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Solid Modelling with Fourth Order Partial
Differential Equation
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Abstract— A solid modeling method is developed in this paper.
In order to satisfy the tangential continuity, a fourth order partial
differential equation is proposed and the boundary conditions
defining the solid are presented. Since an analytical expression of
solid models is the fastest in the geometric modeling, a unified closed
form solution to the partial differential equation is sought which
accurately satisfies the boundary conditions of solids. A number of
examples are presented to demonstrate the applications of the
developed method in solid modeling and the effects of vector-valued
parameters, force function, geometric parameters and basic functions
on the shape of solids.
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I\/IOST of the objects that we come across, both in the
physical world and in engineering, are best described by
their volume. Although the appearance of such objects can be
modelled by a surface representation, many applications, such
as CAD, metal forming or even simulations of surgical
operations, require information pertaining to the entire volume
of an object rather than just its surface. Thus, solid or volume
modelling is an important aspect of geometric modelling.

Like surface modelling [1-3], volume modelling can be
realised by purely geometric methods relying on Bézier, B-
spline or NURBS formulations. With such formulations the
definition and manipulation of the shape of the solid model
are achieved through the placement and movement of a lattice
of control points. When the number of these control points
becomes large, the task of manipulating the shape of the solid
becomes cumbersome. In addition, any physical object that we
wish to model may posses a number of physical or mechanical
properties that we may also wish to model. Although it is
possible to simulate such properties with a purely geometric
approach, it is more difficult to do so than with physically-
based modelling techniques.

To resolve such problems, physically-based modelling

techniques have been developed over the past twenty years,
which primarily represent a solid by its surface model. In
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1987, Terzopoulos et al. employed the continuous elasticity
theory to model the shape and motion of deformable bodies
[4]. A year later, Terzopoulos and Fleischer expanded this
model to cope with viscoelasticity, plasticity and fracture [5,
6]. Since NURBS have become an industry standard,
Terzopoulos and Qin applied the Lagrangian mechanics of an
elastic surface and the finite element method to develop
dynamic NURBS [7]. Given that many objects exhibit
symmetries and topological variability, they introduced
dynamic free-form NURBS swung surfaces for modelling this
class of objects [8]. In order to overcome the limitations of
tensor product NURBS surfaces that are topologically
rectangular, they developed dynamic triangular NURBS
which are superior as they can be defined over arbitrary
parametric domains and produce non-degenerate multi-sided
surface patches [9]. Léon and Veron, and Guillet and Léon
applied the mechanics of bar networks to deform multi-patch
tensor based free-form surfaces [10, 11]. By minimising an
energy functional (subject to user controlled geometric
constraints and loads), Celniker and Gossard proposed
deformable curve and surface finite-elements for free-form
shape design [12]. To reduce the computational burden of the
finite element method for free-form deformations, Kang and
Kak developed a new algorithm that works at two different
levels of resolution. Initially, a coarse resolution is used to
calculate the overall 3D deformation and, subsequently, a
finer resolution is used to deform the surface layers of the
object [13]. Work on reducing the computational cost of
physically-based modelling was also carried out by Vassilev,
who preserved the natural representation of the B-spline
surface control points (in a two dimensional array) and
presented a more efficient method for manipulating
deformable B-spline surfaces by minimising an energy
functional [14].

These physically-based modelling techniques, although
effective, have to solve a large set of equations that are
computationally expensive and not particularly well suited to
interactive computer graphics applications.

Surface-modelling techniques based on the solution of
partial differential equations have recently become more
actively investigated. Rather than manipulating the control
points, these modelling techniques modify the surface shape
of a solid by adjusting the vector-valued parameters and the
force function of the PDE (representing the solid), and / or the
positional, tangential and curvature functions of the boundary
condition expressions of this equation. In many applications,
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PDE-based methods are simpler to use and more convenient
for the representation of surface models.

Bloor and Wilson were the first to use PDEs to perform
surface blending [15] and free-form surface modelling [16].
Most recently, Monterde and Ugail presented a new technique
to create surfaces from prescribed boundaries using elliptic
partial differential equation operators [17]. Since the solution
of fourth order PDEs is the key to the successful generation of
PDE surfaces, some numerical methods such as the finite
element method [18, 19], the finite difference method [20],
and the collocation method [21] were also developed.
However, these numerical methods require expensive
computation, which hinders their wider application to
interactive computer graphics and CAD. In order to overcome
this limitation, Bloor and Wilson proposed the spectral
method [22] that is efficient for simple boundary conditions
but less accurate than other methods.

Since the vector-valued parameters of the PDE have a
strong influence on the generated surface shape, You and
Zhang have proposed a more general PDE [23] for surface
modelling that introduced a larger set of vector-valued
parameters. Later, they investigated surface blending using the
solution of a fourth order PDE [24] and a sixth order PDE
[25]. They also investigated vase design, using a fourth order
PDE [26], and surface modelling, using a sixth order PDE
[27].

As in the physical world all objects have volume, solid
modelling has a wide range of applications in computer
graphics and CAD. Due to the complexity of solid modelling,
however, only a limited number of publications on physically-
based volume modelling have appeared to date.

As early as 1984, Barr developed a set of hierarchical solid
modelling operations that simulate twisting, bending, tapering
and other similar transformations of geometric objects [28]. In
1992, Requicha and Rossignac conducted a survey of the field
of solid modelling and assessed the strengths and weaknesses
of the various solid modelling techniques [29]. The same year,
Metaxas and Terzopoulos developed a systematic approach to
deriving dynamic models from parametrically defined solid
primitives, global geometric deformations and local finite-
element deformations, and proposed efficient constraint
methods for connecting these new dynamic primitives
together to construct articulated models [30]. The following
year, Bloor and Wilson presented examples of some specific
solid volumes generated by solving a second order PDE [31].
In 2000, Ferley et al. presented a sculpture metaphor for rapid
shape prototyping that allows the use of free-form shaping
tools (which can be designed inside the application) and that
can mimic local deformations [32]. The following year, Breen
and Whitaker presented an approach to 3D shape
metamorphosis that has some advantages over other methods.
These advantages include a minimal need for user input, no
nodal parameterisation, flexible topology and sub-voxel
accuracy [33]. By combining a fourth-order elliptic PDE for
the definition of solid volumes with the equation of motion
from Dynamics, Du and Qin developed a technique for
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modelling dynamic solids [34]. In their paper, the finite
difference discretization and the multi-grid subdivision
techniques were employed to solve numerically the combined
equation. In 2002, McDonnell and Qin presented a sculptured
solid modelling system, founded upon free-form splines [35].
In 2004, Hua and Qin presented a novel interactive solid
modelling framework known as “haptic-based dynamic
implicit solid modelling”, which is founded upon volumetric
implicit functions and powerful physics-based modelling [36].
Developed from PDE-based flow constraints and scalar fields
of implicit functions, they also proposed a versatile efficient
and intuitive scalar-field-guided adaptive-shape-deformation
(SFD) technique for shape modelling and animation [37]. Guo
et al. presented a scalar-field-driven editing paradigm and a
system for point-set surfaces that allowed users to manipulate
and sculpt point-clouds intuitively and efficiently [38].
McDonnell and Qin proposed a new volumetric subdivision
scheme for the interpolation of arbitrary hexahedral meshes
[39]. Huan and Qin presented a surface reconstruction
algorithm that can recover correct shape geometry and its
unknown topology from both volumetric images and
unorganised point-clouds [40]. In order to maximise the
modelling potential of PDE-based methodology, Du and Qin
coupled PDEs with volumetric implicit functions achieving
both intuitive and interactive shape representation,
manipulation and deformation [41].

In this paper, we introduce a more general fourth order
PDE for solid modelling. Whiles the technique presented in
[31] can only deal with boundary positional continuity and
give closed form solutions to some specific cases, our
technique can also cope with boundary tangential continuity
and has more vector-valued parameters. Thus, our technique
provides better control over the shape of the generated PDE
solid. In addition, our technique is able to consider a range of
general cases of boundary conditions and present a unified
closed form solution to our fourth order PDE. Compared to
the numerical algorithm for solving the PDE used by Du and
Qin [34], our closed form solution is much more efficient.

First, let us introduce the formulation that we use to
describe a PDE solid volume. This formulation is similar to
the one used in our previous work to represent the surface
model of objects [24].

Allowing for the effect of the boundary tangent on the
shape of the solid volume, a PDE solid model can be
generated from the solution of a fourth order PDE, shown in
equation (1), which involves three parametric variables and is
subject to the boundary conditions, given in equation (2).

A STATIC PDE AND ITS CLOSED FORM SOLUTION

otx o' %
a—-+b—+c——=p(Uu,v,w) 1
aut vt awt @
w=0  x=Gy(u,v) a—ngl(u,v)
o ()
w=1 x=G,(u,v) EZGZ(U’V)
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where a:[aX ay az]r, b:[bx by bz]r and c=[cx cy cZ]T are
the shape of the PDE,
x(u, v, W):[x(u, v, W) y(u, v, w) z(u, v, W)]T is a vector-
valued positional function, Gi(u,v) and G,(u,v) are the
vector-valued functions of the boundary surfaces of the
generated solid volume, G,(u,v) and G,(u,v) are the vector-

valued functions of the boundary tangents of this volume, and
p(u,v,w) is a vector-valued force function. All the vector-
valued functions have three components x, y and z.

The PDE (1) subject to the boundary conditions (2) can be
solved using the finite element method, the finite difference
method or the weighted residual method. All these methods
are effective in solving PDEs, but they are slow and far from
ideal for interactive geometric modelling. To overcome this
difficulty, we will develop an accurate and efficient closed
form resolution method for our PDE.

The general solution of PDE (1) subject to boundary
conditions (2) consists of a complementary solution of the
associated homogeneous equation of the PDE and a particular
solution of the non-homogeneous PDE.

In order to find the closed form complementary solution of
PDE (1) subject to the boundary conditions (2), first we
decompose the functions of the boundary conditions into some
basic functions g;(u,v) of a non-polynomial form (since each

vector-valued parameters

term of a polynomial is a basic function and a polynomial is
the sum of a number of such basic functions). With these basic
functions, we rewrite the boundary conditions (2) in the
following form:

J ox J

w=0  x=3a;0;uv) —=3a0;uV)
j=1 w

3)
J X J

w=1  x=Yaggjuy)  ——=>a4;0;(uV)
j=1 w3

Then, we construct a complementary solution of the
associated homogeneous equation of PDE (1) which consists
of the unknown functions of parametric variable w and the
known basic boundary functions g;(u,v) , i.e.,

(4)

Substituting equation (4) into PDE (1) while ignoring the
force function, we obtain the following fourth order partial
differential equation:

J
X= Zlhj(w)gj(u,v)
J:

8%gi(u,v) d%g:(u,v) *h ; (w)
ahj(w) (;U4 +bh j (W) — +cg;(u,v) 0v:/4 =0 (5
(j=12--3)

For the basic boundary functions whose fourth partial
derivatives can be expressed with the basic boundary
functions themselves, i.e.,

0%g;(u,v)
ou*

o%g;(u,v)
3V4

=by4j9;(u.v)
(6)

=by49;(u,v)
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equation (5) can be formulated below:

d*h;(w)
(J :1|2...‘J)
where e; is a vector-valued constant that is given as:
abygi +bbyg
o) =—udl T v] (8)

C

For the basic boundary functions whose fourth partial
derivatives cannot be expressed with the basic boundary
functions themselves, we can always transform them into
those satisfying Eq. (6), e.g., a Fourier series.

Let us now consider the following two situations: e; =0

and e; #0. If e; =0, equation (7) reduces to:

d*h;(w) 0
aw? (9)
(j=12-3)
The solution to the above fourth order ordinary differential
equations can be written as:
hyj (W) =Cyp +Cpow+ Ct3W2 + Ct4W3

(t=x,vy,2; j=12,---,J)

(10)

where ¢y, ¢», C3 and ¢y, are unknown constants, and
hy(w), hyj(w) and h;(w) are the components of the vector-
valued function hj(w).

Substituting equation (9) into (4), the position function of
the volume takes the form:
J

t=3

2 3
(cu + CioW+ CiaW” + CiqW )gtj (u,v)
=1

(t=xY,2)
where g,;(u,v), gyj(u,v) and g,(u,v) are the components of

(11)

the vector-valued function g;(u,v) .
If e; =0, the components of the unknown function h;(w)
can be taken to be:
hy (w) =™
(t=xy,2)

Substituting equation (12) into (7), we obtain the
following non-linear algebraic equations:

4
r'—e;=0
(t=xy,2,j=12,--,J)

(12)

(13)

where e, and e, are the components of the vector-

€yj
valued constant e j-

Equation (13) is an algebraic equation. The solution of
which consists of four roots that can be written as:

M2 =+4/&
fig,q = +igey

where i is the imaginary unit.

(14)
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Using equation (14), we can rewrite the components of the
unknown function h;(w) as:

hyj (W) = ctlez‘x/gW + ctzefﬁw +Ct3 cosﬁw+ Cra Sin4fegw (15)
t=xvy,2; j=12,---,3)
Substituting equation (15) into (4), the position function of

the solid defined by the boundary conditions (3) becomes:
J

4le. —4fe. )
t= Zictlexﬁw +Cpo€ e +Crg COS4/ey W+ Cyg Sindfey w}gtj (u,v) (16)

j=
(t:X!va)
Subject to the specified boundary conditions, the

coefficient e; and the unknown constants ¢y, ¢, ¢z and

¢4 Can be determined by substituting equations (11) or (16)

into these boundary conditions.

From the theory of partial differential equations, we know
that the particular solution of PDE (1) depends on the
mathematical representation of the force function. Therefore,
in the next section, we introduce a number of examples that
show how we determine the particular solution of PDE (1).

Superimposing  the  particular ~ solution on the
complementary solution (11) or (16), we obtain the general
solution of PDE (1) that can be used to generate the required
solid volume.

I1l. THE GENERATION OF SOLID VOLUMES

In this section, we discuss the application of the above-
developed closed form solution to the modelling of a solid
using a number of examples.

In our first example, we generate a solid volume defined
by two planar surfaces whose boundary curves are square or
rectangular. This example was selected to show how the
geometric parameters of the boundary conditions affect the
shape of generated PDE solid.

Here, the boundary conditions of the solid are given by:

ox .,
w=0 XxX=ag+au E:a(ﬁalu
ay ’ 1,
=hy +byv ——=by+bv
y=bo+by =D +bj
z2=hy 2 _n
o (17)
X ’ !
W:1 X=a2+a3u a=a2+a3u
y =by +bgv %:b’2+b§v
oz ,
Z= — =
hy —o=hi

where a and b; (i=0,1,2,3) determine the shape and size of
the planar boundary surfaces, hy and h, determine the relative
height of these surfaces in the =z direction, aj, b
(i=0,1,2,3), and hy and h; determine the direction and size

of the tangents of the solid to be generated at the boundary
surfaces.

The basic functions in the boundary conditions (17) are
taken to be g, (u,v)=1 and g,,(u,v)=u for the x component,
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9y2(uv)=1 and g,,(u,v)=v for the y component, and
gna(u,v)=1 for the z component. Since e; and e, are equal
to zero, the position function of the solid volume (11)
becomes:

X=Cy1 +CyoW+ CX3W2 + CX4W3 + (st +CygW + CX7W2 + CX3W3)J

Y = Cyp + CypW+ CyaW? + CygWS +(Cys + CogW+ CyW? +C w3)/ (18)

yl y2 y3 y4 y5 y6 y7 y8

7= Cyp +CypW+CyaW? +CpgW®

Substituting equation (18) into the boundary conditions
(17), we determine all the unknown constants. Initially, we set
the geometric parameters to the following values:
a0=b0=a2=b2=—0.5, a]_:bl:ag:b?):hl:l, and
ho=ap=aj=hy=bj=ay=ay=by=by=hy=hj=0, and we
obtain the cuboid shown in figures 1a and 1b. Then, we alter
the values of some of the geometric parameters to the
following values: a,=b,=-1 and ag=by=h=2. The
generated solid now becomes the irregular hexahedron shown
in figures 1c and 1d. Setting the geometric parameters to the
values: ag =-05, a1 =15, as :bo =-1, as =bl=3, bz =-04,
by=1, hy=0, ly=2, and ay=ay, aj=a;, a=a,, aj=as,

by=bg, bi=by, by=by, by=bs, hg=h and hi=2h, we
obtain the solid depicted in figures 1e and 1f. Finally,
changing the boundary tangents to aj=25a,, aj =25a,

a,=-2a,, ay=-2a3, by=-25by, bj=-25b, and h=h,
resulted in the solid depicted in figures 1g and 1h.

LSl
L4
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g h
Fig. 1 PDE solids defined by two parallel planar surfaces with
square or rectangular boundary curves.

From figure 1, it is clear that varying the geometric
parameters and tangents of the solid at the boundary surfaces
can greatly affect the shape of the generated PDE solid.

Generating the images of the PDE solids presented in
figure 1 was fairly straightforward. In each case, we did so by
displaying the six isoparametric surfaces that represent the
outer skin of the corresponding PDE solid. Using equation
(18), we generated these isoparametric surfaces by keeping
the value of one of the parametric variables (u,v,w) constant,
while varying the values of the other two in the range [0,1].
Thus, for the first isoparametric surface we used u=0 and
v,welo1], for the second isoparametric surface u=1 and
v,we[04], and so on.

The second example is to generate a solid volume confined
by one circle plane and one elliptic plane. This example is
employed to demonstrate how the vector-valued parameters in
Eqg. (1) influence the shape of solids. The boundary conditions
at the boundary surfaces have the following forms

w=0 X=rusin2av %=r6usin2nv
Yy = pu cos2av % = U cos2av
2=ty Z b
o (19)
w=1 Xx=agusin2av %:a{,usinZﬂv
y =bgucos2zv %:b{,ucoshv
oz ,
z=h 5:h1

where ry and hy determine the size of the circle plane, r; and
hy determine the direction and size of the tangent of the solid
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at the boundary plane, a,, by and h, determine the size of the
elliptic plane, and ag, by and h determine the direction and

size of the tangent of the solid at the boundary elliptic plane.
The basic function in the above boundary conditions is
gx(u,v)=usin2zv for the x component, gy, (u,v)=ucos2zv

for the y component, and g,;(u,v)=1 for the z component.

The position functions (11) and (15) of the solid volume
becomes

X= (cxletxw +Cyp8 W 4 C g COSE W Cyg SiN tXW)J sin 2zv

t -t .
y= (cyle My Cyo€ oy Cy3 COStyW+Cy g Sin tywju cos2av  (20)

Z=Cy, +CyW+ cz3w2 + cz4w3
where

o (21)

c
Fig. 2 Solids defined by two parallel planes confined by a
circle and an ellipse

Substituting Eq. (20) into (19), all the unknown constants
in Eq. (20) were determined. For this example, we examine
how the vector-valued parameters affect the shape of the solid.
Therefore, all the geometric parameters were fixed at
lhp=rg=23,=05, by=1, hg=hy=h=ay=by=0, and h=2.
Since the z component of the vector-valued parameters does
not affect the solution function, we only consider the x and
y components. Firstly, taking a,=a, =1, b,=b,=4 and
¢y =Cy, =-100, the image in Fig. 2a was obtained. Then,
changing ¢, =c, =-100 to c¢,=c,=-10 and by=b, =4 to
by =b, =25, the image was changed to that in Fig. 2b.
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Finally, fixing c, =c, =-10 but changing b, =b, =2.5 back to
by =by, =4, the image in Fig. 2c was created. From these

images, it is clear that the variety of the vector-valued has
greatly changed the shape of the solid.

In our third example, we generate a solid volume defined
by two planar or 3D boundary surfaces. This example was
selected to show how different basic functions affect the shape
of the generated PDE solids.

Here, the boundary conditions of the solid are given by:

. . OX . .
w=0  Xx=u(rpsin2zv+ [ sinnyyzv) ol u(rgsin 2zv + rsin nyy 2v)
Y = U(Ip COS 22V + I COS Nyy V) ol = U(Ig COS 27V + I COS Ny V)
ow (22)
. 07 .
z =hg +husinn,zv %:héﬂll’usmnzml
. ox o,
w=1 X=rnusin2z — =rusin2av
ow
_ ¥ _p
Yy = Lucos2av —— = rucos2av
ow
h i o hy + hgussi
z = hy + hgusinn,av rvi 2 + hgusinn,zv

where ry, 1, hy and h are geometric parameters determining
the size of the top boundary surface, ry, r, hy and h

determine the direction and size of the tangent of the solid at
the top boundary surface, r,, h, and hy are the geometric
parameters determining the size of the bottom boundary
surface, and ry, h; and h; determine the direction and size of
the tangent of the solid at the bottom boundary surface.

When n, in equation (22) is set to 0, two planar boundary

surfaces are described, otherwise two three-dimensional
boundary surfaces are described.

The basic functions in the above boundary conditions are
taken to be g, (u,v) =usin2av and g,,(u,v) =usinn, zv for the
X component, gy;(u,v)=ucos2zv and gy, (u,v)=ucosnmw
for the y component, and g,;(u,v)=1 and g,,(u,v)=usinn,zv
for the z component. The solution functions are:

X = (cxlletxlw +Cyp1€ MY 4 C gy COSLQW+ Cygy sintle)J sin2zv

+ (cme‘xzw +Cyp0€ 5 4 Cygp COSt W+ Cygp SIN thW)J sinn,y v

t t .
y= (cyue 1 eyge ™ ey COStW Cygg smtyleu cos2v (23)
(e —t W .
+[ €412 +Cy 908 Y +Cyg9 COSL W+ Cy gy SNy, W JUCOS Ny 2V
Z=Cy11 +CypWHCrgW2 +CpgW° +(C112€%" + 5000 W 4 ¢, 3, COSE,W
+C,40 SINt W)USINN, 2V
where
b
ty =27 |-
Ci
ti, =n by
i2 = Nyy T |——
G (24)

(i=x)

b
t,=n,7 {——Z
z z CZ

In this example, the vector-valued parameters were set to
ay=ay=a,=1, b,=b,=b,=25 and c,=c,=c,=-10, and

the geometric parameters were set t0 rp=05, r=h =01,
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r,=05, hg=2, h, =0, hy =-0.1, and
rp=H=ry=hy=h =h; =h;=0. The solid depicted in figure 3a
was generated by setting n,, =20 and n, =0. Changing n,,
to 30, generated the solid depicted in figure 3b. Setting
r,=08, ny =8 and n, =10, resulted in the solid depicted in
figure 3c. Finally, setting n,, =14 and n, =6, resulted in the
solid depicted in figure 3d.

Examining these images we can conclude that selecting
different basic functions (i.e. usin20zv, usin30av, usin8av
and usinl4av for the x component, ucos20zv, ucos30av,
ucos8zv and ucosl4nv for the y component, and usinl0av
and usin6ézv for the z component) greatly influences the
shape of the generated solid.

c
Fig. 3 PDE solids defined by two planar or three-dimensional
surfaces.

In our fourth example, we generate a solid volume
defined by two boundary surfaces confined within two circles
and subjected to a vector-valued force function. This example
was selected to show how different combinations of the
vector-valued parameters, force function, boundary positions
and tangents have the capacity to generate solids with widely
diverse shapes.

Here, the boundary conditions of the solid are given by:
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w=0 X=rusin2zav %:réusinZ;zv
Yy = fgucos 2zv % = Igucos2zv
oz ,
z=hy a=h0
25
. ox ., . (25)
w=1 X=nusin2av a:rlust;zv
Yy = [uCcos2av % =1{ucos2av
oz ,
z=h a=h1

where r, and hy determine the size of the upper boundary
surface, ry and hy determine the direction and size of the
tangent of the solid at this boundary, r, and b determine the
size of the bottom boundary surface, and /' and h determine

the direction and size of the tangent of the solid at this
boundary.

The basic functions in the above boundary conditions are
given by gu(uv)=usin2zv  for the x component,

9y2(u,v) =ucos2zv for the y component, and g, (u,v)=1 for

the z component. Now, the position functions (11) and (16)
of the solid volume become:

X = (cxletxw +Cyp€ Y 4 Cyg COSE W+ Cyy SIN '[XW)J sin 2av

y= (cyletyw 0,0 " +Cy5cOSt,WHCyysiN tyw)u cos2zwv  (26)
Z=Cy +CppW+ czsw2 + cz4w3
where
t =2z |-
! Cj (27)
(i=xy)

As we now wish to consider the effect of the force
function on the shape of the generated solid, we represent this
function in the following form:

py (U, v, w) = pousin &zwcos 2av
py (U,v,w) = pousin &awsin 2zv (28)
pz(u,v,w)=0

Substituting equation (28) into PDE (1), the particular
solution of the non-homogeneous fourth order PDE is given
as:

X = mu sin &zwcos 2av
X X

§:musin Emvsin 2zv (29)
y +Cy

7=0

Superimposition of equation (29) onto equation (26)
results in the general solution of the non-homogeneous fourth
order PDE (1), which has the form:

458

X= (cxletxw +Cype W 4 Cyq COStWHCyg SintXW)J sin2av
Po

+—————————usin&mwcos 2av
(6b, +c, &t

t,w —t,w .
y= (cyle 7T cye Y +Cy300St, WHCyy smtyw)u cos2v (30)

Po

+—————————usin&mwsin 2zv
@a6by +c &)zt

Z=Cy1 +CppW+CyaW? +CpqW°

Substituting equation (30) into (25), we determine all the
unknown constants in equation (30) and use it to generate the
solid.

Different combinations of the vector-valued parameters,
force function, and positional and tangential parameters are
listed below and the corresponding solids they generate are
shown in figure 4.

Fig. 4a: b,=b, =1,

n=05, §=0, hy=0, hy=0, hy=3, hj =75, py =3x10* and

E=3.
Fig. 4b: by=by =25, cy=c,=-10, =05, rg=25,

cX:cy:—9.5, =05, rp=0,

n=05, =25, hy=0, hy=0, h =3, hj =3, py =8x10* and

£=5.
Fig. 4c: by=by=4, c,=c,=-100, =05, rj=25,
R=05, =25, hy=0, hy=0, =3, hi=6, pp=18x10°
and £=7.
Fig. 4d: by=by=4, c,=c,=-10, 1p=05, rj=-15,

R=05, =2, hy=0, hy=3, hy=3, h =6, pp,=3x10° and

E=7.
! !I.
d e f g
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X
Fig. 4 Solids generated using different combinations of the
parameters controlling their shape.

Fig. 4e: b,=b,=4, c,=c,=-10, ry=05, rj=-15,

y y
n=05, §=2, hy=0, hy=3, hy=3, hi =6, py=-3x10° and
E=T.

Fig. 4f: by=b, =25, ¢,=c,=-10, =05, rp=-15,
n=05, =15, hy=0, hy=6, hy =3, hj=45, p,=10° and
E=T.

Fig. 4g: by=by,=25, c,=c,=-10, =05, rE=-15,
R=05, =2, hy=0, hj=3, hy=3, hy =9, py=-3x10* and
£=5.

Fig. 4h: by=b, =25, c,=c,=-10, rp=05, rg=-1,
n=05, =05, hy=0, hy=3, hy=3, hj=6, py=15x10*
and £=3.

Fig. 4i: b,=b, =25, c,=c¢

y=—1O, =08, rp=08,

n=05, §=-16, hy=0, hy=3, =3, hi=6, py=1.5x10"
and £=3.

Fig. 4j: by=b, =25, ¢,=c,=-10, =06, rp=-18,
n=05, §=-06, hy=0, hy=3, hy=3, hj =6, py=-5.5x10*
and £=5.

Fig. 4k: by=b, =25, c,=c,=-10, 1;=06, rj=-18,
n=05, §f=-06, hy=0, hy=3, hy=3, hj =6, py=5.5x10*
and £=5.

Fig. 4l: b,=b, =35, c,=c,=-10, =08, rj=-24,
n=05, =05, hy=0, hy=3, hy=3, h =9, py=-5.5x10*
and £=5.
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Fig. 4m: by=by, =35, ¢, =c 10, =08, rp=-24,

y=
n=05, =05, hy=0, hy=3, h=3, hj=9, p,=55x10*
and £=9.

Fig. 4n: b, =b, =5, y
R=05, =0, hy=0, hy=3, hy=3, hj=3, p,=5x10° and
E=T.

Fig. 4o: by=b, =3, ¢y =c,=-20, rp=1, iF=-5, =05,

cy=C,=-20, ry=15, rg=-45,

K=-1, hg=0, h)=6, h =3, h{ =6, py=-9x10° and &=11.

Fig. 4p: b,=b, =15, cy=c,=-40, rp=1, rg=-2,

n=05, f=-1, hy=0, hy=6, b =3, hj=45, p,=3x10°
and £=11.
Fig. 49: b,=b, =1, ¢, =c

y=—10, =1, =3, =05,

H=-1, hy=0, hy=6, hy=3, h{ =9, p, =3x10* and £=3.
Fig. 4r: by=by =1, ¢, =c,=-10, =1, =-3, =05,

H=-2, hg=0, hy=9, hy=3, hj =3, p, =3x10* and £=3.
Fig. 4s: by=by =1, ¢,=c,=-10, rp=1, rg=-3, =05,

H=-2, hy=0, hy=9, hy=3, hj =3, pp,=3x10° and &=7.
Fig. 4t: b, =by =1, ¢, =c,=-10, rp=1, r;=-3, =05,

KH=-1, hg=0, hj=9, hy=3, h{=0, py=3x10° and £=5.

Fig. 4u: by=by =1, ¢, =c,=-10, ry=1, rp=3, =05,

K=1, hy=0, hy=9, hy =3, hi =75, py=3x10* and £=5.
Fig. 4v: by=by =1, ¢,=c,=-10, rp=1, ry=1, R =05,

=3, hg=0, hy=3, =3, ki =9, py=5x10° and £=9.
Fig. 4w: by=by =1, ¢, =c,=-10, =1, =6, =05,

=3, hg=0, hy=3, hy=3, hi =105, py=3x10° and £=9.
Fig. 4x: by =b, =1, ¢y =c, =-10, =08, rg=-4, =1,

H=-24,hy=0, hj=6, hy=3, h{=9, py=5x10° and &=7.

From the images shown in this figure, it is clear that by
combining different force functions and other parameters, a
large variety of solid shapes can easily be generated.

IV. CONCLUSIONS

In this paper, a solid modelling method has been developed.
It is based on our proposed fourth order partial differential
equations and boundary conditions. By introducing the
method of variable separation, the unified forms of the closed
form solutions to the partial differential equations subjected to
the boundary conditions are obtained.

With the obtained closed form solution, four examples have
been given to demonstrate how solid models are represented
and manipulated. We have also shown how different vector-
valued parameters, force function, geometric parameters and
basic functions affect the shape of the solids. Due to the
analytical nature of the representations, the proposed method
is accurate and has a high efficiency in solid modeling.
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