
H/W based Stateful Packet Inspection using a
Novel Session Architecture

Seungyong Yoon, Byoungkoo Kim, Jintae Oh, and Jongsoo Jang

Abstract— Stateful Packet Inspection(SPI) remember the

previous packet and can thus keep track of the state of the session. SPI
was originally developed for Firewall. But recently there are various
applications such as VPN, NIDS, Traffic Monitoring, and so on. In
this paper we focused on Network Intrusion Detection System(NIDS).
Because stateless IDS only look at one packet at a time, a lot of false
positive alerts generate during attempt to attack using IDS evasion
tool, for example, “stick” or “snot”. To prevent this problem, SPI was
employed in NIDS and statefulness of NIDS became very important.
But most of existing SPI products are software based solutions which
have poor performance in current high-speed internet environment.
So, in many cases, the SPI module in NIDS remains inactivated. That
is against original purpose. Stateful IDS mainly depends on the
performance of processing session table and pattern matching. Pattern
Matching has been a lot of studied. But, relatively few studies have
been devoted to session processing. It is so difficult that we manage a
lot of session state information with limited hardware resources and
satisfy high-performance. Therefore, our purpose is to design and
implement SPI module in FPGA with new session management
architecture. And then we prove that can achieve an efficient and fast
stateful intrusion detection that supported up to 1 million sessions with
high performance.

Keywords—Stateful Packet Inspection, Network Intrusion
Detection System

I. INTRODUCTION

ne of the major problems and limiting factors with
Network Intrusion Detection System(NIDS) is the high

false positive alert rate. In order to reduce these false positive
alerts, a lot of methods and techniques are proposed. Stateful
Packet Inspection(SPI) is one of these solutions. SPI was
originally developed for Firewall[1][2], but it became a very
important factor in NIDS. Stateless NIDSs generate
tremendous false positive alerts while stick or snot attempts to

attack[3][4]. Most existing NIDSs have SPI module which is
supported statefulness but they don’t satisfy high-performance
in gigabit internet environment. It is so difficult that we manage
a lot of session state information with limited hardware
resource and satisfy performance of high-speed internet. In
other words, the rapid evolution of recent network technologies
to gigabit network environments require existing SPI module to
have more improved functions and performance[9][10]. SPI
basically requires a session table which stores source and
destination IP addresses and port numbers. It is necessary to
perform real-time packet inspection by checking, for each input
packet, whether or not a corresponding entry is present in the
session table. Real-time packet processing at wire speed should
not cause any packet delay or loss even when the number of
managed sessions is increased to more than one million.

Manuscript received December 12, 2008: This work was supported in part

by Korea Ministry of Information and Communication under “Next Generation
Security System Development” Project.

Seungyong Yoon is with Electronics and Telecommunications Research
Institute, 161 Gajeong-dong, Yuseong-gu, Daejeon, Korea (e-mail: syyoon@
etri.re.kr).

Byoungkoo Kim is with Electronics and Telecommunications Research
Institute, 161 Gajeong-dong, Yuseong-gu, Daejeon, Korea (e-mail: bkkim05@
etri.re.kr).

Jintae Oh is with Electronics and Telecommunications Research Institute,
161 Gajeong-dong, Yuseong-gu, Daejeon, Korea (e-mail: showme@ etri.re.kr).

Jongsoo Jang is with Electronics and Telecommunications Research
Institute, 161 Gajeong-dong, Yuseong-gu, Daejeon, Korea (e-mail: jsjang@
etri.re.kr).

Previously developed software-based solutions cannot meet
these requirements. One software-based technique has
attempted to use a distributed system[11][13][14]. However, as
the number of session increases, this technique requires a
higher processing speed, thereby causing performance
problems. Thus, software-based solutions cannot perform
real-time packet inspection ensuring the wire speed.

To guarantee both performance and functionality with
respect to statefulness, we designed and implemented
SPI-based intrusion detection module in a FPGA to help
alleviating a bottleneck in network intrusion detection systems
in this paper. The performance of SPI-based intrusion detection
system mainly depends on the performance of processing
session table[5] and pattern
matching[6][15][16][17][18][19][20]. In this paper, we
focused on session state management scheme and omitted
pattern matching method. Our work related to pattern matching
method is described by Byoungkoo Kim at al. [7] and Dong-Ho
Kang at al. [8]in detail.

The rest of this paper is organized as follows. Section II
describes our system architecture and SPI-based intrusion
detection module. And section III describes a novel session
table architecture in detail. Implementation and experimental
results are contained in section IV. And conclusion and future
work are discussed in section V.

O

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 2, 2008

310

Fig. 2. The Architecture of SGS

II. SECURITY GATEWAY SYSTEM

A. System Architecture
At first, we briefly introduce the architecture of our system,

named “Next Generation Security System”(shortly NGSS)
designed to detect and response intrusions on high-speed links.
NGSS has two main systems: Security Gateway System(SGS)
and Security Management System(SMS). SGS is a security
node system which is located at ingress point in protected
networks. Security policies from SMS are applied and executed
on SGS. This basic concept is shown in Fig.1.

Fig. 1. Security Gateway System(SGS)

Hardware based and high performance SGS provide security

functions such as session state management, protocol anomaly
detection, pattern matching detection, rate limiting, packet
filtering which are implemented on three FPGA (Xilinx Vertex
II Pro) chips in each security engine board. Security engine
board also has embedded CPU MPC 860 that embedded Linux
OS operating in. Total two security engine boards can be
installed to SGS. As shown in Fig.2, SGS consists of three
parts; Application Process for communication channel with

SMS and system management functions, FPGA Logic for
wire-speed packet forwarding, packet preprocessing,
high-performance intrusion detection and so forth, Gigabit
Switch for communication between FPGA Logic and Main
CPU. Again, we can divide FPGA Logic into several sub
FPGA Logics: Anomaly Traffic Inspection Engine(ATIE),
Pre-Processing Engine(PPE), and Intrusion Detection
Engine(IDE) FPGA. Embedded CPU on the Security Engine
Board manages the ruleset that is required for intrusion
detection. Through the interoperability of these components,
SGS analyzes data packets as they travel across the network for
signs of external or internal attack. Namely, the major
functionality of SGS is to perform the real-time traffic analysis
and stateful intrusion detection on high-speed links. Therefore,
we focus on effective detection strategies applied FPGA Logic.

B. Security Engine Board of SGS
Security Engine Board of SGS is composed of three FPGA

Chips and one Embedded CPU aimed at real-time
network-based intrusion detection. SGS is capable of managing
these several boards according to network environments that it
is applied. For detecting network intrusions more efficiently on
high-speed links, our FPGA Logic is divided into three FPGA
Chips. As shown in Fig.3, one is ATIE FPGA Chip for
wire-speed packet forwarding and blocking., another is PPE
FPGA Chip for packet preprocessing, and the other is IDE
FPGA Chip for high-performance intrusion detection.

First, ATIE FPGA Chip uses the Xillinx FF-1517 FPGA
Chip for its own logic. And, it is connected to the PM3386 for
incoming packet processing and PM3387 for alert message
sending. Also, it uses two external TCAM and two external
SRAM for incoming packet scheduling and management.
Briefly, the main function of ATIE FPGA Chip is wire-speed
packet forwarding and response coordinator such as alert

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 2, 2008

311

response and packet filtering. Incoming Packets from PM3386
is sent to PPE FPGA Chip, and if it is determined as attack
according to the analysis result from other FPGA Chips, alert
message is sent to the main CPU through the PM3387.

Second, PPE FPGA Chip uses the Xillinx FF-1152 FPGA
Chip for its own logic. And, it uses two external TCAM and
four external SRAM for operating the session management, IP
de-fragmentation and TCP reassembly. Briefly, the main
function of PPE FPGA Chip is preprocessing the incoming
packet. Through these preprocessing functions, it supports the
SPI-based intrusion detection function and IDS evasion attack
detection function. Also, it checks out the protocol validation
about service protocol such as SMTP, HTTP and so forth. If the
incoming packet is invalid against service protocol, alert
information is sent to ATIE FPGA Chip.

Finally, IDE FPGA Chip uses the Xillix FF-1517 FPGA
Chip for is own logic. It uses three mechanisms for
high-performance intrusion detection; Flexible Header
Combination Lookup Algorithm for packet header pattern
matching, Linked Word based Stroreless Running Search
Algorithm for packet payload pattern matching, and Traffic
Volume based Analysis Algorithm for DoS(Denial of Service)
and Port-scan detection. Through these mechanisms, it
supports the high-performance intrusion detection function
without packet loss.

Fig.3 depicts overall security board composition. Packet
filtering, Rate-limiting, and traffic metering are implemented in
ATIE chip. Stateful Inspection, IP Defragmentation, and
Protocol Anomaly based detection function in PPE chip, and
Pattern matching based detection function in IDE Chip. Each
security board has two gigabit port interface.

Fig. 3. Security Engine Board

C. SPI-based Intrusion Detection Module
Our SPI-based intrusion detection module was implemented

on Security Gateway System(SGS). SGS is a security node

system which is located at ingress point in protected network.
Strictly speaking, SGS is network intrusion prevention system
running in inline mode. Fig.4 shows the SPI-based intrusion
detection module of our SGS. Legitimate TCP sessions are
established through 3-way handshake and terminated through
4-way handshake. State manager has session table and tracks
these session state. If input packet doesn’t exist in session
entries, this packet will drop or forward to Intrusion Detection
Engine(IDE) with additional state information according to
security policies.

Fig. 4. SPI-based Intrusion Detection Module

At first, if the packet inputted from IP De-fragmentation

sub-module, necessary information fields are extracted through
packet parsing sub-module. Packet filter transfer to state
manager only packet that passed by security filtering policies.
These filtering policies can be applied to specific protocols or
ports. Each sub-module has functions as follows:

 IP De-fragmentation: combines fragments of packets

into packets.
 Packet parser: extracts necessary information

through packet parsing process.
 Packet Filter: applies filtering policies and delivers to

state manager only packet that passed filter.
 State Manager: manages session table and state

information,
 State Info Generator: generates and transmits useful

state information for detecting attack and
abnormal packets to IDE.

 TCP Reassembly: reassembles the TCP segments in
the right order.

 IDE: performs effective pattern matching with state
information

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 2, 2008

312

Fig. 5. Basic Architecture of Session State Manager

III. A NOVEL SESSION ARCHITECTURE

A. Basic Architecture
The terms “session”, “connection” and “flow” are used

interchangeably in this paper. Fig. 5 is a basic architecture of
session state manager for stateful packet inspection. As shown
in Fig. 5, session state manager includes a hash key generator, a
session table, a session detection module, a session
management module, and a state info generation module.

The session table stores session entries that are indexed and
managed by the hash key generator. 4-tuple information
including a source IP address, a destination IP address, a source
port, and a destination port is input, as information used to hash
a newly received packet, to the hash key generator. Once the
packet is inputted, a packet parser extracts this information
from the packet. The hash key generator indexes and manages
a session entry corresponding to the received packet based on
the input 4-tuple information. Hash key generator has a dual
hash structure with two different hash functions Hash1(x) and
Hash2(x). The hash functions Hash1(x) and Hash2(x) are
well-known functions that are used to hash packets. For
example, XOR or CRC functions can be used as these hash
functions. One hash function “Hash1(x)” is used to generate
indices that point to hash sets permitting hash collisions in
order to achieve faster session table search. The other hash
function “Hash2(x)” is used to generate hash addresses that are
used to identify session entries in a hash set pointed by the hash
function “Hash1(x)”. Session table may be designed and
implemented using two or more SRAM devices, if necessary.
In this paper, the session table is constructed using two SRAMs

(SRAM#1 and SRAM#2), which can be accessed
simultaneously or in parallel using a hash set index that is
generated by the Hash1(x) to achieve faster session table
search.

The session table stores session data of packets inputted from
an external network. For efficient session table management,
the session table has an N-way set associative session table
structure in which each hash set in the session table can include
N session entries. The session table shown in Fig. 5 is a 32-way
set associative session table that is constructed using two
72-Megabit SRAMs with each session entry having a length of
36 bits.

Each session entry stored in the session table includes
current state, time stamp, and hash address parts. The current
state part includes current connection state information of a
corresponding session, the time stamp part is used to determine
which session entry is to be deleted when the session table is
full, and the hash address part is used to identify each session
entry in the same hash set. The time stamp is updated by an
internal timer each time a corresponding session is accessed. If
any hash sets of the session table are full so that new session
cannot be allocated to the hash sets, current time of internal
timer is compared with the time stamp of each session entry to
replace the oldest session with a new session. For example,
Least Recently Used (LRU) algorithm is applied to this
process.

Session state information is separately managed in
embryonic state and established state for timeout mechanism.
Embryonic state includes sessions that TCP 3-way
handshaking does not finish, on the other hand established state
includes completed sessions. It is necessary to manage

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 2, 2008

313

separately states, because embryonic session needs to have
shorter timeout value than that of established session. The SPI
devices and computers have vulnerabilities to SYN flooding
attack in nature[21][22]. This mechanism helps to prevent
against denial-of-service attack such as SYN flooding.

Although a Transmission Control Protocol (TCP) session is
terminated without sending an RST or FIN packet, a
corresponding session entry is immediately removed if a time
stamp in the session entry exceeds a timeout threshold
predetermined by the administrator. Accordingly, a session
which has been terminated without sending an RST or FIN
packet is positively removed from the session table.

The session detection module searches the session table
according to the received packet. Specifically, the session
detection module obtains a hash set pointer from Hash1(x)
calculated by the hash key generator and then searches the
session table for a session entry corresponding to the hash value
from Hash2(x). The session management module performs a
process for adding, deleting, and changing sessions of the
session table in order to maintain the session table. The state
info generation module generates state information regarding
the direction of the packet and session establishment
information and then transmits this information to intrusion
detection engine with packet data.

Fig. 6 schematically describes a method for processing
direction information included in each packet, which indicates
the direction of the packet in a corresponding session. Each
packet transmitted over the network includes information
regarding the direction of the packet in a corresponding
session, which indicates whether the direction of the packet is
from the client to the server or from the server to the client. This
information is very useful in a network intrusion detection or
prevention system. However, the direction information may
cause a significant confusion in searching for a corresponding
session in the session table since the hash address of each
packet belonging to the same session may vary depending on
the direction. To prevent the hash address from varying
depending on the direction, the hash key generator compares
the value of a source IP address with the value of a destination
IP address and modifies a corresponding 4-tuple value so that
one of the source and destination addresses, which has the
lower value, always precedes the other with the higher value. A
specific flag is defined to indicate whether or not such a
position change has been made. For example, a flag
“Position_change_flag” is defined, which is assigned “1” when
the position change has been made and “0” when no position

change has been made. The “Position_change_flag”
information is very efficiently used in generating state
information together with current state information.

B. Session State Information
Session state information is stored in a current state part in

each session entry. In consideration of hardware resource, we
designed current state part to have 3 bits in a 36-bit session
entry. The first bit of the current state part contains session
establishment information. For example, when a session has
been established between the client and the server, the first bit
is set to “1” and, when no session has been established between
the client and the server, the first bit is set to “0”. The second
bit of the current state part contains information indicating
whether or not the source and the destination were reversed
when the session was registered in the session table. This
information is different from the information contained in the
flag “Position_change_flag” shown in Fig. 6. The difference
between the information contained in the second bit and the
information contained in the flag “Position_change_flag” is
described below in detail. The third bit of the current state
part contains information indicating whether or not the
connection is in a half-closed state. Each session is terminated
only when the second FIN packet is received when the
connection of the session is in a half-closed state. Namely,
when the connection is in a half-closed state, the third bit is set
to “1” and, when the connection is not in a half-closed state, the
third bit is set to “0”. The TCP connection establishment
process is performed through 3-way handshake. When the
client sends a SYN packet to the server to request it to establish
a new connection, the server responds with a SYN/ACK packet
and then the client sends an ACK packet to the server in
response to the SYN/ACK packet, thereby completing the
establishment of the connection. The TCP connection
termination process is normally performed through an RST
packet or an FIN packet. The FIN packet is transmitted through
4-way handshake. If one of the client and the server sends an
FIN packet, then the other sends an ACK packet in response to
the FIN packet. This state in which the first packet has been
received is referred to as a “half-closed state”. If the client
transmits a second FIN packet in the half-closed state, then the
server transmits a second ACK packet in response to the second
FIN packet, thereby terminating the TCP session.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 2, 2008

314

Fig. 6. Input of Hash Key Generator

Fig. 7. Session State Transition Diagram

Fig. 7 is a state transition diagram showing the relationship

between the 3-bit values stored in the current state part of
session entry and input packet. The current state value is “000”
in an initial state where no session has been established
between the client and the server. If the client transmits a SYN
packet to the server to establish a TCP session, the current state
value transits to “001”. Thereafter, if a SYN/ACK packet is
transmitted, the current state value transits to “010”. If the last
ACK packet is transmitted in the state of “010” in the 3-way
TCP handshake process for establishing a TCP connection, the
value of the source is compared with the value of the
destination. The current state value transits to “110” if the
position change has been made. However, the current state
value transits to “100” if no position change has been made. If
the first FIN packet for terminating the TCP connection is
transmitted in the “110” state, the current state value transits to
“111”. Thereafter, if the second FIN packet is transmitted in the
“111” state, the current state value transits to the initial state
value “000”. If the first FIN packet is transmitted in the “100”
state, the current state value transits to “101”. Thereafter, if the
second FIN packet is transmitted in the “101” state, the current
state value transits to the initial state value “000”. If an RST
packet for terminating the TCP connection is transmitted in any
one of the “110”, “100”, “101”, and “111” states, the current
state value transits to the initial state value “000”.

Table 1 shows state information generated from a
“Position_change_flag” value and a current state value stored
in the current state part. The state information is generated
basically using the current state value and the direction of each
packet is determined from a combination of the current state
value and the “Position_change_flag” value. For example, if
the current state value is “100” or “101” while the
Position_change_flag” value is “0”, the direction of the current
packet is from the client to the server since the source and
destination of the current packet have not been reversed and the
source and destination had not been reversed (i.e., the direction
was from the client to the server) when the corresponding
session was registered. On the other hand, if the current state

value is “100” or “101” while the Position_change_flag” value
is “1”, the direction of the current packet is from the server to
the client since the source and destination of the current packet
have been reversed and the source and destination had not been
reversed (i.e., the direction was from the client to the server)
when the corresponding session was registered.

Table 1. State Information Generation

Position_c
hange_flag

Current
State

State Information

Any Value 000 Not Established
Any Value 001 SYN_RCVD(3-way

Handshaking)
Any Value 010 SYNACK_RCVD(3-way

Handshaking)
Any Value 011 Reserved(unused)

0 100, 101 Established, Direction:
Client Server

1 100, 101 Established, Direction:
Server Client

1 110, 111 Established, Direction:
Client Server

0 110, 111 Established, Direction:
Server Client

SPI module has a following procedure for processing a

packet according to our proposed scheme. First, when a packet
is inputted, a hash key value is generated using 4-tuple
information extracted from the packet and a session table is
searched for a corresponding session using the generated hash
key value. If the corresponding session is found in the session
table, its session entry information is updated. If the
corresponding session is not found in the session table, a new
session is generated only when the current packet is a SYN
packet. If the session table is full, the oldest session entry is
selected using the LRU algorithm and then replaced with the
new session. If the session table is not full, a new session is
generated for the session table. Once the session table for the
received packet is constructed as described above, state
information of the packet is generated. It is preferable that the
method described in Table 1 be used to generate the state
information of the packet. Then, inspection of the packet is
performed based on the generated state information.

C. Performance Simulation
Our session state management scheme in SPI-based

intrusion detection system is affected by two major factors,
hash collision rate and miss rate. There is every probability of
hash collision occurrence because hash function for faster
session table search is used. The wrong state information is
generated if the hash collision is occurred. Therefore, the
SPI-based intrusion detection module generates the false
positive alert. The hash collision rate is determined by the Hash

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 2, 2008

315

1(x) and Hash 2 (x). Theoretically, the probability of hash
collision is 1/242(Hash 1(x): 17 Bits + Hash 2(x): 25 Bits = 42
Bits)

As the number of session entries increase gradually, the
session table is filled with new session. Also, there is every
probability of miss occurrence because the size of hash set has
limitation(32-way set). When the session table is full, the
probability that each session is missed is very important in a
session table management scheme because wrong session state
information is generated if any existing session, which has not
yet been terminated, is replaced with a new session. In this
case, since the SPI-based intrusion detection module generates
the false negative alert, the miss rate can be said to be the factor
which is important than the hash collision rate. In order to
ensure that miss rate is reasonable in our design, we made a
simulation for distribution of the number of sessions allocated
to each hash set in the session table when one million sessions
are established. We used a separate set of traffic data collected
from various network environments for this simulation. Fig. 8
shows the result of this simulation.

Fig. 8. Simulation Results

Distribution of the number of sessions allocated to each hash

set in the session table follows a normal distribution as
expressed by Probability density function(Equation (1)). This
is standardized using Equations (2) and (3) and then the
push-out probability of each session in the 32-way set
associative session table is calculated to obtain P{X>32}=
P{Z>8.3}. This indicates Z-score of 8.3 which is nearly 0%.
(Z-score of 6 corresponding probability is 0.0003%.)

 (1)

 (2)

 (3)

According to the result of simulation, it is proved that our

design for session state management is very reasonable with
respect to hash collision rate and miss rate.

IV. IMPLEMENTATION AND EXPERIMENTS

A. Implementation
Our SPI-based intrusion detection module was implemented

on SGS prototype. Session State Manager of SGS is
implemented on a Xilinx Vertex-II Pro XC2VP50 FPGA(5M
Gate)[23] and Cypress CY7C1470V33 SRAM(72Mbit)[24]
using verilog HDL(Hardware Description Language) that is
best suited for high-speed packet processing. The simulation of
all functions were conducted by the ModelSim PE 6.1
simulator[25]. And all logics have been synthesized by
Synplify Pro 8.4 tool[26].

(a) The Prototype of Security Gateway System

(b)A Screen Shot of the Policy and Alert Window

Fig. 9. Exampels of Implementation

In our prototype, main logics were implemented on three

FPGA chipsets, Packet Processing Engine, Stateful Packet
Inspection Engine, and Intrusion Detection Engine. Especially,
the prototype we have developed focus on FPGA logic for
real-time traffic analysis and SPI-based intrusion detection on
high-speed links. Also, we employed inline mode capable of
effective response by using four Gigabit Ethernet links as
shown in Fig.9. The minimum clock period for data from input
to output is 8ns which corresponds to a throughput of 2Gbps.
That is, our system is capable of processing until a maximum
throughput of full-duplex 2Gbps about incoming packets in
FPGA Logic.

})(
2

1exp{
2
1)(2

2 μ
σπ

−−= xxf

σ
μ−

=
XZ

)()(
σ

μ
σ

μ −
<<

−
=<<

bZPbXP aa

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 2, 2008

316

B. Experiments
If the SPI device is tracking TCP session state, then it has the

potential to introduce denial of service when the session table
becomes full(too many connections) or if it can’t keep up with
the creation of new sessions(too many connections per second).
That is, Max Concurrent Sessions(MCS) and Connections Per
Second(CPS) are very important factors for performance
evaluation.
We made use of the test bed shown in Fig. 10 for performance

evaluation of our prototype system. The test bed consists of
IXIA Traffic Generator[27], Gigabit Switch, Spirent
Avalanche/ Reflector[29], IDS Informer Attack Tool[28], and
Nessus Vulnerability Scanner[30] for experiments.

Fig. 10. Test bed for experiments

In the results of measurement using Spirent

Avalanche/Reflector, our system supported up to 40,000
Connections Per Second.

Max Concurrent Sessions was measured as following
procedure. First, a legitimate TCP session is opened through
3-way handshaking and then Spirent Avalanche opens various
numbers of TCP sessions from 500,000 to 1,500,000 with the
Reflector. Exploit is transmitted which is required to trigger an
alert in the initial TCP session. If the Session State Manager is
still maintaining state on the first session established, the
exploit will be detected. If the state table has been exhausted,
the exploit string will be seen as a non-stateful attack, and will
thus be ignored. Table 2 shows the results of alert generation in
this experiment. As a results of experiment, we can see that our
system supported up to 1, 300,000 Max Concurrent Sessions.

Table 2. The Results of Max Concurrent Sessions

 First Second Third
500,000 Yes Yes Yes
600,000 Yes Yes Yes
700,000 Yes Yes Yes
800,000 Yes Yes Yes
900,000 Yes Yes Yes

1,000,000 Yes Yes Yes
1,100,000 Yes Yes Yes
1,200,000 Yes Yes Yes

1,300,000 Yes Yes Yes
1,400,000 Yes No Yes
1,500,000 Yes No No

Another experiment was made on detection rate. Detection
rate is most important factor in SPI-based intrusion detection
system. Generally, both traffic rate and the number of
signatures have an effect on detection rate.
For performance evaluation of our prototype system, we

applied Snort ruleset to SGS. And we also used Fig.10 test bed
for experiments.
At first, we generate and transmit packet to the test bed using

IXIA Traffic Generator. And we tried to attack by Nessus and
IDS Informer. As background traffic generated by IXIA
increase gradually, we observed the rate of alert generation.
That is, we measured the decrease in effectiveness of the
detection when the traffic rate increases. The ruleset used
included 200 rules. Fig. 11(a) shows the results of this
experiment. Increasing traffic rate hasn’t an effect on detection
rate of SGS.

(a) Alerts according to the Increasing Traffic

(b)Alerts according to the Increasing Rules

Fig. 11. The Results of Detection Rate

The second experiment was to run SGS with a constant traffic

rate of 100Mbps and an increasing number of signatures. The
experiment starts with only the 200 signatures that are needed
to achieve maximum detection for the given attacks. Fig. 11(b)
shows the results of this experiment. Also, increasing number
of signatures hasn’t an effect on detection rate of SGS. The
previous two experiments using Snort sensors are performed by
Kruegel et al.[12]. Compared with Snort sensor, our prototype

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 2, 2008

317

system showed a consistent performance in traffic level and
had nothing to do with increasing number of signatures used.

V. CONCLUSION AND FUTURE WORK

One of important requirements of SPI-based intrusion
detection system is high performance. Even though SPI
technology in network security system is developed to reduce
false positive alerts, if not satisfied with performance, it may
not be used.

Due to the increasing link speed, the number of attack
patterns, and signatures to be maintained, it is a challenging
issue to provide a seamless protection for secure network
service. In this paper, we presented the architecture of our
system that performs the real-time traffic analysis and intrusion
detection on high-speed links, and proposed the novel detection
mechanisms in FPGA-based reconfiguring hardware that
supports more efficient intrusion detection. We have
implemented the prototype of our system for the analysis of the
traffic carried by a Gigabit link. Most of all, our system focus
on reducing a degradation of performance caused by
high-speed traffic analysis to the minimum level. Therefore, it
is run by the FPGA logic proposed for improvement in
performance. Also, it has the advantage that is capable of
supporting the effective response by using inline mode
monitoring technique on four Gigabit links.

The performance of SPI-based intrusion detection system
mainly depends on the performance of processing session
table.. In this paper, we also proposed session state
management scheme which can perform stateful packet
inspection in real time by performing session table processing
that allows more efficient generation of state information. And
we designed and implemented SPI-based intrusion detection
module in a FPGA to help alleviating a bottleneck in network
intrusion detection systems.

However, the current prototype needs some improvement
and a thorough evaluation to be deployed in a real-world
environment. In order to resolve the problem derived from the
verification of implemented system, it is necessary to upgrade
system performance and availability, and to perform
faults-tolerance test with prototype. Also, we need to keep up
much effort for improvement in performance of detection
mechanism on high-speed links. We hope to implement and
expand our designed system and give more effort to
demonstrate effectiveness of our system.

REFERENCES

[1] http://www.checkpoint.com, Firewall-1 Product
[2] Lance Spitzner, Understanding the FW-1 State Table,

http://www.spitzner.net/fwtable.html
[3] Brian Caswell, Jay Beale, James C. Foster, Jeremy Faircloth,

Snort 2.0 Intrusion Detection(Syngress Publishing, February
2003)

[4] http://www.snort.org, Snort Preprocessor Stream4
[5] Xin Li, Zheng-Zhou Ji, and Ming-Zeng Hu, “Stateful Inspection

Firewall Session Table Processing”, Proc. Of the International

Conference on Information Technology: Coding and
Computing(ITCC’05), Volume 2, April 2005, Pages:615-620

[6] Sergei et al., “SNORTRAN: An Optimizing Compiler for Snort
Rules”, Fidelis Security Systems, Inc., 2002

[7] Byoungkoo Kim, Youngjun Heo, and Jintae Oh,
“High-Performance Intrusion Detection in FPGA-based
Reconfiguring Hardware”, in Proceeding of APNOMS, 2005

[8] Dong-Ho Kang, Byoung-Koo Kim, and Jin-Tae Oh, “Protocol
Anomaly and Pattern Matching based Intrusion Detection
System”, WSEAS Transaction on Communications, Issue 10,
Vol. 4, October 2005, pp.994-1001

[9] Slobodan Bojanic, Vladimir Milovanovic, Zorana Bankovic,
Carlos Carerras, and Octavio Nieto-Taladriz, “Intrusion
Detection Using New FPGA Architecture”, WSEAS Transaction
on Communications, Issue 10, Vol. 4, October 2005,
pp.1077-1085

[10] M. Mehde, M. Bensebti, A. Anou, and M. Djebari, “Real Time
Solution for Computer Network Intrusion Detection”, WSEAS
Transaction on Computers, Issue 1, Vol. 5, January 2006,
pp.216-222

[11] Myung-Sup Kim, Young J. Won, and James Won-Ki Hong,
“Application-Level Traffic Monitoring and an Analysis on IP
Networks”, ETRI Journal, Vol.27, No.1, February. 2005,
pp.22-42.

[12] C. kruegel, F. Valeur, G. Vigna, and R. Kemmerer, “Stateful
Intrusion Detection for High-Speed Networks”, in Proceedings of
the IEEE Symposium on Research on Security and Privacy,
Oakland, CA, IEEE Press, May 2002

[13] I. Charitakis, K. Anagnostakis, and E. Markatos, “An Active
Traffic Splitter Architecture for Intrusion Detection”, Proc. Of
11th IEEE/ACM International Symposium on Modeling,
Analysis and Simulation of Computer and Telecommunication
Systems(MASCOTS 2003), Orlando, October 2003, pp. 238-241

[14] Tarek Abbes, Alakesh Haloi, and Michael Rusinowitch, “High
Performance Intrusion Detection using Traffic Classification”,
AISTA 2004 in Cooperation with the IEEE Computer Society
Proceedings, Nov. 15-18,. 2004,

[15] Sarang Dharmapurikar, Praveen Krishnamurthy, T.S. Sproll and
J.W. Lockwood, “Deep packet inspection using parallel bloom
filters”, IEEE Micro, Volume 24, Issue 1, Pages:52-61,
Jan.-Feb.2004

[16] D.V. Schuehler, J. Moscola and J.W. Lockwood, “Architecture
for a hardware-based, TCP/IP content-processing system”, IEEE
Micro, Volume 24, Issue 1, Pages:62-69, Jan.-Feb. 2004

[17] M. Aldwairi, T. Conte, and P. Franzon, “Configurable string
matching hardware for speedup intrusion detection”, In
Workshop on Architecture Support for Security and
Anti-virus(WASSA) Held in Cooperation with ASPLOS XI, Oct.
2004

[18] Z.K. Baker and V.K. Prasanna, “Time and area efficient pattern
matching on FPGAs”, In proceeding of the 2004 ACM/SIGDA
12th International Symposium on Field Programmable Gate
Arrays, pages 223-232, ACM Press, 2004

[19] C.R. Clark and D.E. Schimmel, “Efficient reconfigurable logic
circuits for matching complex network intrusion detection
patterns”, In 13th International Conference on Field
Programmable Logic and Applications, Sept. 2003

[20] R. Franklin, D. Carver, B.L. Hutchings, “Assisting Network
Intrusion Detection with Reconfigurable Hardware”, Proc. of the
IEEE Symposium on FPGA’s for Custom Computing Machine,
April 2002

[21] Shaomeng Li et al. “Exploiting Stateful Inspection of Network
Security in Reconfigurable Hardware”, Proc. Of FPL2003,
Lisbon, Portugal, September, 2003

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 2, 2008

318

http://www.checkpoint.com/

[22] Hyogon Kim, Jin-ho Kim, Inhye Kang, and Saewoong Bahk,
“Preventing Session Table Explosion in Packet Inspection
Computers”, IEEE Transaction on Computers, Vol. 54, No. 2,
February 2005

[23] http://www.xilinx.com
[24] http://www.cypress.com
[25] http://www.model.com
[26] http://www.synplicity.com
[27] http://www.ixiacom.com
[28] http://www.bladesoftware.net
[29] http://www.spirentcom.com
[30] http://www.nessus.org

Seung-Yong Yoon received the B.S. and M.S. degrees in Computer
Engineering from Chungnam National University in 1999 and 2001,
respectively. Since 2001, he has stayed in Security Gateway System
Team, Electronics and Telecommunications Research Institute(ETRI)
of Korea to study Network Security related Topics.

Byoung-Koo Kim received the B.S. and M.S. degrees in Information
and Communication Engineering from Sungkyunkwan University in
1999 and 2001, respectively. Since 2001, he has stayed in Security
Gateway System Team, Electronics and Telecommunications
Research Institute(ETRI) of Korea to study Network Security related
Topics.

Jin-Tae Oh received the B.S and M.S degrees in Electronics
Engineering from Kyungpook National University in 1990 and 1992,
respectively. He worked at ETRI (Electronics and
Telecommunications Research Institute) from 1992 to 1998. During
1998-1999, he stayed in MinMax Tech , USA, as a Research staff. He
served as a Director in Engedi Networks, USA, during 1999-2001. He
was both Co-founder and CTO Vice President in Winnow Tech. USA
during 2001-2003. From 2003, he works with the Security Gateway
Team, ETRI, Daejeon, Korea.

Jong-Soo Jang received the B.S and M.S degrees in Electronics
Engineering from Kyungpook National University in 1984 and 1986,
respectively. He received his Ph. D degree in Computer Engineering
from Chungbuk National University in 2000. Since 1989, he has been
working with ETRI, Daejeon, Korea and now is the Director of
Applied Security Group. Since January 2008, he has been a
Vice-President of KIISC(Korea Institute of Information Security and
Cryptology)

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 2, 2008

319

http://www.xilinx.com/
http://www.model.com/

