concepts 
of a formal context (G, M, I). (A1, B1), (A2, B2) are partially 
ordered by super-sub relation which is formalized by (A1, B1) ≤ 

(A2, B2) ฻ A1 ك A2 (฻ B1 ك B2). 

 
Definition 4. A concept lattice of a formal context K is a set 
B(C) of all formal concepts of K with the partial order ≤, 

denoted as Lؔ(B(C),≤).  

 
In Fig 2, a formal concept C6 ({O2, O3, O4}, {c}) has two 

direct sub-concepts such as C3({O3}, {a, c}) and C4({O2}, {b, 
c}). The concept C4 has a direct sub-concept C1({}, {a, b, c, 

d}). 

Fig. � Formal concept lattice of Table IV(c) 

Usually a data set would be expressed by each attribute with 
a value in range of the attribute which is similar to a table of 
relational database. In that case, many-valued context can be 
used, but formal context can not express these kinds of data.  

 
Definition 5. A many-valued context (G, M, V, I) is composed 
of a set G of objects, a set M of attributes, a set  V of attribute 

values and a ternary-relation I between G, M and V(i.g., I ك G 

০ M ০ V). An element of I, (g, m, w) א I indicates the attribute 

m has the value w for the objet g.  
 

Table. IV Example of conceptual scaling 

 height (cm) 

P1 173 

P2 150 

P3 171 

P4 190 

(a) Many-valued context 
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height(H) small normal large 

H < 155 X   

155 ≤ H < 180  X  

180 ≤ H   X 

(b) Scale context 
 

 small normal Large 

P1  X  

P2 X   

P3  X  

P4   X 

(c) Derived context 
Table IV(a) shows a simple example of many-valued context 

that consists of object set G = {P1, P2, P3, P4}, attribute set M 
= {height} and the ternary-relation I is represented as numeric 
values “173, 150, 171, 190”. In order to extract formal concepts 
from the many-valued context, each attribute of the 
many-valued context should be transformed into a formal 
context(is called derived context (Table IV(c)) based on scale 
context. This procedure is called conceptual scaling. Table IV 
shows some contexts related to conceptual scaling. Fig 3 shows 
concept lattice for Table IV(c). 

 
Definition 6. A scale context Sm := (Gm, Mm, Im) for the 
attribute m of a many-valued context is a formal context with 

m(G) ك Gm. The objects of a scale context are called scale 

values and the attributes are called scale attributes.  

B. Fuzzy Formal Concept Analysis 
We introduce some definitions of fuzzy formal concept 

analysis based on [3]. 
 

Definition 7. A fuzzy formal context is a triple K := (G, M, I = 

φ(G ০ M)) where G is a finite set of objects, M is a finite set of 

attributes, and I is a fuzzy set on domain G ০ M. Each relation 

(g, m) א I has a membership value μ(g, m) in [0,1].ז 

 
A fuzzy formal context can also be represented as a 

cross-table as presented in Table V. The context has objects as 
G = {O1, O2, O3, O4}. It also has attributes as M = {a, b, c, d}. 
Each relation between objects and attributes is represented by a 
membership value. 

 
Table. V Fuzzy formal context 

 a b C d 

O1 0.8 0.12 0.61 0.6 

O2 0.9 0.85 0.13 0.1 

O3 0.1 0.14 0.87 0.1 

O4 0.6 0.12 0.13 0.3 
 

Table. VI Fuzzy formal context with T = [0.5, 1.0] 

 a b c d 

O1 0.8 — 0.61 0.6 

O2 0.9 0.85 — — 

O3 — — 0.87 — 

O4 0.6 — — — 
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A confidence threshold T has an interval [t1, t2], where 0 ≤ t1 
< t2 ≤ 1. By using the confidence threshold T, we can eliminate 
some relations that are out of the interval values from a given 
fuzzy context. The confidence threshold T can be set by user 
according to the application or the domain knowledge. For 
instance, Table VI shows a fuzzy formal context with T = [0.5, 
1.0].  

Table. VII Fuzzy formal concepts of Table VI 

 Extents with membership value Intents 

C1 {} {a, b, c, d} 

C2 {O1(0.6) } {a, c, d} 

C3 {O2(0.85)} {a, b} 

C4 {O1(0.61), O3(0.87)} {c} 

C5 {O1(0.8), O2(0.9),O4(0.6)} {a} 

C6 {O1(1.0),O2(1.0),O3(1.0),O4(1.0)} {} 
 
Definition 8. Given a fuzzy formal context K := (G, M, I) and a 

confidence threshold T=[t1, t2], we define FI(A) = {m א M | ׊g 

 : B א m׊ | G א G and FE(B) = {g ك A : t1 ≤ μ(g, m) ≤ t2} for A א

t1 ≤ μ(g, m) ≤ t2} for B ك M. A fuzzy formal concept (or fuzzy 

concept) of a fuzzy formal context (G, M, I) with a confidence 

threshold T is a pair (Af = φ(A), B) where A ك G, B ك M, FI(A) 

= B and FE(B) = A. A and B are extents and intents of the fuzzy 

formal concept, respectively. Each object gאφ(A) has a 

membership μg defined as; 

 
Fig. � Fuzzy concept lattice of the Table VI 

 

min ( , )g m B
g mμ μ

∈
=  (1) 

where μ(g, m) is a membership value between object g and 
attribute m, which is defined in I. Note that if B = {} then μg = 1 
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for every g.ז 

The memberships between attributes and objects of a fuzzy 
formal concept indicate the grade of relationships between the 
objects and the fuzzy formal concept. According to the fuzzy 
set theory[15], the intersection of membership values between 
an object and all attributes of the fuzzy formal concept should 
be the minimum of these membership values. 

According to the definition 8, all fuzzy formal concepts are 
extracted from Table VI and listed in Table VII. As shown from 
the Table VII, in C3, an object O2 has “0.85” as a membership 
value that is calculated by the equation (1) of definition 6. In C5, 
O2 has “0.9” as a membership value, because, the C5 has only 
one attribute named “a”. 

 
Definition 9. Let (φ(A1 ), B1) and (φ(A2), B2) be two fuzzy 
concepts of a fuzzy formal context (G, M, I). (φ(A1 ), B1 ) is the 
sub-concept of (φ(A2), B2), denoted as (φ(A1), B1) ≤ (φ(A2), B2), 

if and only if, φ(A1 ) ك φ(A2) (฻ B2 ك B1). ז 

 
Definition 10. A fuzzy concept lattice of a fuzzy formal context 
K with a confidence threshold T is a set F(K) of all fuzzy 
concepts of K with the partial order ≤ with the confidence 

threshold T.ז 

 
Based on definition 3 and 4, we can construct a fuzzy 

concept lattice(Fig. 4) for Table VI. 
We extended the concept covered algorithm and the 

interaction algorithm based on the above definitions [16]. 
Algorithm 1 accomplish extracting all fuzzy concepts from 
given context, and calculating membership values between the 
objects and the attribute of the fuzzy concepts. The fuzzy 
formal concepts extracted from Algorithm 1 are constructed by 
using Algorithm 2. 

 
Algorithm 1. Extracting fuzzy concepts with 
membership values between the objects and the 
attributes of the fuzzy concepts 

Input: Fuzzy Formal Context K := (G, M, I = φ(G ০ M)) 

h a confidence threshold T wit
Output: The set of C of all fuzzy concepts of K 
 

1. C := {(FE(M), M)} 
2. setMembershipValue((FE(M), M)) 

3. for each g א G 

4.     for each (X, Y) א C 

5.          Inters:=Y ת FI({g}) 

6.            if Inters different from any concept intent in C 
then 

7.              C:= C׫{(FI(Inters), Inters)} 

8.              setMemebershipValue((FI(Inters), Inters))  
9.          end if 
10.   end for 
11. end for 
function setMemebershipValue((X, Y)) 
Input: A fuzzy concept (X, Y) 
 

1. for each x א X 

2.      min = 0.0 

3.     for each y א Y  

4.           if( (x, y) < min ) then 
5.               min = (x, y) 
6.               x.membershipValue = min; 
7.           end if  
8.     end for 
9. end for 

 
Algorithm 2. Constructing fuzzy concept lattice 

Input: Fuzzy Formal context K=(G, M,  I = φ(G ০ M)) 

and C = F(K) that is a set of all fuzzy concepts in K 
Output: Fuzzy Concept Lattice L = (C, E)  
 
1. Find C with the algorithm 1 
2. XCovering Edges (C, K) 

INTERNATIONAL JOURNAL OF COMPUTERS 
Issue 3, Volume 2, 2008

284



 
function XCoveringEdges (C, K) 
Input: A set of fuzzy concepts C and a fuzzy formal 
context K 
 

1.  for each (X, Y) א C 

2.       Set count of any concept in C to 0 

3.       for each m א M \ Y 

4.            inters := X ת FE({m}) 

5.            Find (X1, Y1) א C such that X1 = inters 

6.            count(X1, Y1):= count(X1, Y1) + 1 
7.            if(|Y1|-|Y|) = count(X1, Y1) then 
8.               Add edge (X1, Y1) � (X, Y) to E 
9.            end if 
10.     end for 
11. end for 

III. FUZZY FCA-WIZARD AND EXPERIMENT 
In this section, we explain our tool, “Fuzzy FCA-Wizard” 

supporting fuzzy formal concept analysis approach, and some 
experiments show usefulness and potentiality of our tool.  

A. Fuzzy FCA-Wizard  
As shown in Fig 5, Fuzzy FCA-Wizard is composed of two 

main components which are Core Component and UI 
Components.  

Core Components have modules to handle three internal data 
model such as fuzzy formal context, fuzzy formal concept and 
fuzzy concept lattice.  Fuzzy Context Handler Component 
handles fuzzy formal context like a way of importing and 
exporting raw data(as csv format file) and transforming the file 
into the fuzzy formal context. Fuzzy Concept Extractor 
Component extracts all formal concepts from imported fuzzy 
formal context with a threshold. Fuzzy Lattice Constructor 
Component constructs a fuzzy concept lattice by a way of 
extracting the sub-super relations between the fuzzy formal 
concepts which are provided in the fuzzy concept extractor 
component.  

UI Components provide some functionality for browsing the 
fuzzy concepts and the fuzzy concept lattice, and editing the 
fuzzy context. The UI Components have three sub-views. 
Fuzzy  

INTERNATIONAL JOURNAL OF COMPUTERS 
Issue 3, Volume 2, 2008

285



  

 
Fig. � Architecture of Fuzzy Formal Concept Analysis Wizard 

 

 
Fig. � Screenshot of Fuzzy Formal Concept Analysis Wizard 
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Context View represents a fuzzy formal context model 
converted from Fuzzy Context Component. Also it can allow 
editing table, like a MS excel(Fig 6(a)). Fuzzy Concept List 
View represents all fuzzy formal concepts which are provided 
in the fuzzy concept component(Fig 6(b)). Fuzzy Lattice View 
shows the fuzzy concept lattice model graphically by using 
JPower Graph API [17] (Fig 6(c)). 

In the Fuzzy FCA-Wizard, there are three data models such 
as fuzzy context, fuzzy concept and fuzzy lattice. The fuzzy 
context model is composed of two finite nonempty sets of 
objects and attributes and relationship between them and it is 
implemented by bitset for the improvement in performance. 
According to the definition 8, the fuzzy concept model 
indicates a pair of a set of objects with corresponding 
memberships and a set of attributes. The fuzzy lattice model is a 
line diagram that is implemented by graph API. 

B. Experiment 
In this section, we make an experiment with Fuzzy 

FCA-Wizard based on user and tag data sets that are extracted 
from BibSonomy, social bookmarking system. Table VIII and 
IX show the data sets for some arbitrary users and tags that are 
gathered in BibSonomy. 

In order to construct fuzzy lattice, we first transform these 
data sets into a fuzzy formal context as shown in Table X. In 
Table X, relations between user and tag are represented by 
membership values, which are calculated by a membership 
function. The membership function is derived by tag frequency 
as; 

                        
( , )( , )

_ (
freq g mg m

total freq g
μ =

)
 (2) 

The frequency of a tag m for a given user g (i.e., freq(g, m)) 
is the number of time the given tag uses by the user. The total 
frequency of a user g(i.e., total_freq(g)) is a summation of all 
tags frequency used by the user g.  For example, a membership 
value of U1 and opeonsource is real number “0.033”(Table X). 

 
Table. VIII Total frequency of tags 

 Total frequency of tags 

U1 3,469 

U2 14,613 

U3 6,362 

U4 2,540 

Table. IX Frequencies of tags 

 
Fig. � Density of membership values and corresponding confidence thresholds 

 software opensource java web 

U11 305 290 115 75 

U22 941 77 891 44 

U33 118 40 36 326 

U44 6 50 35 70 
 

Table. X Fuzzy formal context 

 software opensource java web 

U1 0.088 0.033 0.084 0.022 

U2 0.064 0.061 0.005 0.003 

U3 0.019 0.006 0.006 0.051 

U4 0.002 0.014 0.020 0.028 
 

Table. XI Fuzzy formal contexts with thresholds 
 software opensource java web 

U1 — — — — 
U2 — — 0.005 0.003 
U3 — 0.006 0.006 — 
U4 0.002 — — — 

(a) A fuzzy context with T = [0.0, 0.01] 
 

 software opensource java web 
U1 — 0.033 — 0.022 
U2 — — — — 
U3 0.019 — — — 
U4 — 0.014 0.020 0.028 

(b) A fuzzy context with T = [0.01, 0.04] 
 

 software opensource java web 
U1 0.088 — 0.084 — 
U2 0.064 0.061 — — 
U3 — — — 0.051 
U4 — — — — 

(c) A fuzzy context with T = [0.04, 0.09] 
 

 
1 U1 : http://www.bibsonomy.org/user/timo 
2 U2 : http://www.bibsonomy.org/user/gresch 
3 U3 : http://www.bibsonomy.org/user/walterra 
4 U4 : http://www.bibsonomy.org/user/ewomant 
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Fig. �Fuzzy formal lattice of Table XI(a) 

 

 
Fig. �Fuzzy formal lattice of Table XI(b) 
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In this experiment, we constructed fuzzy concept lattices per 
confidence threshold. The steps are described as follows :  
1) Preprocessing; in this step, we transformed Table VIII and 

Table IX into a fuzzy formal context as a table X with the 
membership function(2). For example, a membership 
value of between a user U2 and a tag software is a real 
number “0.064” that is calculated by 941 divided by 
14,613(such as freq(U2, software)/total_freq(U2)). The 
membership values of the fuzzy formal context are in the 
range from “0.002” to “0.088”.  

2) Selecting Confidence Threshold T; we selected out three 
confidence thresholds as T1=[0.0,0.01], T2=[0.01,0.04] 
and T3=[0.04,0.09] according to the density of 
membership values(Fig 7).  

3) Classifying given data into Fuzzy Formal Concept 
Lattices; The confidence thresholds are applied to the 
fuzzy formal context(Table X)  and  we constructed three 
fuzzy concept lattices from the applied fuzzy formal 
contexts(Fig 8-10).  

IV. CONCLUSION 
Data Mining(also known as Knowledge Discovery) is 

defined as “the non-trivial extraction of implicit, previously 
unknown, and potentially useful information from data”[18]. It 
includes not only methods for extracting information from the 
given data, but also visualizing the information. In these days, 

mechanism for interacting between human and machinery is 
also considered to a part of data mining[19, 20]. However, it 
becomes almost impossible to manually analyze huge amounts 
and various kinds of data that can be crisp or exist 
fuzzy/vagueness for extracting and discovering valuable 
information and knowledge.  

Therefore, we need assistances in the well defined Fuzzy 
FCA tool’s functionalities. In this paper, we introduce basic 
notions of FCA and Fuzzy FCA, and develop the Fuzzy Formal 
Concept Analysis Wizard(Fuzzy FCA-Wizard). In order to 
evaluate usefulness of Fuzzy FCA-Wizard, we experiment on 
our tool with users and tags data extracted from the online 
social tagging system such as BibSonomy. 

In this paper, we introduced a Formal Concept Analysis and 
a Fuzzy Formal Concept Analysis, and developed Fuzzy 
Formal Concept Analysis Wizard to analysis and extract 
implicit information from given vague data. We have an 
experiment which has demonstrated how Fuzzy FCA-Wizard 
can discover implicit knowledge as classified Fuzzy Concept 
Lattices. This paper describes the process and supporting tool 
of knowledge discovery in extracting fuzzy concepts from 
fuzzy context. It can be applied to some interesting areas such 
as traditional data mining, semantic web mining and so on. 

 
Fig. �� Fuzzy formal lattice of Table XI(C) 
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