
1

A Matrix-Less Model for Tracing Software
Requirements to Source Code

Arbi Ghazarian

Abstract—Requirements traceability, regardless of the process
used to produce a software system (e.g., traditional or agile
development process), is a highly desirable quality attribute for
the resulting software product. Building a Requirements Trace-
ability Matrix (RTM) for a software product, which is the basis
for existing approaches to achieving requirements traceability,
works well with traditional software development where a more
formal requirements process is in place. However, with the wide
industry adoption of agile development methodologies, where
requirements are captured and communicated through informal
channels, the applicability of existing traceability approaches to
agile software projects has been strongly restricted. In this paper,
we provide an introduction to the area of requirements trace-
ability and present a matrix-less model to achieving requirements
traceability that is equally applicable to both agile and traditional
software development.

Index Terms—Software Development, Requirements Traceabil-
ity, Traceability Matrix, Traceability Pattern, Traceability Model.

I. INTRODUCTION

THE term ”Requirements Traceability” was first
introduced in 1970s. Since then, it has been defined

in the software engineering literature in numerous ways.
Ramesh and Jarke [17] define requirements traceability as:

”a characteristics of a system in which the requirements
are clearly linked to their sources and to the artifacts created
during the system development life cycle based on these
requirements”

Gotel and Finkelstein [9], define requirements traceability
as:

”the ability to describe and follow the life of a requirement,
in both a forwards and backwards direction (i.e., from its
origin, through its development and specification, to its
subsequent deployment and use, and through periods of
on-going refinement and iteration in any of these phases)”

In another definition, Wright [21] refers to requirements
tracebility as:

”the means whereby software producers can ’prove’ to
their clients that: the requirements have been understood;
the product will fully comply with the requirements; and
the product does not exhibit any unnecessary feature or

A. Ghazarian is with the Department of Computer Science, University of
Toronto, Toronto, ON, M5S 3G4, Canada (phone: 416-444-5209, fax: 417-
978-4765, e-mail: arbi@cs.toronto.edu).

functionality”.

Requirements Traceability is recommended by IEEE stan-
dards such as the IEEE recommended practice for software
requirements specifications (IEEE std 830-1998) and the IEEE
standard for software maintenance (IEEE std 1219-1998).

IEEE standard for software maintenance defines traceability
as:

”the ability of a software to provide a thread from the
requirements to the implementation, with respect to the
specific development and operational environment” [7].

IEEE recommended practice for software requirements
specifications defines the conditions that a software
requirements specification document should satisfy in
order to qualify as being traceable:

”An SRS is traceable if the origin of each of its requirements
is clear and if it facilitates the referencing of each requirement
in future development or enhancement documentation” [8].

Traceability is demanded by several standards, such as the
ISO 15504 and the CMMI. To resppond to the need for
traceability in software projects, over the past decades, numer-
ous techniques have been developed for tracing requirements.
However, most of these techniques have been intended to
work with traditional software development methodologies
and therefore designed under the assumption that a formal
requirements process is in place. The assumed formality of
the traditional development processes is in the sense that
the outcome of the requirements phase is a structured soft-
ware requirements specification and that requirements are
captured and communicated through written documents (i.e.,
a document-centric requirements process) rather than informal
verbal communication.

The wide industry adoption of agile development method-
ologies in the recent years has posed a particular challenge
to the applicability of conventional traceability approaches.
A characteristic of agile methodologies is that requirements
are largely communicated through informal channels, such
as discussions with an on-site customer, rather than more
formal requirements specification documents. The problem
arises from the fact that a prerequisite to conventional require-
ments traceability approaches (e.g., matrix-based approaches)
is the existence of a requirements specification document
with unique identifiers assigned to individual requirements
within the specification. The informal nature of requirements
in agile development methodologies does not satisfy this

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 2, 2008

301

2

basic assumption that existing traceability approaches rely on.
Consequently, existing approaches to requirements traceability
are not suitable for agile software development. Motivated by
this problem, in this paper, we introduce a model for tracing
software requirements that can be seamlessly integrated with
both traditional and agile software development processes.

The rest of this paper is organized into two parts: the
first part of the paper, which consists of sections 2, 3, 4,
and 5, provides an introduction to the area of requirements
traceability. Section 2 explains why traceability is important
for software projects. Section 3 is a discussion of the various
types of requirements traceability. Section 4 discusses the
impacts of traceability on software maintainability. Section
5 is an overview of requirements tracing techniques. In the
second part of the paper, which consists of sections 6, 7,
and 8, we introduce our traceability model and discuss results
from the early evaluation of the proposed model as well as
some characteristics of the proposed approach. Conclusion and
directions for future work follow in Section 9.

II. THE IMPORTANCE OF TRACEABILITY

Inadequate traceability has been identified as a major
factor in project over-runs and failures [4] [12]. On the other
hand, many benefits have been mentioned in the literature for
requirements traceability. These benefits include:

A. Detecting Inconsistencies

Requirements traceability makes it possible to verify that
software requirements have been allocated to their correspond-
ing design, code, and tests [20]. Creating explicit links between
the work products of the various software development activi-
ties such as the requirements specification document, software
architecture, detailed design documents, and test cases makes
it possible to detect inconsistencies.

By inconsistency, we mean that there is an element in the
output of a software development phase or activity, such as a
document or source code, that does not relate to an element
in its predecessor and/or successor phases. Some examples
of such inconsistencies include a software requirement in the
requirements specification document that is not designed into
the software product (i.e, does not have corresponding design
components), a design component that does not have a higher-
level requirement associated with it (i.e., it is an extra feature
not required by the customer), and a software requirement in
the requirements specification document that does not have a
test case associated with it (i.e., it is not covered by a test
case).

B. Accountability

Linking requirements to design, implementation and verifi-
cation artifacts helps in understanding why and how the system
meets the needs of the stakeholders [14] [15] [16] [19]. Trace
data can also be used during internal or external audits to prove
that a requirement was successfully validated by the associated
test cases [20]. These capabilities enhance our confidence to
the software product and improve customer satisfaction.

Requirements traceability information can also be used for
creating subcontracts [19]. Stehle [18] defines traceability from
the perspective of managing a system development effort.
Traceability can be employed to promote a contractor and
contracted method of working. It helps to demonstrate that
each requirement has been satisfied [18] [17]. It also helps
to avoid gold plating (i.e., the addition of expensive and
unnecessary features to a system) [21] [17].

C. Change Management

Documenting the links between requirements and other
system artifacts helps in requirements change management
[20] [10] [14] [15] [16] [19] [2]. Traceability makes it easier
to determine related design elements, and consequently the
parts of the source code that are affected as a result of
a change request. Therefore, it facilitates change impact
analysis. Moreover, it helps to identify the tests that should
be rerun to verify the correct implementation of the change.

D. Quantitative Traceability Analysis

Quantitative analysis can be performed on trace data. The
results of the analysis can be used as a valuable source of
information for managing software projects. For instance, this
information can be used to measure the progress of the project
(e.g., the number or percentage of software requirements that
have been designed, implemented, and tested), or plan different
releases of a software product. It can also be used to more
easily approve project milestones and verify the quality of
deliverables [20].

E. Requirements Validation and Reuse

Documenting the source and the reason why a requirement
was included in the requirements specification document can
help in validating and reusing requirements [14] [16] [19].

F. Decreasing Dependence on Project Team Members

Typically, team members in a software project know a
portion of the traceability information that is related to the
parts of the system they have worked on and therefore are
familiar with. When these people leave the project, a portion
of the trace information, which is undocumented, is lost.
This makes the maintenance of the system harder. Moreover,
lack of traceability information makes it difficult to integrate
new people into a project [19] [9]. Requirements traceability
decreases the loss of important information when people leave
projects.

III. TRACEABILITY RELATIONS

In an abstract view, a trace can be considered as an edge
or link connecting two nodes or trace endpoints. Each node
represents an entity being traced. With this in mind, it is
possible to classify various types of traceability relations
based on the types of the nodes. In requirements traceability,
one of the nodes is always a requirement. The other node

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 2, 2008

302

3

might represent rationale, people, other requirements, compo-
nents, verification cases, and requirement sources such as the
company policies, development environments, stakeholders,
documents, and standards. This introduces the six classes of
traceability relations presented in Table I [13]:

Pre-Requirements Traceability Post-Requirements Traceability
Requirement-Source Requirement-Requirement
Requirement-Rationale Requirement-Component
Requirement-People Requirement-Verification

TABLE I
THE SIX CLASSES OF REQUIREMENTS TRACEABILITY

Gotel and Finkelstein [9] have divided requirements trace-
ability into two fundamental types: pre-requirements specifica-
tion (pre-RS) traceability and post-requirements specification
(post-RS) traceability. The former ”is concerned with those
aspects of a requirement’s life prior to its inclusion in the RS
(requirement production)”, whereas the latter ”is concerned
with those aspects of a requirement’s life that result from
its inclusion in the RS (requirements deployment)”. The cate-
gories listed under the first column in Table I pertain to pre-
requirements traceability, whereas the three categories under
the second column pertain to post-requirements traceability.

Each of these six categories can be further classified into
subcategories based on the type of the edge (i.e., semantics)
that connects the two nodes. For example, the link connecting
the two requirements in the requirement-requirement traceabil-
ity category can be of type derives/is-derived, constrains/is-
constrained, or requires/is-required. A comprehensive discus-
sion of the semantic link types is provided in [17].

Links of type requirement-component capture the relation-
ships between the requirements and the components that
are designed to satisfy those requirements. The process of
partitioning requirements into their corresponding components
is called requirements allocation, and is an essential part of
creating new architectures [13] [14]. requirement-component
links are typically documented in allocation tables. The in-
formation in the allocation table can be analyzed to ensure
that all requirements are implemented in the system. Similarly,
a backward analysis of the requirements-component trace
information can reveal any components that do not contribute
to the implementation of any requirements.

Requirement-component trace information can also be used
as a valuable source of information for management tasks
such as creating work breakdown structures, creating project
plans, identifying the riskiest components, assigning teams
to components based on the required skills, and performing
change impact analysis. Moreover, this information can be
used to measure the progress of the projects by measuring the
percentage of the implemented or tested requirements [13].

Users of traceability information, depending on their roles in
the development organization, have different perspectives and
consequently different needs. An end user may be interested
in the answer to the question of what system components
are affected by a requirement. A systems designer may, in
addition, be interested in the answer to the question of why
and how the components are affected by a requirements [17].

Ramesh and Jarke [17] have proposed reference models for
the various types of objects and traceability links that can be
captured. These models have been presented in two levels
of user sophistication: high-end users, and low-end users.
Traceability schemes for high-end users are much richer than
those of low-end users. Low-end users simply use traceability
to link various components of information without explicitly
identifying the semantics of such relationships, whereas the
high-end models support a rich set of semantic link types.

IV. TRACEABILITY AND MIANTAINABILITY

The lack of trace information between various software
artifacts results in a fundamental problem in software en-
gineering, which is known as the traceability problem. The
traceability problem exhibits its negative effects during the
various stages of the software development process, most
notably the software maintenance phase. In general, a software
change task includes three phases [1]:

• Understanding the existing software,
• Modifying the existing software, and
• Revalidating the modified software.
Before applying any changes to a software system, a devel-

oper must first identify the parts of the software system that
are relevant to the change task at hand. To identify the change
subset, developers must investigate the system documentation
(if available and reliable) and the source code. Without trace
information, this system investigation can be a challenging
task to accomplish. The followings are some of the factors
that make it hard for developers to locate the subset of the
system relevant to a change task, thus increasing the overall
difficulty of changing software systems:

• Size - size is a major factor in the maintainability of
software systems. The larger the size of a system’s source
code is, the larger the search space for a change task on
that source code will be.

• Design Complexity - understanding how a software sys-
tem works (i.e., software comprehension) is a prerequisite
to performing a change task on the system. The more
complex a system is, the harder it is to understand it.
Complex designs make software systems less maintain-
able.

• Multi-personal construction of software systems over a
long period of time - large-scale software systems are
multi-person projects, and are developed over a long
period of time. Therefore, maintaining a large-scale soft-
ware system translates into being able to understand the
thoughts of the software developers who have worked
on the project (e.g., design and implementation deci-
sions made by developers) and perhaps are not available
anymore. Software developers have various backgrounds
and different levels of experience. Moreover, there are
no standard methods for performing the various software
engineering tasks including requirements engineering,
software architecting, and software design. Taking into
consideration the radical degree of variation in both
developers’ cognitive behaviors, which is reflected in
their works, and the tools, techniques, and processes

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 2, 2008

303

4

that are used in today’s software development settings,
it comes with no surprise that maintaining large-scale
software systems is a great challenge.

• The variety of technologies used in software projects -
as the applications become more complex, more tech-
nologies are incorporated into them. These technologies
are introduced into the software projects in various forms
including third-party libraries and Application Program-
ming Interfaces (APIs), application frameworks, mid-
dleware software, messaging infrastructures, web-based
frameworks, etc. Incorporating these technologies into
software systems make it even harder to understand the
system. In addition to understanding the core complexi-
ties of the systems, developers need to understand how
each of the incorporated technologies works. The fact
that these technologies are changing quickly makes the
situation even worse.

• Scattered Implementations - parts relevant to a change
task are often scattered across the system. Thus, in a large
system, locating the subset of the system that is relevant
to a change task requires an extensive search in a large
search space.

• Poor Documentation
• Not conforming to conventions and standards
• Coding Style
• Quality characteristics of the design (e.g., coupling, co-

hesion, etc.)
Of the six types of trace relations mentioned in Table I,

the requirement-component class of trace links is of partic-
ular importance to facilitating software change tasks. If this
information is available, it can help to precisely identify the
parts of the system that are affected by a change. This will
reduce the time and the cost of maintaining software systems,
hence contributing toward achieving a more economical model
of software development. The traceability model presented in
this paper is targeted to address the requirement-component
class of trace links.

V. REQUIREMENTS TRACING TECHNIQUES

Existing approaches to traceability use a combination of the
following techniques to establish traceability:

A. Traceability Matrices/Tables

Traceability matrices are one possible approach for es-
tablishing traces between elements in two different software
artifacts. Traceability matrices make it possible to perform
both forward and reverse analyses. They can be used to
verify if a relationship exists between elements in two dif-
ferent software artifacts (predecessor-successor and successor-
predecessor relationships) [20].

Documentation and test matrices are examples of traceabil-
ity matrices. A documentation matrix shows the relationships
between individual software requirements and their realiza-
tions in lower-level software artifacts such as the design
components, whereas a test matrix shows the relationships
between individual software requirements and the test cases
that verify their correct implementation.

B. Unique Identifiers

Traceability mechanisms rely on being able to uniquely
identify individual requirements in a requirements set, such
as a requirements specification document, as well as traceable
elements in other software artifacts. This can be accomplished
by applying some type of numbering or tagging scheme
that enables cross referencing between individual software
requirements and related elements in other software artifacts.
Each traceable element is assigned an identifier, which is a
unique name or reference number.

Computer Aided Software Engineering (CASE) tools that
support requirements traceability are usually backed up with
a relational database management system where unique iden-
tifiers assigned to discrete requirements are used as keys to
maintain traces between individual software requirements and
other elements in successor or predecessor software artifacts.

C. Attributes

The term attribute refers to those characteristics that may
have several values [13]. Attributes are frequently used in
requirements management tools for documenting requirements
characteristics such as priority, creation date, version, and
status (not implemented, implemented, tested, etc.). The same
technique can be used for documenting traceability informa-
tion. The attribute technique is particularly appropriate for
documenting pre-requirements traceability such as the source
and rationale information because they allow for documenting
long, verbal explanations [13].

D. Lists

A list can be considered as a table with two columns, each
representing one or more elements in a software artifact. For
example, each row under the first column might represent a
group of software requirements, while the rows under the sec-
ond column represent a group of components that implement
those requirements. In contrast to tables, which are convenient
for documenting many-to-many relations, the list technique is
best suited for documenting one-to-many traceability relations.

VI. TRACEABILITY PATTERNS

The rest of this paper presents our traceability approach.
Figure 1 shows a conceptual model of our traceability
approach in Unified Modeling Language (UML) notation.
The distinguishing characteristic of this approach is that
it provides traceability through the structure of the source
code. The concept of a requirement-component traceability
pattern, which was first introduced in [6], is central to this
approach. Below, we define this concept, and discuss its
various elements.

Requirement-Component Traceability Pattern - A
requirement-component traceability pattern is a mapping
from a category of software requirements, classified under
a requirement type, to a generic component structure that
addresses that category of requirements.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 2, 2008

304

5

Fig. 1. Conceptual Model of Traceability Patterns

In this definition, the category of requirements addressed
by a generic component structure can either be a well-known
requirements type in a specific domain such as the business
rules category of requirements in business software systems, or
it can be a user-defined and project-specific category. In Figure
1, this corresponds to the cluster of three entities consisting of
the Requirement Taxonomic Scheme, Requirement Type, and
Requirement entities. Requirements have types, and their types
determine which generic component structure will be used to
satisfy them. The set of all requirement types in a software
project form a requirements taxonomic scheme.

Generic components, on the other hand, are unified solution
to each of the requirement types. In Figure 1, this corresponds
to the cluster of seven entities consisting of the Source Code,
Source Code Component, Generic Component, Design Con-
straint, Location Constraint, Naming Constraints, and Content
Constraint entities. The system’s source code is composed of
many source code components, where the structure of each
component is derived from its generic component structure. A
generic component is specified in terms of the following three
types of design constraints on the components:

• Location constraints
• Naming constraints
• Content constraints

In object-oriented programming languages, where a com-
ponent can be represented as a class, the location and nam-
ing constraints translate into packaging and naming rules
for classes, respectively. Naming constraints combined with
location constraints communicate key information about a
given component to the reader of the source code (e.g., a
maintenance developer). These information include not only

the development problem the component is concerned with,
but also the specific dimension of that problem (i.e., require-
ment type) that is being addressed by the component. In
this context, the development problem that corresponds to a
given component can be a widely-used problem decomposition
unit such as a use case or a feature. For instance, with a
combination of these two types of constraints, one might
indicate that a given component implements the business rules
of a specific use case of the system. The effect of consistently
applying these two constraints throughout the system’s source
code is similar to posting signs in the source code to facilitate
source code navigation during software comprehension and
maintenance tasks.

The content constraints, on the other hand, prescribe what
the responsibilities of each class are, and how these respon-
sibilities should be organized in terms of the mandatory and
optional methods and attributes within each class. Depending
on the needs, for each method, a variety of design constraints
including, signature constraints (name, arguments, return type,
and the exceptions thrown by the method), dependency con-
straints (restrictions on the allowed callers and callees of the
method), the sequence of the operations and method calls
within each method, and the required behavior of each method
can be specified.

Since more than one common solution is possible for each
category of requirements, deciding on location, naming, and
content constraints is a result of consensus among the develop-
ment team members early in the development process. These
decisions are based on software engineering best practices.

Each requirement-component traceability pattern links a
category of software requirements to their common solution,

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 2, 2008

305

6

which is expressed through the location, naming, and content
constraints captured in the form of a generic component.
The conformance of a system’s source code to a set of
requirement-component traceability patterns (i.e., a catalogue
of patterns) makes it possible to trace requirements to source
code components and vice versa. A characteristics of this
approach to traceability is that it relies only on the structure of
the source code; no formal requirements documents or unique
identifies are needed.

This approach to traceability makes it possible to compile
a catalogue of problem types (e.g., a requirements taxonomic
scheme) along with their solutions (i.e., the specifications of
the corresponding generic components in terms of the three
design constraint types). In this sense, our approach is in
accord with the widely-adopted definition of a pattern in the
literature as a generic solution to a recurring problem in a
context.

To facilitate the documentation and application of
requirement-component traceability patterns, we represent
them using a uniform template. These templates use a combi-
nation of natural language, pseudo code, string patterns, and
code snippets written in a programming language like Java.
Each template serves as a protocol for transition from software
requirements to source code.

A concrete example of a requirement-component trace-
ability pattern is presented in Figure 2. In this pattern, the
requirement type ”Application Rule” is mapped to a generic
component structure, which is defined through the package,
class, attributes, and methods sections of the pattern. These
sections together specify the set of design constraints that
must be satisfied by all instances of the generic component.
The package and class sections define location and naming
constraints, respectively. The attribute and method sections
define naming and content constraints. As evident from the
package and class sections in Figure 2, each use case of the
system will have one instance of this generic component that
implements the application rules related to that use case.

During the construction of a software system, developers
consistently follow the set of traceability patterns defined for
the project to translate individual software requirements into
source code. Adherence to such transition protocols eliminates
the individualistic and inconsistent styles of developers, result-
ing in a source code that has the property of design uniformity
within requirements categories throughout the system.

Our approach can be seamlessly integrated with both tra-
ditional and agile development processes. At each iteration,
the code base is evolved to incorporate new functionality or
modifications to existing functionality. However, the evolution
of the code base is constrained by traceability patterns. As a
result, the code and the requirements it satisfies are traceable
to each other.

VII. EVALUATION

As an early evaluation of requirement-component traceabil-
ity patterns, we created a catalogue consisting of five pat-
terns, each addressing a typical requirement type in business
software systems, and used it to develop a proof-of-concept

Requirement Type: Application Rule

Package: <X>.usecase.<Y>

Class: <Y>ApplicationRules
Where
<X> is the application name
<Y> is the use case name

Attributes:
/** contains a list of error messages

* registered by checkArgument(...) or

* checkRules(...) methods.

*/
private Vector errorList = new Vector();

Methods:
/** performs data validation for the

* entered data. An error message is

* registered in errorList for every

* erroneous argument.

*/
public Vector checkArgument(String arg);

/** calls private helper methods to

* performs all the required business

* rule checking. An error message is

* registered in errorList for every

* violated business rule.

*/
public Vector checkRules(List input);

Any number of private check<Z> helper
methods for checking individual rules,
where <Z> is the business concept
being checked.

Fig. 2. Example Traceability Pattern

conference management software system. The traceability
pattern catalogue and the source code for this system can be
obtained from [22].

Figure 3 presents sample code from one of the components
in the proof-of-concept system. This component has been
derived from the traceability pattern depicted in Figure 2 to
implement the application rules that govern the Add Paper use
case of the conference management system called Program
Committee Assistant or PCA for short.

The package section of the pattern defines a location con-
straint by requiring that a component that implements the
application rules of a use case <X> within an application
<Y> should be placed in the package <X>.usecase.<Y>.
In our example component, this translates into the package
pca.usecase.addpaper. The package statement at the
top of the source code in Figure 3 shows that the component
conforms to the location constraint prescribed by its corre-
sponding traceability pattern.

The class section of the traceability pattern in Fig-

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 2, 2008

306

7

ure 2 defines a naming constraint. According to this de-
sign constraint, a component that is dedicated to im-
plement the application rules of a use case <Y>
should be named <Y>ApplicationRules. In our exam-
ple, this means that the component must be named as
AddPaperApplicationRules. In Figure 3, the state-
ment that defines the class AddPaperApplicationRules
shows that the component conforms to the constraint defined
by the class section of the traceability pattern.

The attributes and methods sections in the traceabil-
ity pattern of Figure 2 together define the content con-
straint for their corresponding components. The attributes
section of the traceability pattern defines the data structures
that are used by class methods. In our example, the pat-
tern requires that a data structure of type Vector, called
errorList, be created to store the error messages that
are registered by the checkArgument and checkRules
methods. In Figure 3, the definition of the errorList
attribute is the first source code statement within the class
AddPaperApplicationRules.

The methods section of the traceability pattern in Figure
2 defines two methods that must be present in every com-
ponent that is derived from this pattern. The first method,
checkArgument, is responsible for performing all the data
validations on the entered data for the use case under develop-
ment. The second method, checkRules, on the other hand,
contains all the code that is required to perform business rule
checking for the use case under development. Both of these
methods register error messages in the errorList attribute
when they detect an erroneous input or a violated business
rule. The source code in Figure 3 complies with the design
constraints defined by the methods section of the traceability
pattern by providing implementations for these two methods.
Alternatively, the traceability pattern in Figure 2 could group
all the required methods in an interface and require that the
class implement that interface. This can be simply documented
in the pattern by adding an implements clause, similar
to Java’s implements keyword, to the class section of the
pattern.

The last section of the pattern prescribes optional helper
methods for checking individual business rules. These meth-
ods are prefixed with check and are called by the
checkRules method. In the source code of Figure 3,
methods checkAuthorsList, checkPaperTitle, and
checkReceivedDate correspond to this section of the
pattern.

VIII. DISCUSSION

To ensure that the traceability patterns defined for a software
project do not introduce constraints that negatively impact the
quality of the design, the design decisions incorporated in
each traceability pattern are based on software engineering
best practices, which represent the state of art in the field of
software design. For instance, the traceability pattern depicted
in Figure 2 groups all the application rules related to each use
case of the system in a dedicated component, which promotes
design principles such as the isolation of change, modularity,

Fig. 3. Source Code for the AddPaperApplicationRules Java Class
package pca.usecase.addpaper;

import java.util.*;
import pca.infrastructure.*;

public class AddPaperApplicationRules {

private Vector errorList = new Vector();

public Vector checkArgument(String argument){
int paperId = 0;

argument = argument.trim();
if (argument.length() == 0){

errorList.add(AddPaperOutputHandler.
WARNING_EMPTY_COMMAND_ARGUMENT);

return errorList;
}

StringTokenizer st = new StringTokenizer(
argument);

if (st.countTokens() != 1) {
errorList.add(AddPaperOutputHandler.

WARNING_INVALID_COMMAND_USAGE);
return errorList;

}

try {
paperId = Integer.parseInt(argument);
if (paperId <= 0 || paperId > 1200) {
errorList.add(AddPaperOutputHandler.

WARNING_PAPER_NUMBER_NOT_IN_RANGE);
return errorList;

}
} catch(NumberFormatException e){

errorList.add(AddPaperOutputHandler.
WARNING_PAPER_NUMBER_NOT_INTEGER);

return errorList;
}

AddPaperDAO dao = new AddPaperDAO();

try {
if (!dao.isPaperIdUnique(paperId)) {

errorList.add(AddPaperOutputHandler.
WARNING_DUPLICATE_PAPER_NUMBER);

}
} catch(DAOException e) {

UtilityMethods.
printDatabaseException(e);

}

return errorList;
}

public Vector checkRules(List input) {

errorList.clear();
Vector authors = (Vector)input.get(0);
String title = (String)input.get(1);
String dateReceived = (String)input.get(2);
checkAuthorsList(authors);
checkPaperTitle(title);
checkReceivedDate(dateReceived);

return errorList;
}

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 2, 2008

307

8

private void checkAuthorsList(Vector authors){

if (authors.size() == 0) {
errorList.add(AddPaperOutputHandler.

WARNING_EMPTY_AUTHOR);
return;

}

if (authors.size() > 15) {
errorList.add(AddPaperOutputHandler.

WARNING_INVALID_NUMBER_OF_AUTHORS);
}

}

private void checkPaperTitle(String title) {

if (title.trim().length() == 0) {
errorList.add(AddPaperOutputHandler.

WARNING_EMPTY_TITLE);
return;

}

if (title.trim().length() > 150) {
errorList.add(AddPaperOutputHandler.

WARNING_INVALID_TITLE_LENGTH);
}

}

private void checkReceivedDate(String date){

date = date.trim();
if (date.length() == 0) {

errorList.add(AddPaperOutputHandler.
WARNING_EMPTY_RECEIVED_DATE);

return;
}

if (!UtilityMethods.isDateFormatValid(date
)) {

errorList.add(AddPaperOutputHandler.
WARNING_INVALID_DATE_FORMAT);

}
}

}

and high cohesion. As another example, the last section of
the traceability pattern depicted in Figure 2 encourages the
creation of short, well-named helper methods that check indi-
vidual business rules, and are called by a higher level method
like checkRules to perform business rule checking for a use
case of the system. This coding style conforms to the Extract
Method refactoring as explained in [5]. As it can be seen
from these examples, each requirement-component traceability
pattern can be viewed as a collection of software design
best practices codified into one or more generic component
templates.

The overall quality of a system can be determined by the
quality of the individual components that make up the system.
Since in our approach source code components are derived
from the requirement-component traceability patterns, their
quality can be judged by analyzing the design decisions in-
corporated in each of the requirement-component traceability
patterns. Given a requirement-component traceability pattern

catalogue for a software project or a family of software
systems in a domain, this approach allows the evaluation of
the quality of the system to be built prior to building the actual
system.

Each design constraint included in a traceability pattern is
justified by its design rationale, which can be documented
for future reference. This will not only help to facilitate the
integration of new team members into the project, but also
allow software architects and designers to evaluate, and if
necessary, update the patterns to reflect the latest developments
in software design.

The definition and application of traceability patterns in a
software project can be done in an iterative fashion. In each
iteration, we learn more about the advantages and disadvan-
tages of each traceability pattern as we apply them to the
system under development. The practical experience and the
knowledge gained in each iteration can be used as feedback
to improve the traceability patterns for the next iteration.

A change in a traceability pattern in the middle of a
project (e.g., to improve the traceability pattern) can introduce
cascading changes to all of the components that are derived
from that traceability pattern. However, the resulting changes
can be applied systematically. This is because both the intro-
duced change and the affected components are well known.
Moreover, after a few iterations, the expectation is that the
traceability pattern will stabilize and will not need frequent
changes in the next iterations.

Since traceability patterns represent our knowledge and
experience of implementing commonly occurring requirement
types in a software project, they form an implementation
knowledge base for the software project for which they are
defined. Various application areas within a single domain have
to deal with the same types of software requirements. For
instance, all software applications in the domain of Enterprise
Information Systems (EIS) have to incorporate the business
rules that govern the business operations they support. There-
fore, business rules are a commonly occurring requirement
type in EIS systems. This provides opportunities for sharing
traceability patterns defined for one project with other projects
in the same domain. As a result, we can build domain-specific
knowledge bases, where requirement-component traceability
patterns are units of knowledge, to improve productivity in
developing software applications within a domain.

IX. CONCLUSION AND FUTURE WORK

In this paper, we presented an overview of requirements
traceability, and argued that existing approaches to require-
ments traceability are not suitable for agile software devel-
opment. Accordingly, we introduced traceability patterns as
a solution to requirement-component traceability that can be
applied to both traditional and agile development processes.

In contrast to existing approaches to traceability, our ap-
proach does not assume the existence of a requirements
specification document; instead, it relies on the structure of the
source code, which is the main development artifact in agile
methodologies. Traceability, in this approach, is achieved as a
result of the conformance of the structure of the source code
to the traceability patterns.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 2, 2008

308

9

The study of traceability patterns can be extended in several
directions. As future work, we plan to further evaluate our
traceability model by applying it to real-world industrial
systems. Furthermore, we believe that a software development
approach that is based on the traceability patterns can poten-
tially contribute to achieving other desirable software quality
attributes such as reliability and comprehensibility.

We believe that the application of traceability patterns
during the development process will increase the reliability of
software systems. This is because of two reasons: first, in our
approach, software components are derived from traceability
patterns, which are cohesive collections of design decisions.
Design characteristics that are known to prevent software
defects can be incorporated into the traceability patterns.
Second, the implementation consistency gained through the
application of traceability patterns in developing a software
system helps to reduce the complexity of the system and
therefore increases the comprehensibility of the system. This,
in turn, can decrease the rate of defects introduced into the
system during the development process. These factors can help
to increase the reliability of the components that are derived
from traceability pattern. Since the reliability of a system is
evaluated by analyzing the reliability of its components [3],
we believe that our approach will help to increase the overall
reliability of software systems. In our future work, we want
to investigate the impact of traceability patterns in increasing
software reliability.

As we have already mentioned, we believe that traceability
patterns can help to reduce the complexity of software systems,
and therefore increase their understandability. A measure for
the cognitive complexity of software should take into account
the amount of information contained in the software [11].
Traceability patterns promote the unification and reuse of de-
sign solutions. As a result, they reduce the design information
content of software systems. As future work, we also want to
investigate the impact of traceability patterns in improving the
understandability of software systems.

ACKNOWLEDGMENT

The author would like to thank Prof. Dave Wortman at the
University of Toronto for all his help, support, and invaluable
advice on this research project.

REFERENCES

[1] Boehm, B. W.: Software Engineering, IEEE Transactions on Computers,
Vol. 12, No. 25, pp. 1226-1242, December 1976.

[2] Corriveau, J-P.: Traceability Process for Large OO Projects, IEEE
Computer Society Press, Computer, Volume 29 , Issue 9. pp. 63-68,
ISSN:0018-9162, September 1996.

[3] Cristescu, M. P., Sofonea, G.: Software Systems Reliability Character-
istics, Proceedings of the 11th WSEAS International Conference on
Computers, Agios Nikolaos, Crete Island, Greece, pp. 343-351, July 2007.

[4] Domges, R., Pohl, K.: Adapting Traceability Environments to Project
Specific Needs, Communications of the ACM, Vol. 41, No. 12, pp. 55-
62, 1998.

[5] Fowler, M.: Refactoring: Improving the Design of Existing Code,
Addison-Wesley, 2000.

[6] Ghazarian, A.: Traceability Patterns: An Approach to Requirement-
Component Traceability in Agile Software Development, Proceedings of
the 8th WSEAS International Conference on Applied Computer Science
(ACS’08), Venice, Italy, pp. 236-241, ISSN: 1790-5109, ISBN: 978-960-
474-028-4, November 2008.

[7] IEEE Computer Society, IEEE standard for Software Maintenance, IEEE
std 1219-1998, 1998.

[8] IEEE Computer Society, IEEE Recommended Practice for Software
Requirements Specifications, IEEE std 830-1998, 1998.

[9] Gotel, O. C. Z., Finkelstein, A. C. W.: An Analysis of the Requirements
Traceability Problem. Proceedings of the First International Conference
on Requirements Engineering, pp.94-101, 1994.

[10] Kotonya, G., Sommerville, I.: Requirements Engineering - Processes
and Techniques, New York, John Wiley & Sons, ISBN 0-4719-7208-8,
1998

[11] Kushwaha, D. S., Misra, A. K.: A Complexity Measure Based on
Information Contained in the Software, Proceedings of the 5th WSEAS
International Conference on Software Engineering, Parallel and Dis-
tributed Systems (SEPADS’06), Madrid, Spain, pp. 187-195, February
2006.

[12] Leffingwell, D.: Calculating Your Return on Investment from More
Effective Requirements Management, White Paper, Rational Software
Corporation, 1997.

[13] Leino, V.: Documenting Requirements Traceability Information: A Case
Study, Master’s Thesis, Department of Computer Science and Engineer-
ing, Helsinki University of Technology, 2001.

[14] Palmer, J. D.: ”Traceability,” in Software Requirements Engineering,
Thayer, R. H., and Dorfman, M.,Eds., Los Alamitos, IEEE Comp Society
Press, pp. 364-374, 1997.

[15] Pohl, K.: PRO-ART: Enabling Requirements Pre-Traceability, Proceed-
ings of the 2nd IEEE International Conference on Requirements Engi-
neering, Colorado, USA, pp.76-85, 1996.

[16] Ramesh, B., Edwards, M.: Issues in the Development of a Requirements
Traceability Model, Proceedings of the 1st International Symposium
on Requirements Engineering, San Diego, CA, USA, IEEE Computer
Society Press, pp.76-85, 1993.

[17] Ramesh, B., Jarke, M.: Towards Reference Models for Requirements
Traceability, IEEE Transactions on Software Engineering, Vol. 27, No.
1, pp. 58-93, January 2001.

[18] Stehle, G.: Requirements Traceability for Real-Time Systems, Proc.
EuroCASE II, London 1990.

[19] Ramesh, B., Powers, T., Stubbs, C., Edwards, M.: Implementing Re-
quirements Traceability: A Case Study, Proceedings of the Second IEEE
International Symposium on Requirements Engineering , York, England.,
pp.89-95, 1995.

[20] Watkins R., Neal M.: Why and How of Requirements Tracing. IEEE
Software 11(4),104-106, 1994.

[21] Wright, S.: Requirements Traceability - What? Why? and How?,
Tools and Techniques for Maintaining Traceability During Design, IEE
Colloquium, Computing and Control Division, Professional Group C1
(Software Engineering), Digest Number:1991/180,December 2, pp.1/1-
1/2,1991.

[22] http://www.cs.toronto.edu/∼arbi/Downloads.html

Arbi Ghazarian received his B.Sc. and M.Sc. de-
grees in Computer Engineering from Azad Univer-
sity of Tehran in 1988 and 2002, respectively. He
is currently a Ph.D. candidate at the Department
of Computer Science at the University of Toronto
in Canada. He has over a decade of professional
experience in the software industry. His research in-
terests are in software traceability and its application
in different areas of software engineering including
software maintenance, systematic transition from
problem space to solution space, and knowledge

reuse in software development.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 2, 2008

309

