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Abstract— In this paper, we focus on using wave 

implementations in order to reduce the time complexity of some 
algorithms that solve the most important network flow problems. We 
describe wave implementations of known algorithms for the 
maximum flow problem, for the minimum cost flow problem and for 
the minimum flow problem. 

First, we present a wave preflow algorithm for determining a 
minimum flow. This algorithm was developed by Ciupală and it is a 
special implementation of the generic preflow algorithm developed 
by Ciurea and Ciupală. The wave preflow algorithm is a hybrid 
between the FIFO preflow algorithm and the highest-label preflow 
algorithm for minimum flow. It examines the active nodes in 
nonincreasing order of their distance labels and the node examination 
terminates when either the node deficit becomes zero or the node is 
relabeled. The wave preflow algorithm for minimum flow runs in 
O(n3) time. 

Next, we present the wave algorithm for the maximum flow 
problem developed by Tarjan. He described a preflow method that is 
simpler than Karzanov's first preflow method for finding a blocking 
flow. It is known that a maximum flow can be determined by 
computing O(n) blocking flows. Consequently, by selecting the 
nodes in some specific order, wave algorithm developed by Tarjan 
computes a blocking flow in O(n2) time and a maximum flow in 
O(n3) time. 

Finally, we describe the wave implementation of the cost scaling 
algorithm proposed by Goldberg and Tarjan. By examining the active 
nodes carefully, the wave implementation, developed also by 
Goldberg and Tarjan, improves the running time of the cost scaling 
algorithm from O(n2m log(nB) to O(n3log(nB)). 
 

Keywords— Maximum flow, Minimum flow, Minimum cost 
flow, Network algorithms, Network flows.  

I. INTRODUCTION 
ETWORK flow problems are a group of network 
optimization problems with widespread and diverse 

applications. The literature on network flow problems is 
extensive. Over the past 50 years researchers have made 
continuous improvements to algorithms for solving several 
classes of problems. From the late 1940s through the 1950s, 
researchers designed many of the fundamental algorithms for 

network flow, including methods for maximum flow and 
minimum cost flow problems. In the next decades, there are 
many research contributions concerning improving the 
computational complexity of network flow algorithms by 
using enhanced data structures, techniques of scaling the 
problem data etc.  
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One of the reasons for which the maximum flow problem 
and that minimum cost flow problem were studied so 
intensively is the fact that they arise in a wide variety of 
situations and in several forms. 

II. MINIMUM FLOW PROBLEM 
Although it has its own applications, the minimum flow 

problem was not dealt so often as the maximum flow ([1], [2], 
[15], [16], [17], [18], [20], [21]) and the minimum cost flow 
problem ([1], [2], [5], [21], [22]). 

There are many problems that occur in economy that can be 
reduced to minimum flow problems. 

For instance, we present the machine setup problem. A job 
shop needs to perform p tasks on a particular day. It is known 
the start time π(i) and the end time π’(i) for each task i,            
i = 1,..., p. The workers must perform these tasks according to 
this schedule so that exactly one worker performs each task. A 
worker cannot work on two jobs at the same time. It is known 
the setup time π2(i, j) required for a worker to go from task i 
to task j. We wish to find the minimum number of workers to 
perform the tasks. 

We can formulate this problem as a minimum flow problem 
in the network G = (N, A, l, c, s, t), determined in the 
following way: 

 
N = N1 ∪ N2 ∪ N3 ∪ N4, 
N1 = {s},  
N2 = {i | i=1,...,p},  
N3 = {i’ | i’=1,...,p}, 
N4 = {t},  
A = A1 ∪ A2 ∪ A3 ∪ A4,  
A1 = {(s, i) | i∈N2},  
A2 = {(i, i’) | i, i’=1,...,p},  
A3 = {(i’, j) | π’(i’)+π2(i’, j)≤π(j)},  
A4={(i’, t) | i’∈N3}, 
l(s, i)=0, c(s, i)=1, for any (s, i)∈A1,  
l(i, i’)=1, c(i, i‘)=1, for any (i, i’)∈A2,  
l(i’, j)=0, c(i’, j)=1, for any (i’, j)∈A3,  
l(i’, t)=0, c(i’, t)=1, for any (i’, t)∈A4. 

 N
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We solve the minimum flow problem in the network    

G=(N, A, l, c, s, t) and the value of the minimum flow is the 
minimum number of workers that can perform the tasks. 

The minimum flow problem in a network can be solved in 
two phases: 

1. establishing a feasible flow, if there is one 
2. from a given feasible flow, establish the minimum 

flow. 
The first phase, i.e. the problem of determining a feasible 

flow, can be reduced to a maximum flow problem (for details 
see [1]). 

For the second phase of the minimum flow problem there 
are three approaches: 

1. using decreasing path algorithms (see [12], [13]) 
2. using preflow algorithms (see [4], [7], [8], [9], [10], 

[12], [13]) 
3. using minimax algorithm (see [2], [11]). 

The decreasing path algorithms maintain mass balance 
constraints at every node of the network other than the source 
node and the sink node. These algorithms decrease flow 
along paths from the source node to the sink node. By 
determining the decreasing paths with respect to different 
selection rules, different algorithms were developed. 

The preflow algorithms allow that some nodes have 
deficits. These algorithms select nodes with deficits and 
reduce their deficit by sending flow from the node backward 
toward the source node or forward toward the sink node. By 
imposing different rules for selecting nodes with deficits, 
different preflow algorithms were obtained.  

The third approach for solving the minimum flow problem 
consists in using the minimax algorithm which determines a 
minimum flow in a network by computing a maximum flow 
from the sink node to the source node in the residual 
network. 

The wave algorithm for the minimum flow problem 
described in this section is part of the second class, which 
consists in the preflow algorithms that are more efficient and 
more versatile than the decreasing path algorithms.  

A. Notation and Definitions 
Given a capacitated network G = (N, A, l, c, s, t) with a 

nonnegative capacity c(i, j) and with a nonnegative lower 
bound l(i, j) associated with each arc (i, j)∈A. We distinguish 
two special nodes in the network G: a source node s and a 
sink node t. 

Let n=|N|, m = |A| and C = max { c(i, j) | (i, j) ∈ A}. 
A flow is a function f : A →R+ satisfying the next 

conditions: 
 

f(s, N) - f(N, s) = v             (1) 
f(i, N) - f(N, i) = 0, i ≠ s,t           (2) 
f(t, N) - f(N, t) = -v             (3) 
l(i, j) ≤ f(i, j) ≤ c(i, j), (i, j)∈A         (4) 

 
for some v ≥ 0, where 

f(i, N) = Σj f(i, j), i∈N 

and 
f(N, i) = Σj  f(j, i), i∈N. 

We refer to v as the value of the flow f. 
The minimum flow problem is to determine a flow f for 

which v is minimized. So, the objective is to send as little 
flow as possible through the network G from the source node 
s to the sink node t. 

For the minimum flow problem, a preflow is a function       
f : A →R+  satisfying the next conditions: 

 
f(i, N) - f(N, i) ≤ 0, i ≠ s,t           (5) 
l(i, j) ≤ f(i, j) ≤ c(i, j), (i, j)∈A         (6) 

 
Let f be a preflow. We define the deficit of a node i∈N in 

the following manner: 
 

e(i) = f(i, N) - f(N, i)            (7) 
 

Thus, for the minimum flow problem, for any preflow f, 
we have: 

 
e(i) ≤ 0, i∈N \{s, t}. 
 

We say that a node i∈N \{s, t} is active if e(i) < 0 and 
balanced if e(i) = 0. 

A preflow f for which  
e(i) = 0, i∈N \{s, t} 

is a flow. Consequently, a flow is a particular case of 
preflow. 

For the minimum flow problem, the residual capacity r(i, 
j) of any arc (i, j)∈A, with respect to a given preflow f,  is 
given by  

r(i, j)  = c(j, i) - f(j, i) + f(i, j) - l(i, j). 
By convention, if (i, j)∈A and (j, i)∉A, then we add the arc 

(j, i) to the set of arcs A and we set l(j, i) = 0 and c(j, i) = 0. 
The residual capacity r(i, j) of the arc (i, j) represents the 
maximum amount of flow from the node i to node j that can 
be canceled by modifying the flow on both of the arcs (i, j) 
and (j, i). 

The network Gf  = (N, Af) consisting only of those arcs with 
strictly positive residual capacity is referred to as the residual 
network (with respect to the given preflow f). 

In the residual network Gf  = (N, Af) the distance function   
d : N →N  with respect to a given preflow f  is a function 
from the set of nodes to the nonnegative integers.  

We say that a distance function is valid if it satisfies the 
following validity conditions: 

 
d(s) = 0  
d(j) ≤ d(i) + 1, for every arc (i, j) ∈Af.  

 
We refer to d(i) as the distance label of node i. 

 
Theorem 1.(a) If the distance labels are valid, the distance 
label d(i) is a lower bound on the length of the shortest 
directed path from the source node s to node i in the residual 
network. 
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       (b) If d(t) ≥ n, the residual network contains no directed 
path from the source node s to the sink node t. 
 
Proof. (a) Let P = (s=i1, i2 ,…, ik , ik+1=i) be any path of 
length k from node s to node i in the residual network. The 
validity conditions imply that: 
 
   d(i2) ≤ d(i1) + 1 = d(s)+1 = 1 
   d(i3) ≤ d(i2) + 1 ≤ 2 
   d(i4) ≤ d(i3) + 1 ≤ 3 

…. 
   d(ik+1) ≤ d(ik) + 1 ≤ k. 
 
(b) We proved that d(t) is a lower bound on the length of the 
shortest path from the source node s to the sink node t in the 
residual network and we know that no directed path can 
contain more than (n-1) arcs. Consequently, if d(t) ≥ n, then 
the residual network contains no directed path from s to t. 
 

We say that the distance labels are exact if for each node i, 
d(i) equals the length of the shortest path from node s to node 
i  in the residual network. 

We refer to an arc (i, j) from the residual network as an 
admissible arc if d(j) = d(i) + 1; otherwise it is  inadmissible. 

We refer to a node i with e(i) < 0 as an active node. We 
adopt the convention that the source node and the sink node 
are never active. 

B. The Generic Preflow Algorithm for Minimum Flow 
This algorithm was developed by Ciurea and Ciupală in 

[13] and it begins with a feasible flow and sends back as 
much flow, as it is possible, from the sink node to the source 
node. Because the algorithm decreases the flow on individual 
arcs, it does not satisfy the mass balance constraint (1), (2), 
(3) at intermediate stages. In fact, it is possible that the flow 
entering in a node exceeds the flow leaving from it. Such a 
node is an active node because is has a strictly negative 
deficit.  

The basic operation of the generic preflow algorithm is to 
select an active node and to send the flow entering in it back, 
closer to the source. For measuring closeness, the generic 
preflow algorithm for minimum flow uses the distance labels 
d(⋅). Suppose that j is a node with strictly negative deficit 
selected by the algorithm. If it exists an admissible arc (i, j), 
it pulls flow on this arc; otherwise it relabels the node j in 
order to create at least one admissible arc entering in the node 
j. The generic preflow algorithm for minimum flow repeats 
this process until the network contains no more active nodes, 
which means that the preflow is actually a flow. Moreover, it 
is a minimum flow. 

The generic preflow algorithm for the minimum flow 
problem is the following: 
 
Generic Preflow Algorithm; 
Begin 

let  f  be a feasible flow in network G; 
compute the exact distance labels d(⋅) in the residual 
network Gf;  

if t is not labeled then 
f  is a minimum flow 

else 
begin 

for each arc (i, t)∈A do 
 f(i, t) := l(i, t); 

d(t) := n; 
while  the network contains an active node do  
begin 

select an active node j; 
pull/relabel(j); 

end 
end 

end. 
 
procedure pull/relabel(j); 
begin 

if the network contains an admissible arc (i, j) then 
pull g = min(-e(j), r(i, j)) units of  flow from node j to 

node i; 
else d(j) := min{ d(i) | (i, j) ∈Af }+1 

end; 
 
 We refer to a pull of g units of flow on the admissible arc 
(i, j) as canceling if it deletes the arc (i, j) from the residual 
network; otherwise it is a noncanceling pull. 
 
Theorem 2. ([11]) If there is a feasible flow in the network G 
= (N, A, l, c, s, t), the wave preflow algorithm computes 
correctly a minimum flow. 
 
Theorem 3. ([11]) The generic preflow algorithm runs in 
O(n2m) time. 

 
The generic preflow algorithm for minimum flow does not 

specify any rule for selecting active nodes. By specifying 
different rules we can develop many different algorithms, 
which can have better running times then the generic preflow 
algorithm. For example, we could select active nodes in FIFO 
order, or we could always select the active node with the 
greatest distance label, or the active node with the minimum 
distance label, or the active node selected most recently or 
least recently, or the active node with the largest deficit or we 
could select any of active nodes with a sufficiently large 
deficit. 

At an iteration, the generic preflow algorithm for minimum 
flow selects a node, say node j, and performs a canceling or a 
noncanceling pull, or relabels the node. If the algorithm 
performs a canceling pull, then node j might still be active, 
but, in the next iteration, the algorithm may select another 
active node for performing a pull or a relabel operation. We 
can establish the rule that whenever the algorithm selects an 
active node, it keeps pulling flow from that node until either 
its deficit becomes zero or the algorithm relabels the node. 
We refer to a sequence of canceling pulls followed either by 
a noncanceling pull or a relabel operation as a node 
examination. 
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C. The Wave Preflow Algorithm 
The wave algorithm for minimum flow is a special 

implementation of the generic preflow algorithm for 
minimum flow.  

The highest-label preflow algorithm for minimum flow 
examines (described in [7]) always an active node with the 
highest distance label. The FIFO preflow algorithm 
(developed in [11]) examines active nodes in FIFO order. 
The wave algorithm, described in this paragraph, is a hybrid 
between these two previous preflow algorithms and performs 
passes over active nodes. In each pass, it examines all the 
active nodes in nonincreasing order of their distance labels 
(like the highest-label preflow algorithm) and the node 
examination terminates when either the node deficit becomes 
zero or the node is relabeled (like in the FIFO preflow 
algorithm). In order to do this, it maintains two priority 
queues L and L1, both with priority d. The nodes that become 
active during the initialization are added to L. The algorithm 
always selects the active node with the highest priority from 
L and pulls flow toward the source node, adding the newly 
active nodes in L1. When L becomes empty, all active nodes 
from L1 are moved in L. The algorithm repeats the same 
process until both L and L1 become empty (i.e., until during a 
pass it relabels no node). Consequently, there are no active 
nodes and the preflow is a flow. Moreover, it is a minimum 
flow. 

The wave preflow algorithm for the minimum flow 
problem is the following: 
 
Wave Preflow Algorithm; 
Begin 
 let f  be a feasible flow in network G; 
 compute the exact distance labels d(⋅) in the residual 
network Gf; 
 if t is not labeled then  
 f is a minimum flow 
 else  
 begin 
  L := Ø; 

for each arc (i, t)∈A do 
begin 

f(i, t) := l(i, t); 
   if  (e(i)<0) and (i ≠ s) then 
    add i to the rear of L; 
  end; 
  d(t) := n; 
  L1 := Ø; 
  while (L ≠ Ø) and (L1 ≠ Ø) do 
  begin 
   if L = Ø then 
   begin 
    L := L1; 
    L1 := Ø; 
   end; 
   remove the node j from the front of  the queue L; 
   pull/relabel(j); 
  end 
  end 

end. 
 
procedure pull/relabel(j); 
begin 
 select the first arc (i, j) that enters in node j; 
 B := 1; 
 repeat 
 if (i, j) is an admissible arc then  
 begin 
  pull g = min(-e(j), r(i, j)) units of flow from node j to 
    node i; 
  if (i ∉ L1) and (i ≠ s) and (i ≠ t) then  
   add i to the rear of L1; 
 end; 
 if e(j) < 0  then  
  if (i, j) is not the last arc entering in node j then 
   select the next arc (i, j) that enters in node j 
  else  
  begin 
   d(j) := min{ d(i) | (i, j) ∈Af }+1; 
   B := 0; 
  end; 
until (e(j) = 0) or (B = 0); 
if  e(j) < 0 then 
 add j to the rear of L1; 
end; 
  
Theorem 4. If there is a feasible flow in the network             
G = (N, A, l, c, s, t), the wave preflow algorithm computes 
correctly a minimum flow. 
 
Proof. The correctness of the wave preflow algorithm 
follows from the correctness of the generic preflow algorithm 
for minimum flow (for details see [11]).  
 
Theorem 5. The wave preflow algorithm runs in O(n3) time. 
 
Proof. This theorem can be proved in a manner similar to the 
proof of the complexity of the FIFO preflow algorithm for 
the minimum flow (for details see [11]).  

III. MAXIMUM FLOW PROBLEM 
The maximum flow problem is one of the most 

fundamental problems in network flow theory and it was 
studied extensively. The importance of the maximum flow 
problem is due to the fact that it arises in a wide variety of 
situations and in several forms. Sometimes the maximum 
flow problem occurs as a subproblem in the solution of more 
difficult network problems, such as the minimum cost flow 
problem or the generalized flow problem. The maximum 
flow problem also arises in a number of combinatorial 
applications that on the surface might not appear to be 
maximum flow problems at all. The problem also arises 
directly in problems as far reaching as machine scheduling, 
the assignment of program modules to computer processors, 
the rounding of census data in order to retain the 
confidentiality of individual households, tanker scheduling 
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and several others. 
The maximum flow problem was first formulated and 

solved using the well known augmenting path algorithm by 
Ford and Fulkerson in 1956. Since then, two types of 
maximum flow algorithms have been developed: augmenting 
path algorithms and preflow algorithms: 

1) The augmenting path algorithms maintain mass 
balance constraints at every node of the network other 
than the source node and the sink node. These 
algorithms incrementally augment flow along paths 
from the source node to the sink node. By determining 
the augmenting paths with respect to different 
selection rules, different algorithms were developed. 

2) The preflow algorithms flood the network so that 
some nodes have excesses. These algorithms 
incrementally relieve flow from nodes with excesses 
by sending flow from the node forward toward the 
sink node or backward toward the source node. By 
imposing different rules for selecting nodes with 
excesses, different preflow algorithms were obtained. 
These algorithms are more versatile and more efficient 
than the augmenting path algorithms.  

A. Notation and Definitions 
Without any loss of generality, we can consider a network 

with zero lower bounds, because any maximum flow problem 
in a network with positive lower bounds can be transformed 
in an equivalent maximum flow problem in a network with 
zero lower bounds (for details see [1]). 

Let G = (N, A, c, s, t) be a capacitated network with a 
nonnegative capacity c(i, j) associated with each arc (i, j)∈A. 
We distinguish two special nodes in the network G: a source 
node s and a sink node t. 

Let n=|N|, m = |A| and C = max {c(i, j) | (i, j) ∈ A}. 
A flow is a function f : A →R+ satisfying the next 

conditions: 
 

f(s, N) - f(N, s) = v             (8) 
f(i, N) - f(N, i) = 0, i ≠ s,t           (9) 
f(t, N) - f(N, t) = -v               (10) 
0 ≤ f(i, j) ≤ c(i, j), (i, j)∈A            (11) 

for some v ≥ 0 
We refer to v as the value of the flow f. 
The maximum flow problem is to determine a flow f for 

which v is maximized. 
For the maximum flow problem, a preflow is a function       

f : A →R+  satisfying the next conditions: 
 

f(i, N) - f(N, i) ≥ 0, i ≠ s,t             (12) 
0 ≤ f(i, j) ≤ c(i, j), (i, j)∈A               (13) 

 
Let f be a preflow. We define the excess of a node i∈N in 

the following manner: 
 
e(i) = f(i, N) - f(N, i)              (14) 

 

Thus, for the maximum flow problem, for any preflow f, 
we have: 

e(i) ≥ 0, i∈N \{s, t}. 
We say that a node i∈N \{s, t} is active if e(i) > 0 and 

balanced if e(i) = 0. 
A preflow f for which  

e(i) = 0, i∈N \{s, t} 
is a flow. Consequently, a flow is a particular case of 
preflow. 

For the maximum flow problem, the residual capacity    
r(i, j) of any arc (i, j)∈A, with respect to a given preflow f,  is 
given by  

r(i, j)  = c(i, j) - f(i, j) + f(j, i). 
By convention, if (i, j)∈A and (j, i)∉A, then we add the arc 

(j, i) to the set of arcs A and we set c(j, i) = 0. The residual 
capacity r(i, j) of the arc (i, j) represents the maximum 
amount of additional flow that can be sent from the node i to 
node j using both of the arcs (i, j) and (j, i). 

The network Gf  = (N, Af) consisting only of those arcs with 
strictly positive residual capacity is referred to as the residual 
network (with respect to the given preflow f). 

In the residual network Gf  = (N, Af) the distance function   
d : N →N  with respect to a given preflow f  is a function 
from the set of nodes to the nonnegative integers.  

We say that a distance function is valid if it satisfies the 
following validity conditions: 

d(t) = 0  
d(i) ≤ d(j) + 1, for every arc (i, j) ∈Af.  

We refer to d(i) as the distance label of node i. 
 

Theorem 6.([1])(a) If the distance labels are valid, the 
distance label d(i) is a lower bound on the length of the 
shortest directed path from node i to sink node t in the 
residual network. 
       (b) If d(s) ≥ n, the residual network contains no directed 
path from the source node s to the sink node t. 
 

A preflow is blocking if it saturates an arc on every path 
from s to t. 

B. The Wave Algorithm 
The wave method for maximum flow, developed by Tarjan 

in [21], finds a blocking preflow and gradually converts it 
into a blocking flow by balancing nodes, in successive 
forward and backward passes over the network. 

Each node is in one of the two states: unblocked or 
blocked. An unblocked node can become blocked but not 
vice versa. We balance an unblocked node i by increasing the 
outgoing flow if i is unblocked and decreasing the incoming 
flow if i is blocked. More precisely, we balance an unblocked 
node i by repeating the following step until e(i) = 0 (the 
balancing succeeds) or there is no unsaturated arc (i, j) such 
that j is unblocked (the balancing fails): 

 
INCREASING STEP. Let (i, j) be an unsaturated arc such 
that j is unblocked. Increase f(i, j) by min{c(i, j) - f(i, j), e(i)}. 
We balance a blocked node i by repeating the following step 
until e(i) = 0 (such a balancing always succeeds): 
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DECREASING STEP.  Let (k, i) be an arc of positive flow. 
Decrease f(k, i) by min{f(k, i), e(i)}. 
 

To find a blocking flow, we begin with a preflow that 
saturates every arc out of s and is zero on all other arcs, make 
s blocked and every other node unblocked, and repeat 
increase flow followed by decrease flow until there are no 
unbalanced nodes. 

 
Increase flow. Scan the nodes other than s and t in 
topological order, balancing each node i that is unbalanced 
and unblocked when it is scanned; if balancing fails, make i 
blocked. 
 
Decrease flow. Scan the nodes other than s and t in reverse 
topological order, balancing each node that is unbalanced and 
blocked when it is scanned. 
 
Theorem 7. The wave algorithm correctly computes a 
blocking flow in O(n2) time and a maximum flow in O(n3) 
time.  
 
Proof. The method maintains the invariant that if i is blocked, 
every path from i to t contains a saturated arc. Since s is 
blocked initially, every preflow constructed by the algorithm 
is blocking. Scanning in topological order during increase 
flow guarantees that after such a step there are no unblocked, 
unbalanced nodes. Similarly each node blocked before a 
decrease flow step is balanced after the step and remains 
balanced during the next increase step, if any. Thus each 
increase flow step except the last blocks at least one node, 
and the method halts after at most n-1 iterations of increase 
flow and decrease flow, having balanced all nodes except s 
and t and thus having produced a blocking flow. 

There are at most (n-2)(n-1) balancings. The flow on an 
arc (i, j) first increases (while j is unblocked), the decreases 
(while j is blocked). Each increasing step either saturates an 
arc or terminates a balancing, each decreasing step either 
decreases the flow on an arc to zero or terminates a 
balancing. Thus there are at most 2m+(n-2)(n-1) increasing 
and decreasing steps.  

To implement the method efficiently, we maintain for each 
node i the value of e(i) and a bit indicating whether i is 
unblocked or blocked. To balance an unblocked node i, we 
examine the arcs out of i, beginning with the last arc 
previously examined and increase the flow on each arc to 
which the increasing step applies, until e(i) = 0 or we run out 
of arcs (the balancing fails). Balancing a blocked node is 
similar. With such an implementation the method takes O(n2) 
time to find a blocking flow, including the time to 
topologically order the nodes. Thus a maximum flow is 
found in O(n3) time. 
 

When using the wave algorithm to find the maximum 
flow, we can use the layered structure of the level graphs to 
find each blocking flow in O(m+k) time, where k is the 
number of balancings, eliminating the O(n2) overhead for 
scanning balanced nodes. This may give an improvement in 

practice, though the time bound is still O(n2) in the worst 
case. 

IV. MINIMUM COST FLOW 
The minimum cost flow problem, as well as one of its 

special cases which is the maximum flow problem, is one of 
the most fundamental problems in network flow theory and it 
was studied extensively. The importance of the minimum cost 
flow problem is also due to the fact that it arises in almost all 
industries, including agriculture, communications, defense, 
education, energy, health care, medicine, manufacturing, 
retailing and transportation. Indeed, minimum cost flow 
problem are pervasive in practice. 

A. Notation and Definitions 
Let G = (N, A) be a directed graph, defined by a set N of n 

nodes and a set A of m arcs. Each arc (i, j)∈A has a capacity 
c(i, j) and a cost b(i, j). We associate with each node i∈N a 
number v(i) which indicates its supply or demand depending 
on whether v(i) > 0 or v(i) < 0. In the directed network             
G = (N, A, c, b, v), the minimum cost flow problem is to 
determine the flow f(i, j) on each arc (i, j)∈A which 
 

minimize  ∑
∈Aji

jifjib
),(

),(),(         (15) 

 
subject to 
 
   ∑∑

∈∈

∈∀=−
AijjAjij

Niivijfjif
),(|),(|

),(),(),(     (16) 

Ajijicjif ∈∀≤≤ ),(),,(),(0 .      (17) 
 

A flow f satisfying the conditions (16) and (17) is referred 
to as a feasible flow. 

Let C denote the largest magnitude of any supply/demand 
or finite arc capacity, that is 
 

C = max(max{v(i) | i∈N}, max{c(i, j) | (i, j)∈A,        
c(i, j)<∞}) 

 
and let B denote the largest magnitude of any arc cost, that is 
 

B = max{b(i, j) | (i, j)∈A}. 
 
 The arc adjacency list or, shortly, the arc list of a node i is 
the set of arcs emanating from that node, that is: 
 

A(i) = {(i, j) | (i, j)∈A}. 
 

The residual network G(f) = (N, A(f)) corresponding to a 
flow f is defined as follows. We replace each arc (i, j)∈A by 
two arcs (i, j) and (j, i). The arc (i, j) has the cost b(i, j) and the 
residual capacity r(i, j) = c(i, j) - f(i, j) and the arc (j, i) has the 
cost b(j, i) = -b(i, j) and the residual capacity r(j, i) = f(i, j). 
The residual network consists only of arcs with positive 
residual capacity. 
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We shall assume that the minimum cost flow problem 
satisfies the following assumptions: 

 
Assumption 1. The network is directed. 

This assumption can be made without any loss of 
generality. In [1] it is shown that we can always fulfil this 
assumption by transforming any undirected network into a 
directed network. 
 
Assumption 2. All data (cost, supply/demand and capacity) 
are integral. 

This assumption is not really restrictive in practice because 
computers work with rational numbers which we can convert 
into integer numbers by multiplying by a suitably large 
number. 
 
Assumption 3. The network contains no directed negative cost 
cycle of infinite capacity. 

If the network contains any such cycles, there are flows 
with arbitrarily small costs. 
 
Assumption 4. All arc costs are nonnegative. 

This assumption imposes no loss of generality since the arc 
reversal transformation described in [1] converts a minimum 
cost flow problem with negative arc costs to one with 
nonnegative arc costs. This transformation can be done if the 
network contains no directed negative cost cycle of infinite 
capacity. 
 
Assumption 5. The supplies/demands at the nodes satisfy the 
condition and the minimum cost flow problem has 

a feasible solution. 

0)( =∑
∈Ni

iv

 
Assumption 6. The network contains an uncapacitated 
directed path (i.e. each arc in the path has infinite capacity) 
between every pair of nodes. 

We impose this condition by adding artificial arcs (1, i) and 
(i, 1) for each i∈N and assigning a large cost and infinite 
capacity to each of these arcs. No such arc would appear in a 
minimum cost solution unless the problem contains no 
feasible solution without artificial arcs. 
 

We associate a real number π(i) with each node i∈N. We 
refer to π(i) as the potential of node i. These node potentials 
are generalizations of the concept of distance labels that we 
used in section III. 

For a given set of node potentials π, we define the reduced 
cost of an arc (i, j) as 
 

bπ (i, j) = b(i, j) – π(i) + π(j). 
 

The reduced costs are applicable to the residual network as 
well as to the original network. 
 
Theorem 8. ([1]) (a) For any directed path P from node h to 
node k we have 
 

∑∑
∈∈

=
PjiPji

jibjib
),(),(

),(),(π – π(h) + π(k) 

 
(b) For any directed cycle W we have 
 

∑∑
∈∈

=
WjiWji

jibjib
),(),(

).,(),(π  

 
Theorem 9. (Reduced Costs Optimality Conditions) ([1]) A 
feasible solution f is an optimal solution of the minimum cost 
flow problem if and only if some set of node potentials π 
satisfy the following reduced cost optimality conditions: 
 

bπ(i, j) ≥ 0  for every arc (i, j) in the residual network 
G(f). 

 
Theorem 10.(Complementary Slackness Optimality 
Conditions) ([1]) A feasible solution f is an optimal solution 
of the minimum cost flow problem if and only if for some set 
of node potentials π, the reduced cost and flow values satisfy 
the following complementary slackness optimality conditions 
for every arc (i, j)∈A: 

 
  If bπ(i, j) > 0, then f(i, j) = 0         (18) 
  If 0 < f(i, j) < c(i, j), then bπ(i, j) =0       (19) 
  If bπ(i, j) < 0, then f(i, j) = c(i, j)        (20) 
 
A pseudoflow is a function f : A →R+  satisfying the only 

conditions (14). 
 For any pseudoflow f, we define the imbalance of node i 
as 
 

 e(i) = v(i) + f(N, i) - f(i, N),  for all i∈N. 
 

 If e(i) > 0 for some node i, we refer to e(i) as the excess of 
node i; if e(i) < 0, we refer to -e(i) as the deficit of node i. If 
e(i) = 0 for some node i, we refer to node i as the balanced.  
 The residual network corresponding to a pseudoflow is 
defined in the same way that we define the residual network 
for a flow. 
 The optimality conditions can be extended for pseudoflows. 
A pseudoflow f* is optimal if there are some set of node 
potentials π such that the following reduced cost optimality 
conditions are satisfied: 
 

bπ(i, j) ≥ 0  for every arc (i, j) in the residual network 
G(f*). 

 
We refer to a flow or a pseudoflow f as ε-optimal for some 

ε>0 if for some node potentials π, the pair (f, π) satisfies the 
following ε-optimality conditions: 

 
  If bπ(i, j) > ε, then f(i, j) = 0          (21) 
  If - ε ≤ bπ(i, j) ≤ ε, then 0 ≤ f(i, j) ≤ c(i, j)     (22) 
  If bπ(i, j) < -ε, then f(i, j) = c(i, j)        (23) 
 
These conditions are relaxations of the (exact) 
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complementary slackness optimality conditions (18) - (20) and 
they reduce to complementary slackness optimality conditions 
when ε = 0. 

B. The cost scaling algorithm 
The cost scaling algorithm developed by Goldberg and 

Tarjan treats ε as a parameter and iteratively obtains ε-optimal 
flows for successively smaller values of ε. Initially, ε = B and 
any feasible flow is ε-optimal. The algorithm then performs 
cost scaling phases by repeatedly applying an improve-
approximation procedure that transforms an ε-optimal flow 
into an ε/2-optimal flow. After 1 + [log(nB)] cost scaling 
phases, ε < 1/n and the algorithm terminates with an optimal 
flow. 

The cost scaling algorithm is the following: 
 

Cost Scaling Algorithm; 
Begin 
 π := 0; 
 ε = B; 
 while ε ≥ 1/n do 
 begin 
  improve-approximation(ε, f, π); 
  ε := ε/2; 
 end; 
end. 

 
procedure improve-approximation(ε, f, π); 
begin 
 for(i, j)∈A do 
 if bπ(i, j)> 0 then  
  f(i, j) := 0; 
 else if bπ(i, j) < 0 then 
     f(i, j) := c(i, j); 
 compute nodes imbalances; 
 while the network contains an active node do 
 begin 
  select an active node i; 
  push/relabel(j); 
 end; 
end; 

 
procedure push/relabel(i); 
begin 
 if the residual network contains an admissible (i, j) then  

   push g = min(e(i), r(i, j)) units of flow from node 
i to node j; 

else 
 π(i) := π(i) + ε/2; 

end; 
 
 We refer to a push of g units of flow on the admissible 
arc (i, j) as saturating if it saturates the arc (i, j); otherwise it 
is a nonsaturating push. 
 The improve-approximation procedure transforms an ε-
optimal flow into an ε/2-optimal flow. This transformation 
consists in converting an ε-optimal flow into an ε/2-optimal 

pseudoflow and then gradually converting the pseudoflow into 
a flow while always maintaining ε/2-optimality of the 
solution. 

We refer to a node i with e(i) > 0 as an active node and say 
that an arc (i, j) in the residual network is admissible if - ε/2 ≤ 
bπ(i, j) < 0. The admissible network is a subgraph of the 
residual network consisting only in admissible arcs. 

The basic operation in the improve-approximation 
procedure is to select an active node i and to perform pushes 
on admissible arcs (i, j) emanating from node i. When the 
network contains no admissible arc, the algorithm updates the 
node potential π(i) in order to create new admissible arcs 
emanating from node i. 

To identify admissible arcs emanating from node i, we use 
the following data structure: for each node i, we maintain a 
current-arc (i, j) which is the current candidate to test for 
admissibility. Initially, the current-arc of node i is the first arc 
in its arc list A(i). To determine an admissible arc emanating 
from node i, the algorithm checks whether the node's current-
arc is admissible, and if not, choose the next arc in the arc list 
as the current arc. Consequently, the algorithm passes through 
the arc list starting with the current-arc until it finds an 
admissible arc or it reaches the end of the arc list. If the 
algorithm reaches the end of the arc list without finding an 
admissible arc, it declares that the node has no admissible arc. 
At this point, it relabels node i and again sets its current-arc to 
the first arc in the arc list A(i).  

 
Theorem 11. ([1]) The cost scaling algorithm solves correctly 
the minimum cost flow problem in O(n2mlog(nB)) time. 
 
 The cost scaling algorithm starts with ε = B and reduces ε 
by a factor of 2 in every scaling phase until ε < 1/n. As a 
consequence, ε could become nonintegral during the 
execution of the algorithm. By slightly modifying the 
algorithm, we can ensure that ε remains integral. We do so 
multiplying all the arc costs by n, by setting the initial value of 
ε equal to 2[log(nB)] and by terminating the algorithm when ε < 
1. It is possible to show that the modified algorithm would 
yield an optimal flow for the minimum cost flow problem in 
the same computational time. 

C. Wave implementation 
In an iteration of the improve-approximation procedure, the 

algorithm selects a node, say node i, and either performs a 
saturating push or a nonsaturating push from this node, or 
relabels the node. If the algorithm performs a saturating push, 
node i might still be active, but the algorithm might select 
another node in the next iteration. We shall henceforth assume 
that whenever the algorithm selects a node, it keeps pushing 
flow from this node until either its excess becomes zero or the 
node becomes relabeled. If we adopt this node selection 
strategy, the algorithm will perform several saturating pushes 
from a particular node followed either by a nonsaturating push 
or a relabel operation. We refer to this sequence of operations 
as a node examination. 
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The wave implementation is a special implementation of the 
improve-approximation procedure that selects active nodes for 
node examinations in a specific order. The algorithm uses the 
fact that the admissible network is acyclic. Consequently, it is 
possible to put the nodes in topological order. For a given 
topological order, we define the rank of a node as n minus its 
number in the topological sequence. 

Observe that each push carries flow from anode with higher 
rank to a node with lower rank. Also observe that pushes do 
not change the topological ordering of nodes since they do not 
create new admissible arcs. The relabel operations, however, 
might create new admissible arcs and consequently, might 
effect the topological ordering of nodes. 

The wave implementation sequentially examines nodes in 
the topological order and if the node being examined is active, 
it performs push/relabel steps at the node until either the node 
becomes inactive or it becomes relabeled. When examined in 
this order, the active nodes push their excesses to nodes with 
lower rank, which in turn push their excesses to nodes with 
even lower rank and so on. A relabel operation changes the 
topological order; so after each relabel operation the algorithm 
modifies the topological order and again starts to examine 
nodes according to the new topological order. If within n 
consecutive node examinations, the algorithm performs no 
relabel operation, then at this point all the active nodes have 
discharged their excesses and the algorithm has obtained a 
flow. Since the algorithm performs O(n2) relabel operations, 
we immediately obtain a bound of O(n3) on the number of 
node examinations. Each node examination entails at most one 
nonsaturating push. Consequently, the wave algorithm 
performs O(n3) nonsaturating pushes per execution of 
improve-approximation procedure. 

We need to describe a procedure for obtaining a topological 
order of nodes after each relabel operation. It is well known 
that we can determine a topological ordering of nodes in a 
network with n nodes and m arcs in O(m) time (for details see 
[1]). So, we can use an O(m) algorithm for obtaining an initial 
topological ordering of the nodes. Suppose that while 
examining node i, the algorithm relabels this node. At this 
point, the network contains no incoming admissible arc at 
node i. We claim that if we move node i from its present 
position to the first position in the previous topological order 
leaving all other nodes intact, we obtain a topological order of 
the new admissible network. This method works because: (1) 
after the relabeling, node i has no incoming admissible arc, so 
assigning it to the first place in the topological order is 
justified; (2) the relabeling, node i might create some new 
outgoing admissible arcs (i, j) but since node i is first in the 
topological order, any such arc satisfies the conditions of a 
topological ordering; and (3) the rest of the admissible 
network does not change, so the previous order remains valid. 
Therefore, the algorithm maintains an ordered set of nodes 
and examines nodes in this order. Whenever it ralabels a node 
i, the algorithm moves this node to the first place in the order 
and again examines nodes in order starting from node i. 

We have established the following result: 

 
Theorem 12. ([1]) The wave implementation of the cost 
scaling algorithm solves correctly the minimum cost flow 
problem in O(n3log(nB)) time. 
 
 Consequently, by examining the active nodes carefully and 
thereby reducing the number of nonsaturating pushes, the 
wave implementation improve the running time of the generic 
implementation of the improve-approximation  procedure 
from O(n2m) to O(n3) and the running time of the cost scaling 
algorithm from O(n2m log(nB) to O(n3log(nB)). 

V. CONCLUSION 
One of the major aims of any computer science researcher 

is to develop more and more efficient algorithms for solving 
certain problems. In the domain of network flow theory, first 
algorithm for maximum flow and first algorithm for minimum 
cost flow were developed more than a half of century ago. The 
problem of determining a minimum flow was formulated and 
first solved more recently. But since each of these three 
problems was formulated, researchers continuously designed 
more efficient algorithms for solving them. They 
demonstrated how the use of clever data structures and careful 
analysis can improve the theoretical performance of network 
algorithms. They have revealed the power of methods like 
scaling the problem data for improving algorithmic 
performance. The researchers have shown that, in some cases, 
new insights and simple algorithmic ideas can still produce 
better algorithms. In this paper, we used another powerful 
approach for improving the algorithmic performance of some 
network flow algorithms. We described wave implementations 
for algorithms that solve minimum flow problem, maximum 
flow problem and minimum cost flow problem. We showed 
that, by simply examining the nodes carefully, the wave 
implementation of some algorithms can improve their running 
time. 

Ideas for further improvements should be: to develop wave 
implementations for other network flow algorithms and to 
combine the wave implementation with the use of some 
enhanced data structure in order to produce even more 
efficient algorithms.  
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