
About wave algorithms for network flows
problems

Laura A. Ciupală

Abstract— In this paper, we focus on using wave

implementations in order to reduce the time complexity of some
algorithms that solve the most important network flow problems. We
describe wave implementations of known algorithms for the
maximum flow problem, for the minimum cost flow problem and for
the minimum flow problem.

First, we present a wave preflow algorithm for determining a
minimum flow. This algorithm was developed by Ciupală and it is a
special implementation of the generic preflow algorithm developed
by Ciurea and Ciupală. The wave preflow algorithm is a hybrid
between the FIFO preflow algorithm and the highest-label preflow
algorithm for minimum flow. It examines the active nodes in
nonincreasing order of their distance labels and the node examination
terminates when either the node deficit becomes zero or the node is
relabeled. The wave preflow algorithm for minimum flow runs in
O(n3) time.

Next, we present the wave algorithm for the maximum flow
problem developed by Tarjan. He described a preflow method that is
simpler than Karzanov's first preflow method for finding a blocking
flow. It is known that a maximum flow can be determined by
computing O(n) blocking flows. Consequently, by selecting the
nodes in some specific order, wave algorithm developed by Tarjan
computes a blocking flow in O(n2) time and a maximum flow in
O(n3) time.

Finally, we describe the wave implementation of the cost scaling
algorithm proposed by Goldberg and Tarjan. By examining the active
nodes carefully, the wave implementation, developed also by
Goldberg and Tarjan, improves the running time of the cost scaling
algorithm from O(n2m log(nB) to O(n3log(nB)).

Keywords— Maximum flow, Minimum flow, Minimum cost
flow, Network algorithms, Network flows.

I. INTRODUCTION
ETWORK flow problems are a group of network
optimization problems with widespread and diverse

applications. The literature on network flow problems is
extensive. Over the past 50 years researchers have made
continuous improvements to algorithms for solving several
classes of problems. From the late 1940s through the 1950s,
researchers designed many of the fundamental algorithms for

network flow, including methods for maximum flow and
minimum cost flow problems. In the next decades, there are
many research contributions concerning improving the
computational complexity of network flow algorithms by
using enhanced data structures, techniques of scaling the
problem data etc.

Manuscript received December 9, 2008: Revised version received

December 9, 2008. This work was supported in part by the AT CNCSIS Grant
nr. 6GR/2008.

L. A. Ciupală is from Transilvania University, Braşov, Romania. She is
within the Department of Computer Science, phone: +40 268 414016; fax:
+40 268 414016; e-mail: laura_ciupala@yahoo.com,
laura.ciupala@unitbv.ro).

One of the reasons for which the maximum flow problem
and that minimum cost flow problem were studied so
intensively is the fact that they arise in a wide variety of
situations and in several forms.

II. MINIMUM FLOW PROBLEM
Although it has its own applications, the minimum flow

problem was not dealt so often as the maximum flow ([1], [2],
[15], [16], [17], [18], [20], [21]) and the minimum cost flow
problem ([1], [2], [5], [21], [22]).

There are many problems that occur in economy that can be
reduced to minimum flow problems.

For instance, we present the machine setup problem. A job
shop needs to perform p tasks on a particular day. It is known
the start time π(i) and the end time π’(i) for each task i,
i = 1,..., p. The workers must perform these tasks according to
this schedule so that exactly one worker performs each task. A
worker cannot work on two jobs at the same time. It is known
the setup time π2(i, j) required for a worker to go from task i
to task j. We wish to find the minimum number of workers to
perform the tasks.

We can formulate this problem as a minimum flow problem
in the network G = (N, A, l, c, s, t), determined in the
following way:

N = N1 ∪ N2 ∪ N3 ∪ N4,
N1 = {s},
N2 = {i | i=1,...,p},
N3 = {i’ | i’=1,...,p},
N4 = {t},
A = A1 ∪ A2 ∪ A3 ∪ A4,
A1 = {(s, i) | i∈N2},
A2 = {(i, i’) | i, i’=1,...,p},
A3 = {(i’, j) | π’(i’)+π2(i’, j)≤π(j)},
A4={(i’, t) | i’∈N3},
l(s, i)=0, c(s, i)=1, for any (s, i)∈A1,
l(i, i’)=1, c(i, i‘)=1, for any (i, i’)∈A2,
l(i’, j)=0, c(i’, j)=1, for any (i’, j)∈A3,
l(i’, t)=0, c(i’, t)=1, for any (i’, t)∈A4.

 N

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 2, 2008

291

We solve the minimum flow problem in the network

G=(N, A, l, c, s, t) and the value of the minimum flow is the
minimum number of workers that can perform the tasks.

The minimum flow problem in a network can be solved in
two phases:

1. establishing a feasible flow, if there is one
2. from a given feasible flow, establish the minimum

flow.
The first phase, i.e. the problem of determining a feasible

flow, can be reduced to a maximum flow problem (for details
see [1]).

For the second phase of the minimum flow problem there
are three approaches:

1. using decreasing path algorithms (see [12], [13])
2. using preflow algorithms (see [4], [7], [8], [9], [10],

[12], [13])
3. using minimax algorithm (see [2], [11]).

The decreasing path algorithms maintain mass balance
constraints at every node of the network other than the source
node and the sink node. These algorithms decrease flow
along paths from the source node to the sink node. By
determining the decreasing paths with respect to different
selection rules, different algorithms were developed.

The preflow algorithms allow that some nodes have
deficits. These algorithms select nodes with deficits and
reduce their deficit by sending flow from the node backward
toward the source node or forward toward the sink node. By
imposing different rules for selecting nodes with deficits,
different preflow algorithms were obtained.

The third approach for solving the minimum flow problem
consists in using the minimax algorithm which determines a
minimum flow in a network by computing a maximum flow
from the sink node to the source node in the residual
network.

The wave algorithm for the minimum flow problem
described in this section is part of the second class, which
consists in the preflow algorithms that are more efficient and
more versatile than the decreasing path algorithms.

A. Notation and Definitions
Given a capacitated network G = (N, A, l, c, s, t) with a

nonnegative capacity c(i, j) and with a nonnegative lower
bound l(i, j) associated with each arc (i, j)∈A. We distinguish
two special nodes in the network G: a source node s and a
sink node t.

Let n=|N|, m = |A| and C = max { c(i, j) | (i, j) ∈ A}.
A flow is a function f : A →R+ satisfying the next

conditions:

f(s, N) - f(N, s) = v (1)
f(i, N) - f(N, i) = 0, i ≠ s,t (2)
f(t, N) - f(N, t) = -v (3)
l(i, j) ≤ f(i, j) ≤ c(i, j), (i, j)∈A (4)

for some v ≥ 0, where

f(i, N) = Σj f(i, j), i∈N

and
f(N, i) = Σj f(j, i), i∈N.

We refer to v as the value of the flow f.
The minimum flow problem is to determine a flow f for

which v is minimized. So, the objective is to send as little
flow as possible through the network G from the source node
s to the sink node t.

For the minimum flow problem, a preflow is a function
f : A →R+ satisfying the next conditions:

f(i, N) - f(N, i) ≤ 0, i ≠ s,t (5)
l(i, j) ≤ f(i, j) ≤ c(i, j), (i, j)∈A (6)

Let f be a preflow. We define the deficit of a node i∈N in

the following manner:

e(i) = f(i, N) - f(N, i) (7)

Thus, for the minimum flow problem, for any preflow f,
we have:

e(i) ≤ 0, i∈N \{s, t}.

We say that a node i∈N \{s, t} is active if e(i) < 0 and
balanced if e(i) = 0.

A preflow f for which
e(i) = 0, i∈N \{s, t}

is a flow. Consequently, a flow is a particular case of
preflow.

For the minimum flow problem, the residual capacity r(i,
j) of any arc (i, j)∈A, with respect to a given preflow f, is
given by

r(i, j) = c(j, i) - f(j, i) + f(i, j) - l(i, j).
By convention, if (i, j)∈A and (j, i)∉A, then we add the arc

(j, i) to the set of arcs A and we set l(j, i) = 0 and c(j, i) = 0.
The residual capacity r(i, j) of the arc (i, j) represents the
maximum amount of flow from the node i to node j that can
be canceled by modifying the flow on both of the arcs (i, j)
and (j, i).

The network Gf = (N, Af) consisting only of those arcs with
strictly positive residual capacity is referred to as the residual
network (with respect to the given preflow f).

In the residual network Gf = (N, Af) the distance function
d : N →N with respect to a given preflow f is a function
from the set of nodes to the nonnegative integers.

We say that a distance function is valid if it satisfies the
following validity conditions:

d(s) = 0
d(j) ≤ d(i) + 1, for every arc (i, j) ∈Af.

We refer to d(i) as the distance label of node i.

Theorem 1.(a) If the distance labels are valid, the distance
label d(i) is a lower bound on the length of the shortest
directed path from the source node s to node i in the residual
network.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 2, 2008

292

 (b) If d(t) ≥ n, the residual network contains no directed
path from the source node s to the sink node t.

Proof. (a) Let P = (s=i1, i2 ,…, ik , ik+1=i) be any path of
length k from node s to node i in the residual network. The
validity conditions imply that:

 d(i2) ≤ d(i1) + 1 = d(s)+1 = 1
 d(i3) ≤ d(i2) + 1 ≤ 2
 d(i4) ≤ d(i3) + 1 ≤ 3

….
 d(ik+1) ≤ d(ik) + 1 ≤ k.

(b) We proved that d(t) is a lower bound on the length of the
shortest path from the source node s to the sink node t in the
residual network and we know that no directed path can
contain more than (n-1) arcs. Consequently, if d(t) ≥ n, then
the residual network contains no directed path from s to t.

We say that the distance labels are exact if for each node i,
d(i) equals the length of the shortest path from node s to node
i in the residual network.

We refer to an arc (i, j) from the residual network as an
admissible arc if d(j) = d(i) + 1; otherwise it is inadmissible.

We refer to a node i with e(i) < 0 as an active node. We
adopt the convention that the source node and the sink node
are never active.

B. The Generic Preflow Algorithm for Minimum Flow
This algorithm was developed by Ciurea and Ciupală in

[13] and it begins with a feasible flow and sends back as
much flow, as it is possible, from the sink node to the source
node. Because the algorithm decreases the flow on individual
arcs, it does not satisfy the mass balance constraint (1), (2),
(3) at intermediate stages. In fact, it is possible that the flow
entering in a node exceeds the flow leaving from it. Such a
node is an active node because is has a strictly negative
deficit.

The basic operation of the generic preflow algorithm is to
select an active node and to send the flow entering in it back,
closer to the source. For measuring closeness, the generic
preflow algorithm for minimum flow uses the distance labels
d(⋅). Suppose that j is a node with strictly negative deficit
selected by the algorithm. If it exists an admissible arc (i, j),
it pulls flow on this arc; otherwise it relabels the node j in
order to create at least one admissible arc entering in the node
j. The generic preflow algorithm for minimum flow repeats
this process until the network contains no more active nodes,
which means that the preflow is actually a flow. Moreover, it
is a minimum flow.

The generic preflow algorithm for the minimum flow
problem is the following:

Generic Preflow Algorithm;
Begin

let f be a feasible flow in network G;
compute the exact distance labels d(⋅) in the residual
network Gf;

if t is not labeled then
f is a minimum flow

else
begin

for each arc (i, t)∈A do
 f(i, t) := l(i, t);

d(t) := n;
while the network contains an active node do
begin

select an active node j;
pull/relabel(j);

end
end

end.

procedure pull/relabel(j);
begin

if the network contains an admissible arc (i, j) then
pull g = min(-e(j), r(i, j)) units of flow from node j to

node i;
else d(j) := min{ d(i) | (i, j) ∈Af }+1

end;

 We refer to a pull of g units of flow on the admissible arc
(i, j) as canceling if it deletes the arc (i, j) from the residual
network; otherwise it is a noncanceling pull.

Theorem 2. ([11]) If there is a feasible flow in the network G
= (N, A, l, c, s, t), the wave preflow algorithm computes
correctly a minimum flow.

Theorem 3. ([11]) The generic preflow algorithm runs in
O(n2m) time.

The generic preflow algorithm for minimum flow does not

specify any rule for selecting active nodes. By specifying
different rules we can develop many different algorithms,
which can have better running times then the generic preflow
algorithm. For example, we could select active nodes in FIFO
order, or we could always select the active node with the
greatest distance label, or the active node with the minimum
distance label, or the active node selected most recently or
least recently, or the active node with the largest deficit or we
could select any of active nodes with a sufficiently large
deficit.

At an iteration, the generic preflow algorithm for minimum
flow selects a node, say node j, and performs a canceling or a
noncanceling pull, or relabels the node. If the algorithm
performs a canceling pull, then node j might still be active,
but, in the next iteration, the algorithm may select another
active node for performing a pull or a relabel operation. We
can establish the rule that whenever the algorithm selects an
active node, it keeps pulling flow from that node until either
its deficit becomes zero or the algorithm relabels the node.
We refer to a sequence of canceling pulls followed either by
a noncanceling pull or a relabel operation as a node
examination.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 2, 2008

293

C. The Wave Preflow Algorithm
The wave algorithm for minimum flow is a special

implementation of the generic preflow algorithm for
minimum flow.

The highest-label preflow algorithm for minimum flow
examines (described in [7]) always an active node with the
highest distance label. The FIFO preflow algorithm
(developed in [11]) examines active nodes in FIFO order.
The wave algorithm, described in this paragraph, is a hybrid
between these two previous preflow algorithms and performs
passes over active nodes. In each pass, it examines all the
active nodes in nonincreasing order of their distance labels
(like the highest-label preflow algorithm) and the node
examination terminates when either the node deficit becomes
zero or the node is relabeled (like in the FIFO preflow
algorithm). In order to do this, it maintains two priority
queues L and L1, both with priority d. The nodes that become
active during the initialization are added to L. The algorithm
always selects the active node with the highest priority from
L and pulls flow toward the source node, adding the newly
active nodes in L1. When L becomes empty, all active nodes
from L1 are moved in L. The algorithm repeats the same
process until both L and L1 become empty (i.e., until during a
pass it relabels no node). Consequently, there are no active
nodes and the preflow is a flow. Moreover, it is a minimum
flow.

The wave preflow algorithm for the minimum flow
problem is the following:

Wave Preflow Algorithm;
Begin
 let f be a feasible flow in network G;
 compute the exact distance labels d(⋅) in the residual
network Gf;
 if t is not labeled then
 f is a minimum flow
 else
 begin
 L := Ø;

for each arc (i, t)∈A do
begin

f(i, t) := l(i, t);
 if (e(i)<0) and (i ≠ s) then
 add i to the rear of L;
 end;
 d(t) := n;
 L1 := Ø;
 while (L ≠ Ø) and (L1 ≠ Ø) do
 begin
 if L = Ø then
 begin
 L := L1;
 L1 := Ø;
 end;
 remove the node j from the front of the queue L;
 pull/relabel(j);
 end
 end

end.

procedure pull/relabel(j);
begin
 select the first arc (i, j) that enters in node j;
 B := 1;
 repeat
 if (i, j) is an admissible arc then
 begin
 pull g = min(-e(j), r(i, j)) units of flow from node j to
 node i;
 if (i ∉ L1) and (i ≠ s) and (i ≠ t) then
 add i to the rear of L1;
 end;
 if e(j) < 0 then
 if (i, j) is not the last arc entering in node j then
 select the next arc (i, j) that enters in node j
 else
 begin
 d(j) := min{ d(i) | (i, j) ∈Af }+1;
 B := 0;
 end;
until (e(j) = 0) or (B = 0);
if e(j) < 0 then
 add j to the rear of L1;
end;

Theorem 4. If there is a feasible flow in the network
G = (N, A, l, c, s, t), the wave preflow algorithm computes
correctly a minimum flow.

Proof. The correctness of the wave preflow algorithm
follows from the correctness of the generic preflow algorithm
for minimum flow (for details see [11]).

Theorem 5. The wave preflow algorithm runs in O(n3) time.

Proof. This theorem can be proved in a manner similar to the
proof of the complexity of the FIFO preflow algorithm for
the minimum flow (for details see [11]).

III. MAXIMUM FLOW PROBLEM
The maximum flow problem is one of the most

fundamental problems in network flow theory and it was
studied extensively. The importance of the maximum flow
problem is due to the fact that it arises in a wide variety of
situations and in several forms. Sometimes the maximum
flow problem occurs as a subproblem in the solution of more
difficult network problems, such as the minimum cost flow
problem or the generalized flow problem. The maximum
flow problem also arises in a number of combinatorial
applications that on the surface might not appear to be
maximum flow problems at all. The problem also arises
directly in problems as far reaching as machine scheduling,
the assignment of program modules to computer processors,
the rounding of census data in order to retain the
confidentiality of individual households, tanker scheduling

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 2, 2008

294

and several others.
The maximum flow problem was first formulated and

solved using the well known augmenting path algorithm by
Ford and Fulkerson in 1956. Since then, two types of
maximum flow algorithms have been developed: augmenting
path algorithms and preflow algorithms:

1) The augmenting path algorithms maintain mass
balance constraints at every node of the network other
than the source node and the sink node. These
algorithms incrementally augment flow along paths
from the source node to the sink node. By determining
the augmenting paths with respect to different
selection rules, different algorithms were developed.

2) The preflow algorithms flood the network so that
some nodes have excesses. These algorithms
incrementally relieve flow from nodes with excesses
by sending flow from the node forward toward the
sink node or backward toward the source node. By
imposing different rules for selecting nodes with
excesses, different preflow algorithms were obtained.
These algorithms are more versatile and more efficient
than the augmenting path algorithms.

A. Notation and Definitions
Without any loss of generality, we can consider a network

with zero lower bounds, because any maximum flow problem
in a network with positive lower bounds can be transformed
in an equivalent maximum flow problem in a network with
zero lower bounds (for details see [1]).

Let G = (N, A, c, s, t) be a capacitated network with a
nonnegative capacity c(i, j) associated with each arc (i, j)∈A.
We distinguish two special nodes in the network G: a source
node s and a sink node t.

Let n=|N|, m = |A| and C = max {c(i, j) | (i, j) ∈ A}.
A flow is a function f : A →R+ satisfying the next

conditions:

f(s, N) - f(N, s) = v (8)
f(i, N) - f(N, i) = 0, i ≠ s,t (9)
f(t, N) - f(N, t) = -v (10)
0 ≤ f(i, j) ≤ c(i, j), (i, j)∈A (11)

for some v ≥ 0
We refer to v as the value of the flow f.
The maximum flow problem is to determine a flow f for

which v is maximized.
For the maximum flow problem, a preflow is a function

f : A →R+ satisfying the next conditions:

f(i, N) - f(N, i) ≥ 0, i ≠ s,t (12)
0 ≤ f(i, j) ≤ c(i, j), (i, j)∈A (13)

Let f be a preflow. We define the excess of a node i∈N in

the following manner:

e(i) = f(i, N) - f(N, i) (14)

Thus, for the maximum flow problem, for any preflow f,
we have:

e(i) ≥ 0, i∈N \{s, t}.
We say that a node i∈N \{s, t} is active if e(i) > 0 and

balanced if e(i) = 0.
A preflow f for which

e(i) = 0, i∈N \{s, t}
is a flow. Consequently, a flow is a particular case of
preflow.

For the maximum flow problem, the residual capacity
r(i, j) of any arc (i, j)∈A, with respect to a given preflow f, is
given by

r(i, j) = c(i, j) - f(i, j) + f(j, i).
By convention, if (i, j)∈A and (j, i)∉A, then we add the arc

(j, i) to the set of arcs A and we set c(j, i) = 0. The residual
capacity r(i, j) of the arc (i, j) represents the maximum
amount of additional flow that can be sent from the node i to
node j using both of the arcs (i, j) and (j, i).

The network Gf = (N, Af) consisting only of those arcs with
strictly positive residual capacity is referred to as the residual
network (with respect to the given preflow f).

In the residual network Gf = (N, Af) the distance function
d : N →N with respect to a given preflow f is a function
from the set of nodes to the nonnegative integers.

We say that a distance function is valid if it satisfies the
following validity conditions:

d(t) = 0
d(i) ≤ d(j) + 1, for every arc (i, j) ∈Af.

We refer to d(i) as the distance label of node i.

Theorem 6.([1])(a) If the distance labels are valid, the
distance label d(i) is a lower bound on the length of the
shortest directed path from node i to sink node t in the
residual network.
 (b) If d(s) ≥ n, the residual network contains no directed
path from the source node s to the sink node t.

A preflow is blocking if it saturates an arc on every path
from s to t.

B. The Wave Algorithm
The wave method for maximum flow, developed by Tarjan

in [21], finds a blocking preflow and gradually converts it
into a blocking flow by balancing nodes, in successive
forward and backward passes over the network.

Each node is in one of the two states: unblocked or
blocked. An unblocked node can become blocked but not
vice versa. We balance an unblocked node i by increasing the
outgoing flow if i is unblocked and decreasing the incoming
flow if i is blocked. More precisely, we balance an unblocked
node i by repeating the following step until e(i) = 0 (the
balancing succeeds) or there is no unsaturated arc (i, j) such
that j is unblocked (the balancing fails):

INCREASING STEP. Let (i, j) be an unsaturated arc such
that j is unblocked. Increase f(i, j) by min{c(i, j) - f(i, j), e(i)}.
We balance a blocked node i by repeating the following step
until e(i) = 0 (such a balancing always succeeds):

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 2, 2008

295

DECREASING STEP. Let (k, i) be an arc of positive flow.
Decrease f(k, i) by min{f(k, i), e(i)}.

To find a blocking flow, we begin with a preflow that
saturates every arc out of s and is zero on all other arcs, make
s blocked and every other node unblocked, and repeat
increase flow followed by decrease flow until there are no
unbalanced nodes.

Increase flow. Scan the nodes other than s and t in
topological order, balancing each node i that is unbalanced
and unblocked when it is scanned; if balancing fails, make i
blocked.

Decrease flow. Scan the nodes other than s and t in reverse
topological order, balancing each node that is unbalanced and
blocked when it is scanned.

Theorem 7. The wave algorithm correctly computes a
blocking flow in O(n2) time and a maximum flow in O(n3)
time.

Proof. The method maintains the invariant that if i is blocked,
every path from i to t contains a saturated arc. Since s is
blocked initially, every preflow constructed by the algorithm
is blocking. Scanning in topological order during increase
flow guarantees that after such a step there are no unblocked,
unbalanced nodes. Similarly each node blocked before a
decrease flow step is balanced after the step and remains
balanced during the next increase step, if any. Thus each
increase flow step except the last blocks at least one node,
and the method halts after at most n-1 iterations of increase
flow and decrease flow, having balanced all nodes except s
and t and thus having produced a blocking flow.

There are at most (n-2)(n-1) balancings. The flow on an
arc (i, j) first increases (while j is unblocked), the decreases
(while j is blocked). Each increasing step either saturates an
arc or terminates a balancing, each decreasing step either
decreases the flow on an arc to zero or terminates a
balancing. Thus there are at most 2m+(n-2)(n-1) increasing
and decreasing steps.

To implement the method efficiently, we maintain for each
node i the value of e(i) and a bit indicating whether i is
unblocked or blocked. To balance an unblocked node i, we
examine the arcs out of i, beginning with the last arc
previously examined and increase the flow on each arc to
which the increasing step applies, until e(i) = 0 or we run out
of arcs (the balancing fails). Balancing a blocked node is
similar. With such an implementation the method takes O(n2)
time to find a blocking flow, including the time to
topologically order the nodes. Thus a maximum flow is
found in O(n3) time.

When using the wave algorithm to find the maximum
flow, we can use the layered structure of the level graphs to
find each blocking flow in O(m+k) time, where k is the
number of balancings, eliminating the O(n2) overhead for
scanning balanced nodes. This may give an improvement in

practice, though the time bound is still O(n2) in the worst
case.

IV. MINIMUM COST FLOW
The minimum cost flow problem, as well as one of its

special cases which is the maximum flow problem, is one of
the most fundamental problems in network flow theory and it
was studied extensively. The importance of the minimum cost
flow problem is also due to the fact that it arises in almost all
industries, including agriculture, communications, defense,
education, energy, health care, medicine, manufacturing,
retailing and transportation. Indeed, minimum cost flow
problem are pervasive in practice.

A. Notation and Definitions
Let G = (N, A) be a directed graph, defined by a set N of n

nodes and a set A of m arcs. Each arc (i, j)∈A has a capacity
c(i, j) and a cost b(i, j). We associate with each node i∈N a
number v(i) which indicates its supply or demand depending
on whether v(i) > 0 or v(i) < 0. In the directed network
G = (N, A, c, b, v), the minimum cost flow problem is to
determine the flow f(i, j) on each arc (i, j)∈A which

minimize ∑
∈Aji

jifjib
),(

),(),((15)

subject to

 ∑∑

∈∈

∈∀=−
AijjAjij

Niivijfjif
),(|),(|

),(),(),((16)

Ajijicjif ∈∀≤≤),(),,(),(0 . (17)

A flow f satisfying the conditions (16) and (17) is referred
to as a feasible flow.

Let C denote the largest magnitude of any supply/demand
or finite arc capacity, that is

C = max(max{v(i) | i∈N}, max{c(i, j) | (i, j)∈A,
c(i, j)<∞})

and let B denote the largest magnitude of any arc cost, that is

B = max{b(i, j) | (i, j)∈A}.

 The arc adjacency list or, shortly, the arc list of a node i is
the set of arcs emanating from that node, that is:

A(i) = {(i, j) | (i, j)∈A}.

The residual network G(f) = (N, A(f)) corresponding to a
flow f is defined as follows. We replace each arc (i, j)∈A by
two arcs (i, j) and (j, i). The arc (i, j) has the cost b(i, j) and the
residual capacity r(i, j) = c(i, j) - f(i, j) and the arc (j, i) has the
cost b(j, i) = -b(i, j) and the residual capacity r(j, i) = f(i, j).
The residual network consists only of arcs with positive
residual capacity.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 2, 2008

296

We shall assume that the minimum cost flow problem
satisfies the following assumptions:

Assumption 1. The network is directed.

This assumption can be made without any loss of
generality. In [1] it is shown that we can always fulfil this
assumption by transforming any undirected network into a
directed network.

Assumption 2. All data (cost, supply/demand and capacity)
are integral.

This assumption is not really restrictive in practice because
computers work with rational numbers which we can convert
into integer numbers by multiplying by a suitably large
number.

Assumption 3. The network contains no directed negative cost
cycle of infinite capacity.

If the network contains any such cycles, there are flows
with arbitrarily small costs.

Assumption 4. All arc costs are nonnegative.

This assumption imposes no loss of generality since the arc
reversal transformation described in [1] converts a minimum
cost flow problem with negative arc costs to one with
nonnegative arc costs. This transformation can be done if the
network contains no directed negative cost cycle of infinite
capacity.

Assumption 5. The supplies/demands at the nodes satisfy the
condition and the minimum cost flow problem has

a feasible solution.

0)(=∑
∈Ni

iv

Assumption 6. The network contains an uncapacitated
directed path (i.e. each arc in the path has infinite capacity)
between every pair of nodes.

We impose this condition by adding artificial arcs (1, i) and
(i, 1) for each i∈N and assigning a large cost and infinite
capacity to each of these arcs. No such arc would appear in a
minimum cost solution unless the problem contains no
feasible solution without artificial arcs.

We associate a real number π(i) with each node i∈N. We
refer to π(i) as the potential of node i. These node potentials
are generalizations of the concept of distance labels that we
used in section III.

For a given set of node potentials π, we define the reduced
cost of an arc (i, j) as

bπ (i, j) = b(i, j) – π(i) + π(j).

The reduced costs are applicable to the residual network as
well as to the original network.

Theorem 8. ([1]) (a) For any directed path P from node h to
node k we have

∑∑
∈∈

=
PjiPji

jibjib
),(),(

),(),(π – π(h) + π(k)

(b) For any directed cycle W we have

∑∑
∈∈

=
WjiWji

jibjib
),(),(

).,(),(π

Theorem 9. (Reduced Costs Optimality Conditions) ([1]) A
feasible solution f is an optimal solution of the minimum cost
flow problem if and only if some set of node potentials π
satisfy the following reduced cost optimality conditions:

bπ(i, j) ≥ 0 for every arc (i, j) in the residual network
G(f).

Theorem 10.(Complementary Slackness Optimality
Conditions) ([1]) A feasible solution f is an optimal solution
of the minimum cost flow problem if and only if for some set
of node potentials π, the reduced cost and flow values satisfy
the following complementary slackness optimality conditions
for every arc (i, j)∈A:

 If bπ(i, j) > 0, then f(i, j) = 0 (18)
 If 0 < f(i, j) < c(i, j), then bπ(i, j) =0 (19)
 If bπ(i, j) < 0, then f(i, j) = c(i, j) (20)

A pseudoflow is a function f : A →R+ satisfying the only

conditions (14).
 For any pseudoflow f, we define the imbalance of node i
as

 e(i) = v(i) + f(N, i) - f(i, N), for all i∈N.

 If e(i) > 0 for some node i, we refer to e(i) as the excess of
node i; if e(i) < 0, we refer to -e(i) as the deficit of node i. If
e(i) = 0 for some node i, we refer to node i as the balanced.
 The residual network corresponding to a pseudoflow is
defined in the same way that we define the residual network
for a flow.
 The optimality conditions can be extended for pseudoflows.
A pseudoflow f* is optimal if there are some set of node
potentials π such that the following reduced cost optimality
conditions are satisfied:

bπ(i, j) ≥ 0 for every arc (i, j) in the residual network
G(f*).

We refer to a flow or a pseudoflow f as ε-optimal for some

ε>0 if for some node potentials π, the pair (f, π) satisfies the
following ε-optimality conditions:

 If bπ(i, j) > ε, then f(i, j) = 0 (21)
 If - ε ≤ bπ(i, j) ≤ ε, then 0 ≤ f(i, j) ≤ c(i, j) (22)
 If bπ(i, j) < -ε, then f(i, j) = c(i, j) (23)

These conditions are relaxations of the (exact)

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 2, 2008

297

complementary slackness optimality conditions (18) - (20) and
they reduce to complementary slackness optimality conditions
when ε = 0.

B. The cost scaling algorithm
The cost scaling algorithm developed by Goldberg and

Tarjan treats ε as a parameter and iteratively obtains ε-optimal
flows for successively smaller values of ε. Initially, ε = B and
any feasible flow is ε-optimal. The algorithm then performs
cost scaling phases by repeatedly applying an improve-
approximation procedure that transforms an ε-optimal flow
into an ε/2-optimal flow. After 1 + [log(nB)] cost scaling
phases, ε < 1/n and the algorithm terminates with an optimal
flow.

The cost scaling algorithm is the following:

Cost Scaling Algorithm;
Begin
 π := 0;
 ε = B;
 while ε ≥ 1/n do
 begin
 improve-approximation(ε, f, π);
 ε := ε/2;
 end;
end.

procedure improve-approximation(ε, f, π);
begin
 for(i, j)∈A do
 if bπ(i, j)> 0 then
 f(i, j) := 0;
 else if bπ(i, j) < 0 then
 f(i, j) := c(i, j);
 compute nodes imbalances;
 while the network contains an active node do
 begin
 select an active node i;
 push/relabel(j);
 end;
end;

procedure push/relabel(i);
begin
 if the residual network contains an admissible (i, j) then

 push g = min(e(i), r(i, j)) units of flow from node
i to node j;

else
 π(i) := π(i) + ε/2;

end;

 We refer to a push of g units of flow on the admissible
arc (i, j) as saturating if it saturates the arc (i, j); otherwise it
is a nonsaturating push.
 The improve-approximation procedure transforms an ε-
optimal flow into an ε/2-optimal flow. This transformation
consists in converting an ε-optimal flow into an ε/2-optimal

pseudoflow and then gradually converting the pseudoflow into
a flow while always maintaining ε/2-optimality of the
solution.

We refer to a node i with e(i) > 0 as an active node and say
that an arc (i, j) in the residual network is admissible if - ε/2 ≤
bπ(i, j) < 0. The admissible network is a subgraph of the
residual network consisting only in admissible arcs.

The basic operation in the improve-approximation
procedure is to select an active node i and to perform pushes
on admissible arcs (i, j) emanating from node i. When the
network contains no admissible arc, the algorithm updates the
node potential π(i) in order to create new admissible arcs
emanating from node i.

To identify admissible arcs emanating from node i, we use
the following data structure: for each node i, we maintain a
current-arc (i, j) which is the current candidate to test for
admissibility. Initially, the current-arc of node i is the first arc
in its arc list A(i). To determine an admissible arc emanating
from node i, the algorithm checks whether the node's current-
arc is admissible, and if not, choose the next arc in the arc list
as the current arc. Consequently, the algorithm passes through
the arc list starting with the current-arc until it finds an
admissible arc or it reaches the end of the arc list. If the
algorithm reaches the end of the arc list without finding an
admissible arc, it declares that the node has no admissible arc.
At this point, it relabels node i and again sets its current-arc to
the first arc in the arc list A(i).

Theorem 11. ([1]) The cost scaling algorithm solves correctly
the minimum cost flow problem in O(n2mlog(nB)) time.

 The cost scaling algorithm starts with ε = B and reduces ε
by a factor of 2 in every scaling phase until ε < 1/n. As a
consequence, ε could become nonintegral during the
execution of the algorithm. By slightly modifying the
algorithm, we can ensure that ε remains integral. We do so
multiplying all the arc costs by n, by setting the initial value of
ε equal to 2[log(nB)] and by terminating the algorithm when ε <
1. It is possible to show that the modified algorithm would
yield an optimal flow for the minimum cost flow problem in
the same computational time.

C. Wave implementation
In an iteration of the improve-approximation procedure, the

algorithm selects a node, say node i, and either performs a
saturating push or a nonsaturating push from this node, or
relabels the node. If the algorithm performs a saturating push,
node i might still be active, but the algorithm might select
another node in the next iteration. We shall henceforth assume
that whenever the algorithm selects a node, it keeps pushing
flow from this node until either its excess becomes zero or the
node becomes relabeled. If we adopt this node selection
strategy, the algorithm will perform several saturating pushes
from a particular node followed either by a nonsaturating push
or a relabel operation. We refer to this sequence of operations
as a node examination.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 2, 2008

298

The wave implementation is a special implementation of the
improve-approximation procedure that selects active nodes for
node examinations in a specific order. The algorithm uses the
fact that the admissible network is acyclic. Consequently, it is
possible to put the nodes in topological order. For a given
topological order, we define the rank of a node as n minus its
number in the topological sequence.

Observe that each push carries flow from anode with higher
rank to a node with lower rank. Also observe that pushes do
not change the topological ordering of nodes since they do not
create new admissible arcs. The relabel operations, however,
might create new admissible arcs and consequently, might
effect the topological ordering of nodes.

The wave implementation sequentially examines nodes in
the topological order and if the node being examined is active,
it performs push/relabel steps at the node until either the node
becomes inactive or it becomes relabeled. When examined in
this order, the active nodes push their excesses to nodes with
lower rank, which in turn push their excesses to nodes with
even lower rank and so on. A relabel operation changes the
topological order; so after each relabel operation the algorithm
modifies the topological order and again starts to examine
nodes according to the new topological order. If within n
consecutive node examinations, the algorithm performs no
relabel operation, then at this point all the active nodes have
discharged their excesses and the algorithm has obtained a
flow. Since the algorithm performs O(n2) relabel operations,
we immediately obtain a bound of O(n3) on the number of
node examinations. Each node examination entails at most one
nonsaturating push. Consequently, the wave algorithm
performs O(n3) nonsaturating pushes per execution of
improve-approximation procedure.

We need to describe a procedure for obtaining a topological
order of nodes after each relabel operation. It is well known
that we can determine a topological ordering of nodes in a
network with n nodes and m arcs in O(m) time (for details see
[1]). So, we can use an O(m) algorithm for obtaining an initial
topological ordering of the nodes. Suppose that while
examining node i, the algorithm relabels this node. At this
point, the network contains no incoming admissible arc at
node i. We claim that if we move node i from its present
position to the first position in the previous topological order
leaving all other nodes intact, we obtain a topological order of
the new admissible network. This method works because: (1)
after the relabeling, node i has no incoming admissible arc, so
assigning it to the first place in the topological order is
justified; (2) the relabeling, node i might create some new
outgoing admissible arcs (i, j) but since node i is first in the
topological order, any such arc satisfies the conditions of a
topological ordering; and (3) the rest of the admissible
network does not change, so the previous order remains valid.
Therefore, the algorithm maintains an ordered set of nodes
and examines nodes in this order. Whenever it ralabels a node
i, the algorithm moves this node to the first place in the order
and again examines nodes in order starting from node i.

We have established the following result:

Theorem 12. ([1]) The wave implementation of the cost
scaling algorithm solves correctly the minimum cost flow
problem in O(n3log(nB)) time.

 Consequently, by examining the active nodes carefully and
thereby reducing the number of nonsaturating pushes, the
wave implementation improve the running time of the generic
implementation of the improve-approximation procedure
from O(n2m) to O(n3) and the running time of the cost scaling
algorithm from O(n2m log(nB) to O(n3log(nB)).

V. CONCLUSION
One of the major aims of any computer science researcher

is to develop more and more efficient algorithms for solving
certain problems. In the domain of network flow theory, first
algorithm for maximum flow and first algorithm for minimum
cost flow were developed more than a half of century ago. The
problem of determining a minimum flow was formulated and
first solved more recently. But since each of these three
problems was formulated, researchers continuously designed
more efficient algorithms for solving them. They
demonstrated how the use of clever data structures and careful
analysis can improve the theoretical performance of network
algorithms. They have revealed the power of methods like
scaling the problem data for improving algorithmic
performance. The researchers have shown that, in some cases,
new insights and simple algorithmic ideas can still produce
better algorithms. In this paper, we used another powerful
approach for improving the algorithmic performance of some
network flow algorithms. We described wave implementations
for algorithms that solve minimum flow problem, maximum
flow problem and minimum cost flow problem. We showed
that, by simply examining the nodes carefully, the wave
implementation of some algorithms can improve their running
time.

Ideas for further improvements should be: to develop wave
implementations for other network flow algorithms and to
combine the wave implementation with the use of some
enhanced data structure in order to produce even more
efficient algorithms.

REFERENCES
[1] R. Ahuja, T. Magnanti and J. Orlin, Network flows. Theory, algorithms

and applications, Prentice Hall, Inc., Englewood Cliffs, NJ, 1993.
[2] J. Bang-Jensen and G. Gutin, Digraphs: Theory, Algorithms and

Applications, Springer-Verlag, London, 2001.
[3] J. Barros, S.D. Servetto, "Network Information Flow with Correlated

Sources", IEEE Transactions on Information Theory, vol. 52(1), pp. 155-
170, 2006.

[4] L. Ciupală, "The wave preflow algorithm for the minimum flow
problem", Proceedings of the 10th WSEAS International Conference on
Mathematical and Computational Methods in Science and Engineering,
2008, pp. 473-476.

[5] L. Ciupală, "A deficit scaling algorithm for the minimum flow problem",
Sadhana Vol.31, No. 3, pp.1169-1174, 2006.

[6] L. Ciupală, "A scaling out-of-kilter algorithm for minimum cost flow",
Control and Cybernetics Vol.34, No.4, pp. 1169-1174, 2005.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 2, 2008

299

[7] L. Ciupală and E. Ciurea, "A highest-label preflow algorithm for the
minimum flow problem", Proceedings of the 11th WSEAS International
Conference on Computers, 2007, pp. 565-569.

[8] L. Ciupală and E. Ciurea, "About preflow algorithms for the minimum
flow problem", WSEAS Transactions on Computer Research vol. 3 nr.1,
pp. 35-41, January 2008.

[9] L. Ciupală and E. Ciurea, "Sequential and parallel deficit scaling
algorithms for the minimum flow in bipartite networks", WSEAS
Transactions on Computer Research vol. 7, pp. 1545-1554, October
2008.

[10] L. Ciupală and E. Ciurea, "An algorithm for the minimum flow problem",
The Sixth International Conference of Economic Informatics, 2003, pp.
167-170.

[11] L. Ciupală and E. Ciurea, "An approach of the minimum flow problem",
The Fifth International Symposium of Economic Informatics, 2001, pp.
786-790.

[12] E. Ciurea and L. Ciupală, "Sequential and parallel algorithms for
minimum flows", Journal of Applied Mathematics and Computing
Vol.15, No.1-2, pp. 53-78, 2004.

[13] E. Ciurea and L. Ciupală, "Algorithms for minimum flows", Computer
Science Journal of Moldova Vol.9, No.3(27), pp. 275-290, 2001.

[14] A. Deshpande, S. Patkar and H. Narayanan, "Submodular Theory Based
Approaches For Hypergraph Partitioning", WSEAS Transactions on
Circuit and Systems, Issue 6, Volume 4, pp. 647-655, 2005.

[15] V. Goldberg and R. E. Tarjan, "A New Approach to the Maximum Flow
Problem", Journal of ACM Vol.35, pp. 921-940, 1988.

[16] S. Fujishige, "A maximum flow algorithm using MA ordering",
Operation Research Letters 31, No. 3, pp. 176-178, 2003.

[17] S. Fujishige and S. Isotani, "New maximum flow algorithms by MA
orderings and scaling", Journal of the Operational Research Society of
Japan 46, No. 3, pp. 243-250, 2003.

[18] S. Kumar and P. Gupta, "An incremental algorithm for the maximum flow
problem", Journal of Mathematical Modelling and Algorithms 2, No.1,
pp. 1-16, 2003.

[19] S. Patkar, H. Sharma and H. Narayanan, "Efficient Network Flow based
Ratio-cut Netlist Hypergraph Partitioning", WSEAS Transactions on
Circuits and Systems vol. 3, no. 1, pp. 47-53, January 2004.

[20] A. Schrijver, "On the history of the transportation and maximum flow
problems", Mathematical Programming 91, No.3, pp. 437-445, 2002.

[21] R. E. Tarjan, Data Structures and Network Algorithms, SIAM,
Philadelphiaa, Pennsylvania, 1983.

[22] K.D. Wayne, "A polynomial Combinatorial Algorithm for Generalized
Minimum Cost Flow", Mathematics of Operations Research, pp. 445-
459, 2002.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 2, 2008

300

