

 74

Abstract—In today’s markets, business enterprises are required

to deliver improved functionality and provide on-demand services,
while leveraging existing IT infrastructure and investment. They are
expected to be agile and dynamic. It is the globalization, tighter
economies, business process outsourcing and ever increasing
regulatory environments that are forcing businesses to transform the
way they provide their business and services. In this context, Service
Oriented Architecture (SOA) is proving to be an attractive approach
that promises better alignment of IT with business vision, more
effective reuse, better interoperability, reduced costs of development
and more efficient operation of business applications. However, like
any other approach, it has its limitations and inherent issues. This
paper introduces the SOA paradigm, presents the benefits it offers
and discusses the inherent limitations and challenges. The objective
is to provide enough background information so that enterprises,
wishing to embark on the road to SOA, have a better understanding
of this approach.

Keywords—Service oriented architecture, SOA, Enterprise
application integration, WEB Services.

I. INTRODUCTION
ervice Oriented Architecture (SOA) is an emerging
architectural style for developing and integrating

enterprise applications. It is an organizational and technical
framework to enable an enterprise to deliver self-describing
and platform independent business functionality [1] providing
a way of sharing business functions and services in a
widespread and flexible way. Knorr and Rist [2] define SOA
as a broad, standalone and standards based framework in
which services are built, deployed, managed and orchestrated
in pursuit of an agile and resilient IT infrastructure. British
Computer Society’s definition suggests that SOA is about the
evolution of business processes, applications and services
from today’s legacy-ridden and silo-oriented systems to a
world of federated businesses, accommodating rapid response
to change, utilizing vast degrees of business automation [3].
This architecture aims to provide enterprise business solutions
that can extend or change on demand as well as provide a
mechanism for interfacing existing legacy applications
regardless of their platform, language or mode of operation. It
is being seen as a new approach - a silver bullet - to enterprise
application integration to provide a closer alignment between
business vision and IT infrastructure and systems.

Manuscript received December 23, 2006; Revised April 6, 2007.

In this paper, we first establish the need for SOA and
briefly outline the SOA framework and technologies. Then, in
sections IV and V, we mention the potential benefits that SOA
aims to achieve and discuss the limitations and inherent
issues. In the last section, we present summary and
conclusions.

II. THE NEED FOR SOA
Enterprises have invested heavily in large-scale applications

software such as ERP (enterprise resource planning), SCM
(supply chain management), CRM (customer relationship
management) and other such systems to run their businesses.
These applications are usually stand-alone and the
infrastructure is often heterogeneous across a number of
platforms, operating systems and languages and modes of
operations. Because of the self-contained nature of these
applications, there is often a huge duplication of functionality
and services resulting in a waste of valuable resources and
poor response times. Increasingly, the business and IT
managers are being asked to deliver improved functionality of
services, ensuring availability as and when required, while
leveraging existing IT investment. They are increasingly being
expected to provide the following:

• Respond to business changes and customer
requirements with agility,

• Meet demands of ever changing business
environment and partner organizations,

• Provide continuous business process improvement,
• Support new channels of business including

provision on the Internet,
• Provide better customer support and ensure their

satisfaction,
• Feature an architecture that supports organic

business [4].

One solution is to develop architectures that allow easy

integration of the existing and new enterprise applications.
The Web Services (WS) technology and SOA appears to be
an answer – that provides opportunities for better business
applications development and integration with the added
benefits of reduced costs, easier maintenance, greater
flexibility and improved scalability.

Z. Mahmood is with the School of Computing, University of Derby, DE22

1GB, UK (phone: 00-44-1332-591733; e-mail: z.mahmood@derby.ac.uk).

The Promise and Limitations of Service
Oriented Architecture

Zaigham Mahmood

S

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 1, 2007

 75

III. SOA ELEMENTS AND TECHNOLOGIES
In a SOA, the business and technical processes are

implemented as services. Each service represents a particular
functionality that maps explicitly to a step in a business
process [6]. In this context, a service is a software component
that can be reused by another software component or accessed
via a standard-based interface over the network. An important
aspect of service-orientation is the separation of the following
two components:

• The service interface (the WHAT) – which
provides service identification, definition of
parameters and conventions for transferring the
service results back to the consumer.

• The service content or implementation (the
HOW) – which provides business logic as
stateless computation.

Zimmermann [7] suggests three levels of abstractions

within SOA:
• Operations: units of functions operating on

received data, having specific interfaces and
returning structured responses.

• Services: logical groupings of operations or
combinations of other services.

• Business processes: actions or activities to perform
specific business goals by invoking multiple
services.

Services can be divided into three main groups [8]:

• Infrastructure services: to include identification,
security, management and monitoring.

• Business-neutral services: to include service
brokers and notification, scheduling and workflow
services.

• Business services: to include services based on
business domain e.g. credit card validation,
address verification and inventory checks.

At the highest level of abstraction, SOA uses a find-bind-

execute paradigm, as shown in Fig. 1. The main elements
include:

• Service providers – components available to
consumers that execute business functions using
given inputs and producing outputs.

• Service consumers – components or customers that
use services published by service providers.

• Service registry – repository of service
descriptions so that consumers know where
services exist and how services may be accessed or
used.

Service Providers build services and offer them via an

intranet or Internet. They register services with service
brokers and publish them in distributed registries. Each
service has an interface, known as contract and functionality,

which is kept separate from the interface. The Service
Consumers search for services (based on some criteria) - when
found, a dynamic binding is performed. In this case, the
service provides the consumer with the contract details and an
endpoint address. The consumer then invokes the service.

Fig. 1 Publish-Find-Bind-Execute paradigm

Services, usually implemented as Web Services (WS), are

delivered using technologies such as eXtensible Markup
Language (XML), Web Services Description Language
(WSDL), Simple Object Access Protocol (SOAP) and
Universal Description Discovery and Integration (UDDI).

Technologies such as XML, SOAP, UDDI and WSDL
address the basics of interoperable services and ensure that
clients can find and use the required services irrespective of
where the clients reside or what technologies are used to
create or use the services. XML is fundamental to WSs;
WSDL is used to describe WS interfaces; SOAP provides a
protocol for transferring messages; and UDDI acts as a
repository of available WSs. However, for the SOA to become
a mainstream IT practice, other standards such as those to do
with security and management of services need to be added.
Such standards, referred to as WS-*, are already emerging and
organisations such as World Wide Consortium (W3C) and
OASIS are in the process of devising such standards.

Many proprietary SOA tools and frameworks have also
been produced for the development of WSs and
implementation of SOA. Majority of these are difficult to use
and do not deliver the business benefits claimed. They lack
vital capabilities like configuration control or testing prior to
deployment. Hohpe [5], [8] believes the next generation tools
will provide facilities for testing and debugging as well as
provide support for monitoring and management. For a review
of a number of such products from vendors such as BEA,
Eclipse, IBM and CapeClear, refer to Mahmood [18].

IV. SOA PROMISE AND BENEFITS
SOA offers better opportunities for enterprise application

integration with the additional advantages of reduction in
costs, ease of maintenance and improvement in flexibility and
scalability. SOA allows enterprises and their IT systems to be
more agile to the changes in the business and the environment.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 1, 2007

 76

It provides an opportunity to achieve broad-scale
interoperability while offering flexibility to adapt to changing
technologies. If implemented correctly, its technical
characteristics translate directly into real bottom-line benefits.
The main characteristics include:

• Loosely coupled architecture
• Modular approach
• Non-intrusive nature
• Universality of standards.

Various benefits derived from the above can be summarized

as follows [9], [10]:
• Loosely coupled applications and location

transparency – this allows enterprises to plug in
new services or upgrade existing services with
relative ease [4].

• Seamless connectivity of applications and
interoperability – this provides opportunities to
increase business agility and the ability to respond
on demand.

• Alignment of IT around the needs of the business
– this results in IT as the enabling technology to
provide added value to business operations.

• Increased business agility, capturing new channels
of business – this provides flexibility, ease of
access and increased customer satisfaction.

• Enhanced reuse of existing assets and applications
– this helps to reduced costs, reduced development
time and a reduction of time to market

• Relatively easy integration of legacy systems – this
promotes interoperability and efficient use of
resources and existing facilities.

• Process-centric architecture and flexibility of
approach – this allows a process driven approach,
which is a worthwhile aim to achieve.

• Parallel and independent applications development
– this is due to the reuse of services and ability to
withdraw or plug in new developments with
considerable ease.

• Better scalability and graceful evolutionary
changes - this is due to the reuse of services and
ability to develop applications independently and
in parallel.

Other associated benefits include:

• Reduced costs of integration and change
management.

• Automatic derivation of process metrics and hence
reduction of process metrics costs.

• Easier and more effective systems maintenance.
• Reduced business risk and exposure in spite of

increased business visibility.
• Reduced vendor lock-in.

The SOA represents a new way of developing systems - it

promotes a shift from writing software to assembling and
integrating services. A natural consequence is that systems are
no longer implemented as single monolithic structures but as a
series of component parts that work together to deliver
whatever functionality is required. It is an effective strategy
for integrating enterprise–wide applications and legacy
systems. Underlying platform implementation becomes
irrelevant as standard interfaces and message exchange
patterns provide integration, both within and across
enterprises. The goal is to build a flexible infrastructure to
abridge applications more easily and to solve business
challenges quickly. However, to support the goal of SOA, the
infrastructure must support flexibility, heterogeneity,
distributed development and management [9].

V. SOA LIMITATIONS AND INHERENT ISSUES
SOA is a much better architecture as opposed to distributed

client server architecture and it can bring huge benefits in the
form of code reuse, better integration and improved
responsiveness to business needs. However, the eternal battle
between flexibility and efficiency exists in just the same way
as it always has.

Obviously, it is desirable to develop architectures that allow
easy integration of the existing and new enterprise
applications. However, the integration technology solutions
are often proprietary which present issues of inoperability.
Hohpe [5] mentions the following problems with respect to
the existing distributed architectures:

• Vendor lock-ins: as many architectures are based
on proprietary protocols and implementations.

• Tight coupling: as distributed architectures
typically link components directly to one another.

• Complexity: as the interactions between objects
are often rich and complex.

• Connectivity: as majority of distributed
architectures do not work over wide-area,
intermittent networks.

SOA also requires a large upfront investment by way of

technology, development and staff deployment. It may cost a
great deal and the Return on Investment (ROI) could take a
long time to materialize. Overall [12] mentions the following
downsides to SOA:

• Since services can invoke other services, each
service needs to validate completely every input
parameter. This has negative implications by way
of response time and overall machine load

• It is entirely possible, at times, that a bug or
corruption introduced in a well-used service takes
out the entire system, not just a single application.

Managing services metadata is another obvious challenge.

As services keep exchanging messages to perform tasks,
number of these messages can go into millions even for a
single application [13].

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 1, 2007

 77

Technology risk of SOA is particularly challenging due to
the following factors [19]:

• Early adoption – especially when the technology is
new and evolving,

• Organizational changes within the enterprise – to
accommodate a new way of thinking,

• Architecture – this is enterprise wide and thus
encompasses heterogeneous systems,

• Quality assurance – this is particularly difficult as
services are distributed and ownership is often
unclear.

Although, Web Services provide a sensible implementation

platform, many infrastructure services (eg security, systems
management, interface contracts) are not yet fully defined.
Finding a service that is at the right level of abstraction is also
a challenge.

Issues, inherent due to the very nature of service-
orientation, can be summarized as follows:

• Coarse granularity: This may mean that 1) testing
and validating every combination of every
condition in a complex service may well become
humanly impossible; 2) one service trying to serve
a dozen masters may lead to spaghetti code and
therefore introduce massive inefficiency and 3) a
generic service, because of its coarse granularity,
cannot be easily optimized for efficiency [12]

• Loose coupling: It is an architect’s dream but
making a system distributed adds a new level of
complexity and therefore, as Fowler [16] puts it, it
can become a developer’s nightmare

• Integration of services: This can be a complex task
especially when there is a lack of skilled people to
work in a SOA based environment [13]

• Service interoperability: When web services are
used to exchange SOAP messages over HTTP,
encapsulating XML data, integration of services in
heterogeneous environment can become a serious
issue

• Evolutionary development: Building and updating
services is fine. However, if applications
continually require additional functionality, and
these requests are granted, the entire system may
become unstable [12].

Other challenges and limitations can be summarized as

follows:
• WS standards: These standards are open and

amorphous. Many are still working drafts. Higher-
level services and security have not been
standardised at all. This could result in a rework of
existing code to conform to new and evolving
standards [8].

• Internet protocols: They are not designed for
reliability, guaranteed delivery or order of delivery

so the service or the consumer needs to ensure that
messages has been delivered/received in a timely
manner [17].

• Interoperability: Common implementations of
SOA use web services to exchange messages over
the Internet. These encapsulate XML data.
Problems may be encountered when integrating
these services in heterogeneous environments.

• Development tools: Vendors are producing tools to
enable organizations to reap the benefits of SOA
but a majority of these are early releases and based
on evolving standards. This may also result in
rework of existing code once the standards are
agreed upon [8].

• Network connections: If the architecture and
services are highly interconnected then even a
partial network failure may create a huge problem
for the relevant organizations. Currently, although
the required technology is available, there is no
guarantee that infrastructures will be robust with
enough redundancy to cope with the system
downtimes.

• Security: When using open standards, a service is
much more open to other services and applications
than a monolithic application and thus security
becomes an issue [13]. Internet protocols also lack
reliability. Although, WS-Security addresses such
issues, there is a considerable amount of work that
still needs to be done.

• Application ownership: SOA blurs the boundaries
of application ownership so who owns what
becomes an issue. Thus, service management
becomes a real issue.

• Choosing a vendor: Knorr and Rist [2] recommend
a multi-vendor solution to fully benefit from the
flexible nature of SOA.

• Training: It takes time to learn and use new
technologies. There are too many technologies and
not enough expertise available in the market. For
an organization adopting this architecture,
thorough understanding of the underlying
technologies remains critical [8].

• Adoption: staff’s reluctance to embrace a new
technology is always an issue that management
needs to consider carefully.

• Governance: UK firm Gartner warns that SOA
projects will fail unless they are tightly managed
and audited [14]. Since SOA is a new paradigm,
governance issues are not properly understood.

Given the challenges and issues, as mentioned above, Roch

[19] recommends the following steps to mitigate, at least,
some of these risks:

• Develop a SOA Programme Charter based on long
term business objectives.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 1, 2007

78

• Determine a SOA strategy and roadmap based on
business values and risks.

• Examine the architectures and methodology in use
and adjust for SOA.

• Establish a training programme to acquire the
necessarily required skills.

• Develop SOA Quality Assurance policies and
procedures.

• Involve operations support early and deploy
monitoring and management tools.

• Establish a clear governance policy, especially for
the management of services.

• Adopt evolutionary approach.

Moving to SOA is not an easy transition. It requires a shift

in how we compose service-based applications while
maximizing existing IT investment [15]. SOA requires
building systems at a business level, not just at the IT level.
Delivery of services needs to be focused on the business
requirements. Once the business processes and architectural
structures have been defined, one can think about the
technology needed to deliver a fully operational SOA. The
development should be incremental.

VI. CONCLUSION
SOA provides a new way of developing and integrating

enterprise applications, however, adopting SOA can be
difficult for business and IT executives. It requires enterprises
to identify the services infrastructure to deliver the required
business solutions. Although SOA promises huge gains as it is
based on sound principles of coarse-grained, loosely coupled,
standards-based, interoperable, reusable services, there are
also numerous challenges such as change in mind set, training
in new technology, huge initial investment, unreliability of
Internet protocols, evolving standards and the newness of the
approach.

The bandwagon for SOA is rolling and many companies are
already jumping on it. Enterprises, thinking of moving in this
direction, need to be planning for it and at least be ready. They
need to be aware of the vendor hype and be extra vigilant
when committing huge sums of money in a technology that is
still evolving. They need to be aware of the difficulties and the
inherent issues, which are many.

In this paper, we have discussed the characteristics and the
potential benefits that SOA promises as well as the relevant
technologies. Limitations and inherent issues have also been
discussed in detail. The objective is to provide some useful
background information for enterprises wishing to embark on
the road to SOA. There is no doubt that enterprises will need
to embrace this new paradigm: if not now, then in very near
future.

REFERENCES
[1] I. Cartright and E Doemenburg, “Time to jump on the bandwagon” in IT

Now, British Computer Society, UK, May 2006.

[2] E. Knorr and O. Rist, “10 steps to SOA” in Info World – San Mateo, vol.
27, issue 45, Nov 2005.

[3] D. Barnes, “The service oriented architecture: more than just another
TLA?”. British Computer Society, UK. Available:
www.bcs.org/server.php?show= ConWebDoc.3041.

[4] R. R. Kodali, “What is service oriented architecture?” JavaWorld.com,
13 June 2005. Available: http://www.javaworld .com/javaworld/jw-06-
2005/jw-0613-soa.html

[5] G. Hohpe, “Developing Software in a service-oriented world”,
Whitepaper, ThoughtWorks Inc., Jan 2005.

[6] D. Groves, “Successfully planning for SOA”, BEA Systems Worldwide,
11 Sept 2005.

[7] O. Zimmermann, P. Krogdahl and C. Gee, “Elements of service-oriented
analysis and design”, IBM Corporation, 2 June 2004.

[8] G. Hohpe, “Stairway to Heaven”, Software Development, May 2002.
[9] Sonic Software Solutions, Service oriented architecture. Available:

www.sonicsoftware.com/solutions/service_oriented_architecture/index.s
sp

[10] B. Johnson, “The benefits of service oriented architecture”, Objectsharp
Consulting. Available: http:// objectsharp.com/cs/blogs/bruce/pages/
235.aspx

[11] L. Clark, “SOA gathers pace in the enterprise”, Computer Weekly, UK,
26 Sept 2006.

[12] D. Overall, “Have we been there before?”, Opinions, Computer Weekly,
UK, 11 April 2006.

[13] Wikipedia, “Service-oriented architecture”, Available:
http://66.102.9.104/search?q=cache:nQKzo1LExEsJ:www.sics.se/~olga
ce/Dictionary.doc+wikipedia+%27service-oriented+architecture%27&
hl=en&ct=clnk&cd=5&gl=uk&client=firefox-a

[14] C. Saran, “SOA will fail without governance: warns Gartner”, Computer
Weekly, UK, 12 Sept 2006.

[15] Q. H. Mahmoud, “Service-oriented architecture and web services: the
road to enterprise application integration”, Sun Microsystems Inc., April
2005.

[16] M. Fowler, “Patterns of enterprise application architecture”, Addison
Wesley, 2002.

[17] M. Colan, “Service-oriented architecture expands the vision of web
services – part1”, IBM Corporation, 21 April 2004.

[18] Z. Mahmood, “Service oriented architecture: tools and technologies”,
Proc 11th WSEAS Int. Conference, Crete, Greece, July 2007.

[19] E. Roch, “Service oriented architecture and technology”. Available:
http://blogs.ittoolbox.com/eai/business/archives/soa-benefits-challenges-
and-risk-mitigation-8075.

Zaigham Mahmood is a Senior Lecturer, and Scheme Leader for
undergraduate programmes, in the School of Computing, University of Derby,
UK. He has an MSc in Mathematics, a specialization in Computer Science and
a PhD in Modeling of Phase Equilibria. He is also a Chartered Engineer
(Engineering Council, UK) and a Chartered Information Technology
Professional (British Computer Society, UK).

Dr Mahmood has more than 35 papers published in proceedings of
international conferences or journals. His research interests are in the areas of
software engineering, project management, software metrics and process
improvement.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 1, 2007

