

Abstract— The scope of our research is finding a correlation

between the correctness indicator and the McCabe complexity

indicator for software programs. For this, the correctness and

McCabe complexity indicators will be calculated for a simple

program, written in C programming language. The computations will

be made for each program version obtained by correcting different

error type found in the testing process. Will be observed there is a

closed correlation between correctness and McCabe complexity in

the way that for an increasing of the correctness level there will also

be a significant increase of the complexity level.

Keywords — correctness, complexity, cyclomatic, McCabe,

correlation.

I. INFORMATIC SOLUTION

OFTWARE quality is defined as all the properties of a

software application: technical, economical and social.

In different applications quality characteristics also have

different roles, depending on the application purpose.

Complexity is the quality characteristic for which were

developed most of the metrics systems and is studied in

correlation with other characteristics; complexity determines

also the increase of the price for trading informatics

applications, as well as the efforts to develop new versions or

to rewrite the applications or only some components.

In case of informatics applications complexity is an

important factor. The number of defects is proportional with

the complexity of the programs systems. This determines an

increase of the difficulties in the programming tasks.

Correctness is the quality characteristic that is the hardest to

obtain. For software products with a high complexity, a

complete testing is impossible to be made, in order to offer the

assurance that all error have been found and corrected.

Application correctness is parted in four categories:

- Syntactical correctness which presumes that the

program is correct when it compiles without errors;

in other words, during runtime; when a program is

syntactically correct, it is restricted to the code and

language in use

- Functional correctness presumes that a program is

correct when it satisfies the specifications

- Design correctness, presumes that the program is

correctly structured so that it can permit extensions;

in this case, the experience in designing applications

is the key to a correct program structure;

- Performance correctness and the validation and

verification of inputs and outputs: it presumes that

the program must send outputs adequate with the

valid inputs and it also has to be optimized regarding

the cod length and the running speed.

II. DEFINING USED FORMULAS

Correctness of an application is marked out in testing [6].

It means that the data test SDT1, SDT2, ... SDTNT need to

obtain results RT1, RT2, ... RTNT. In reality, in the process of

testing to identify situations in which results program SDTi set

of data which is different from RPi result in RTi given

specifications.

For the team that develops software, a result categorically

related to the accuracy or incorrectness. Application

information is irrelevant in relation to post-test costs. It is

therefore necessary to define an indicator of correctness ICP

defined the interval [0, 1].

If ICP = 0 result that all data on test results led to different

results RPi specifications RTi of the whole range of types of

errors.

If ICP = 1 result that all data test only led to results identical

to RTi without registering errors.

It means that for the ICP belongs interval (0, 1) shall be

established an aggregation which take into account errors.

It means that for the ICP belongs interval (0, 1) shall be

established an aggregation which take into account errors.

Still, there are errors on levels of aggregation ERR11,

ERR12, ... ERRij, ... ERRNE NT.

For each type of error is given an important factor of PC1,

PC2, ... PCNE.

In [6] it is defined the indicator of correctness by ICP

relationship:

⋅

=

=

∑∑

∑∑

∑∑

= =

= =

= =

else ,

0 daca 0,

1 1

1 1

1 1

NT

j

NE

h

hj

NT

j

NE

h

hjh

NT

j

NE

h

hj

ERR

ERRPC

ERR

ICP

 (1)

Increasing Level of Correctness in Correlation

with McCabe Complexity

N. I. Enescu, D. Mancas, E. I. Manole, and S. Udristoiu

S

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 1, Volume 3, 2009

63

Complexity in McCabe way or Cyclomatic Complexity of a

program is given in [4] by:

CM = na – nn + 2 (2)

where:

• na – number of arcs

• nn – nodes number in the graph associated to the program

The obtained result is compared with a set of threshold

values, given in table 1:

Cyclomatic

complexity

Risk evaluation

1- 10 Simple program/module, low risk

11- 20 Complex program/module,

middle risk

21 – 50 Very complex program/ module,

high risk

Bigger then

50

Untestable program/module, very

high risk

Table 1. Threshold values for complexity by [5]Please

submit your manuscript electronically for review as e-mail

attachments.

III. REALIZED EXPERIMENT

There is considered a program, which, related to n and m

variables, which are in [0, 10] interval, it computes:

a)

∑∑
= =

n

i

m

j

ija
1 1

1

 where aij are the integer coefficients of

the A matrix, with n lines and m columns, and aij∊[-

100, 100], if n ≠ m

b)
∑

∑

=
−

=
n

i

ini

n

i

ii

a

a

1

,

1

 where aij are the integer coefficients of

the square A matrix and aij∊[-10, 10], if n = m

c)
∏

=

k

i

iv
0

1

 where vi are integer elements of the V

vector and vi∊[-10, 10] and k=n if m=0 or k=m if

n=0, if n = 0 or m = 0

d) cb / where b and c are integer numbers, if n = m

= 1

The result has to be displayed as a number with a maximum

of 2 decimals.

The program has 4 functions: M1, M2, M3 and M4

corresponding to the four points of the problem.

There are considered four test sets for the PROG program.

The test set 1, SDT1, table 2.

Test Input data Expected result

T11 n = -1; m = 3 Error: n outside

the range

T12 n = 2; m = 11 Error: m outside

the range

T13 n = -2; m = 15 Error: n and m

outside the range

T14

n = 3; m = 2

−=

21

1010

101

A

Error: -101

outside the range

T15

n = 2; m = 2

=

101

2102
A

Error: 102

outside the range

T16

n = 3; m = 2

=

00

00

00

A

Error: elements

sum is zero

T17

n = 3; m = 2

=

11

10

11

A

Result is 0.20

Table 2. Test set for M1 function

Test set 3, SDT2, table 3.

Test Input data Expected result

T21 n = m = -1 Error: n and m

outside the range

T22

n = m = 3

−−=

78101

10196

5410

A

Error: -101, 101

outside the range

T23

n = m = 3

−

−

=

5910

511

981

A

Error: the sum

of the elements

from the

secondary

diagonal is 0

T24
n = m = 3 The result is

0.00

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 1, Volume 3, 2009

64

−

=

080

519

1081

A

T25

n = m = 3

=

687

654

321

A

The result is

0.80

Table 3. Test set for M2 function

Test set 4, SDT3, table 4.

Test Input data Expected result

T31 n = 0; m = -1 Error: m outside the

range

T32 n = 11; m = 0 Error: n outside the

range

T33
n = 0; m = 3

()1111 −=V

Error: 11 outside the

range

T34
n = 0; m = 3

()150 −=V

Error: elements

product is 0

T35
n = 3; m = 0

()231 −=V

The result is -0.16

Table 4. Test set for M3 function

Test set 5, SDT4, table 5.

Test Input data Expected result

T41
n = m = 1;

b = 5; c = 0
Error: c is 0

T42
n = m = 1;

b = -1; c = 3
Error: -b/c is less than 0

T43
n = m = 1;

b = 1; c = -1
Error: -b/c is less than 0

T44
n = m = 1;

b = 0; c = 5
Result is 0.00

T45
n = m = 1;

b = 5; c = 5
Result is 1.00

Table 5. Test set for M4 function

The program PROG1 is realized without checking the

correctness.

#include <conio.h>

#include <stdio.h>

#include <math.h>

float M1(int n, int m){

 int a[10][10], i, j, s;

 printf("The elements for A:");

 s = 0;

 for(i = 0; i < n; i++){

 for(j = 0; j < m; j++){

 printf("a[%d][%d]=", i, j);

 scanf("%d",&a[i][j]);

 s += a[i][j];

 }

 }

 return 1/s;

}

float M2(int n){

 int a[10][10], i, j, s1, s2;

 printf("The elements for A:");

 s1 = 0;

 s2 = 0;

 for(i = 0; i < n; i++){

 for(j = 0; j < n; j++){

 printf("a[%d][%d]=", i, j);

 scanf("%d",&a[i][j]);

 }

 }

 for(i = 0; i < n; i++){

 s1 += a[i][i];

 s2 += a[i][n-i-1];

 }

return s1/s2;

}

float M3(int k){

 int v[10], i, p;

 printf("The elements for V:");

 p = 1;

 for(i = 0; i < k; i++){

 printf("v[%d]=", i);

 scanf("%d",&v[i]);

 p *= v[i];

 }

return 1/p;

}

float M4(){

 int b, c;

 printf("b=");

 scanf("%d", &b);

 printf("c=");

 scanf("%d", &c);

 return sqrt(b/c);

}

void main(){

 int n, m;

 float rez = 0;

 printf("n=");

 scanf("%d", &n);

 printf("m=");

 scanf("%d", &m);

 if (n != m){

 if (n == 0 || m == 0)

 rez = M3(n == 0? m: n);

 else

 rez = M1(n, m);

 }

 else{

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 1, Volume 3, 2009

65

 if(n == 1)

 rez = M4();

 else

 rez = M2(n);

 }

 printf("The result is %.2f", rez);

}

After executing PROG1 with the input data given in tables

2, 3,4 and 5 the table 6 is obtained.

Test Program result Expected result

T11 Exception: Integer

division by zero

Error: n outside the

range

T12 Result is 0.00 Error: m outside the

range

T13 Exception: Integer

division by zero

Error: n and m

outside the range

T14
Result is 0.00 Error: -101 outside

the range

T15
Result is 37.00 Error: 102 outside the

range

T16
Exception: Integer

division by zero

Error: elements’ sum

is 0

T17 Result is 0.00 The result is 0.20

T21 Exception: Integer

division by zero

Error: n and m

outside the range

T22
Result is 0.00 Error: -101. 101

outside the range

T23

Exception: Integer

division by zero

Error: the sum of the

elements from the

secondary diagonal is 0

T24 Result is 0.00 Result is 0.00

T25 Result is 0.00 Result is 0.80

T31 Result is 1.00 Error: n or m outside

the range

T32 Exception: Access

violation reading

location 0x0000000b

Error: m or n outside

the range

T33
Result is 0.00 Error: 11 outside the

range

T34
Exception: Integer

division by zero

Error: elements’

product is 0

T35 Result is 0.00 Result is -0.16

T41
Exception: Integer

division by zero
Error: c is 0

T42
Result is 0.00 Error: -b/c is less

than 0

T43
Result is -1.00 Error: -b/c is less

than 0

T44 Result is 0.00 Result is 0.00

T45 Result is 1.00 Result is 1.00

Table 6. Running time result

It is observed that after the runtime there are two types of

errors:

- Exceptions, noted with E1, for which a 0.7 gravity

coefficient is assigned

- Wrong results, noted with E2, for which a 0.3 gravity

coefficient is assigned

So, for the given test data the table 7 is obtained:

Test set E1 E2

SDT1 3 4

SDT2 2 2

SDT3 2 3

SDT4 1 2

Total 8 11

Table 7. Error number found for the test sets

The correctness indicator, ICP1, for the PROG1 program is

46,0
19

3,36,5

118

11*3,08*7,0
1 =

+
=

+
+

=ICP
 (3)

The graph structure for the PROG1 is presented in figure 1:

Figure 1. The graph structure for the PROG1

For M1 function rezult the graph structure from figure 2:

Figure 2. The graph structure for M1 module

For M2 function rezult the graph structure from figure 3:

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 1, Volume 3, 2009

66

Figure 3. The graph structure for M2 module

For M3 function rezult the graph structure from figure 4:

Figure 4. The graph structure for M3 module

For M4 function rezult the graph structure from figure 5:

Figure 5. The graph structure for M4 module

The McCabe complexity for PROG1 is computed in table 8

and shows the differences between modules complexity.

 na nn CM

M1 10 9 3

M2 15 13 4

M3 7 7 2

M4 2 3 1

main 13 11 4

PROG1 47 43 6

Table 8. McCabe complexity for PROG1

Another program is realized trying to eliminate E1 type

errors. The program is PROG2.

#include <conio.h>

#include <stdio.h>

#include <math.h>

float M1(int n, int m){

 int a[10][10], i, j, s;

 int error = 0;

 int err[100], l;

 if (n <= 0 || n > 10){

 error = 10;

 }

 if (m <= 0 || m > 10){

 error += 100;

 }

 if (error > 0){

 if (error > 100){

 printf("Error: n and m outside the

 range");

 } else if (error == 100){

 printf("Error: m outside the

 range");

 } else {

 printf("Error: n outside the

 range");

 }

 return -1000;

 }

 printf("Elements of A matrix:");

 s = 0;

 l = 0;

 for(i = 0; i < n; i++){

 for(j = 0; j < m; j++){

 printf("a[%d][%d]=", i, j);

 scanf("%d",&a[i][j]);

 if (a[i][j] < -100 || a[i][j] > 100){

 err[l] = a[i][j];

 l++;

 }

 s += a[i][j];

 }

 }

 if (l > 0){

 printf("Error: ");

 for(i = 0; i < l; i++)

 printf("%d, ", err[i]);

 printf(" outside the range");

 return -1000;

 }

 if (s == 0){

 printf("Error: elements’ sum is 0");

 return -1000;

 }

 return 1/s;

}

float M2(int n){

 int a[10][10], i, j, s1, s2;

 int err[100], l;

 if (n <= 0 || n > 10){

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 1, Volume 3, 2009

67

 printf("Error: n and m outside

 the range ");

 return -1000;

 }

 printf("Elements of A matrix:");

 s1 = 0;

 s2 = 0;

 l = 0;

 for(i = 0; i < n; i++){

 for(j = 0; j < n; j++){

 printf("a[%d][%d]=", i, j);

 scanf("%d",&a[i][j]);

 if (a[i][j] < -10 || a[i][j] > 10){

 err[l] = a[i][j];

 l++;

 }

 }

 }

 if (l > 0){

 printf("Error: ");

 for(i = 0; i < l; i++)

 printf("%d, ", err[i]);

 printf("outside the range ");

 return -1000;

 }

 for(i = 0; i < n; i++){

 s1 += a[i][i];

 s2 += a[i][n-i-1];

 }

 if (s2 == 0){

 printf("Error: elements’ sum from the

first diagonal is 0");

 return -1000;

 }

 return s1/s2;

}

float M3(int k){

 int v[10], i, p;

 int err[10], l;

 if (k < 0 || k > 10){

 printf("Error: n or m outside

 the range ");

 return -1000;

 }

 printf("Elements of vector V:");

 p = 1;

 l = 0;

 for(i = 0; i < k; i++){

 printf("v[%d]=", i);

 scanf("%d",&v[i]);

 if (v[i] < -10 || v[i] > 10){

 err[l] = v[i];

 l++;

 }

 p *= v[i];

 }

 if (l > 0){

 printf("Error: ");

 for(i = 0; i < l; i++)

 printf("%d, ", err[i]);

 printf("outside the range ");

 return -1000;

 }

 if (p == 0){

 printf("Error: elements’

 product is 0");

 return -1000;

 }

 return 1/p;

}

float M4(){

 int b, c;

 printf("b=");

 scanf("%d", &b);

 printf("c=");

 scanf("%d", &c);

 if (c == 0){

 printf("Error: c is 0");

 return -1000;

 }

 if (b/c < 0){

 printf("Error: -b/c is

 negative");

 return -1000;

 }

 return sqrt(b/c);

}

void main(){

 int n, m;

 float rez = 0;

 printf("n=");

 scanf("%d", &n);

 printf("m=");

 scanf("%d", &m);

 if (n != m){

 if (n == 0 || m == 0)

 rez = M3(n == 0? m: n);

 else

 rez = M1(n, m);

 }

 else{

 if(n == 1)

 rez = M4();

 else

 rez = M2(n);

 }

 if (rez != -1000)

 printf("The result is %.2f", rez);

}

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 1, Volume 3, 2009

68

After runtime, with the input data from 2, 3,4 and 5 tables,

the table 9 is obtained.

Test Program’s result Expected result

T11 Error: n outside the

range

Error: n outside the

range

T12 Error: m outside

the range

Error: m outside the

range

T13 Error: n and m

outside the range

Error: n and m

outside the range

T14
Error: -101 outside

the range

Error: -101 outside

the range

T15
Error: 102 outside

the range

Error: 102 outside

the range

T16
Error: elements’

sum is 0

Error: elements’

sum is 0

T17 Rersult is 0.00 Rersult is 0.20

T21 Error: n and m

outside the range

Error: n and m

outside the range

T22
Error: -101 and 101

outside the range

Error: -101 and 101

outside the range

T23

Error: the sum of

the elements from the

secondary diagonal is

0

Error: the sum of

the elements from the

secondary diagonal is

0

T24 Result is 0.00 Result is 0.00

T25 Result is 0.00 Result is 0.80

T31 Error: n or m

outside the range

Error: n or m

outside the range

T32 Error: n or m

outside the range

Error: n or m

outside the range

T33
Error: 11 outside

the range

Error: 11 outside the

range

T34
Error: elements’

product is 0

Error: elements’

product is 0

T35 Result is 0.00 Result is -0.16

T41 Error: c is 0 Error: c is 0

T42
Result is 0.00 Error: -b/c is less

than 0

T43
Result is 0.00 Error: -b/c is less

than 0

T44 Result is 0.00 Result is 0.00

T45 Result is 1.00 Result is 1.00

Table 9. Runtime result for PROG2

 It can be observed that after the execution there is only one

type of error, E2, with a 0.3 coefficient.

So, for the given data sets, we have table 10.

Test set E1 E2

SDT1 0 1

SDT2 0 1

SDT3 0 1

SDT4 0 3

Total 0 6

Table 10. Errors found for the PROG2 with the given data

set

The correctness indicator, ICP2, for PROG2 program is:

30,0
6

8,1

6

6*3,00*7,0
2 ==

+
=ICP

 (4)

The graph structure for the PROG2 is presented in figure 6:

Figure 6. The graph structure for the PROG2

For M1 function rezult the graph structure from figure 7:

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 1, Volume 3, 2009

69

Figure 7. The graph structure for M1 module

For M2 function rezult the graph structure from figure 8:

Figure 8. The graph structure for M2 module

For M3 function rezult the graph structure from figure 9:

Figure 9. The graph structure for M3 module

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 1, Volume 3, 2009

70

For M4 function rezult the graph structure from figure 10:

Figure 10. The graph structure for M4 module

The McCabe complexity for PROG2 is computed in table

11 and shows the differences between modules complexity.

 na nn CM

M1 43 36 9

M2 34 30 6

M3 26 24 4

M4 8 8 2

main 15 12 5

PROG2 126 110 18

Table 11. McCabe complexity for PROG2

Another program created by eliminating E2 type errors and

is named PROG3.

#include <conio.h>

#include <stdio.h>

#include <math.h>

float M1(int n, int m){

 int a[10][10], i, j, s;

 int error = 0;

 int err[100], l;

 if (n <= 0 || n > 10){

 error = 10;

 }

 if (m <= 0 || m > 10){

 error += 100;

 }

 if (error > 0){

 if (error > 100){

 printf("Error: n and m

 outside the range ");

 } else if (error == 100){

 printf("Error: m is outside

 the range ");

 } else {

 printf("Error: n is outside the

 range ");

 }

 return -1000;

 }

 printf("A matrix elements:");

 s = 0;

 l = 0;

 for(i = 0; i < n; i++){

 for(j = 0; j < m; j++){

 printf("a[%d][%d]=", i, j);

 scanf("%d",&a[i][j]);

 if (a[i][j] < -100 || a[i][j] > 100){

 err[l] = a[i][j];

 l++;

 }

 s += a[i][j];

 }

 }

 if (l > 0){

 printf("Error: ");

 for(i = 0; i < l; i++)

 printf("%d, ", err[i]);

 printf("outside the range ");

 return -1000;

 }

 if (s == 0){

 printf("Error: elements’ sum is 0");

 return -1000;

 }

return 1.0/s;

}

float M2(int n){

 int a[10][10], i, j, s1, s2;

 int err[100], l;

 if (n <= 0 || n > 10){

 printf("Error: n and m outside the

 range ");

 return -1000;

 }

 printf("A matrix elements:");

 s1 = 0;

 s2 = 0;

 l = 0;

 for(i = 0; i < n; i++){

 for(j = 0; j < n; j++){

 printf("a[%d][%d]=", i, j);

 scanf("%d",&a[i][j]);

 if (a[i][j] < -10 || a[i][j] > 10){

 err[l] = a[i][j];

 l++;

 }

 }

 }

 if (l > 0){

 printf("Error: ");

 for(i = 0; i < l; i++)

 printf("%d, ", err[i]);

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 1, Volume 3, 2009

71

 printf("outside the range ");

 return -1000;

 }

 for(i = 0; i < n; i++){

 s1 += a[i][i];

 s2 += a[i][n-i-1];

 }

 if (s2 == 0){

 printf("Error: elements’ sum from

 the secondary diagonal is 0");

 return -1000;

 }

 return (1.0 * s1)/s2;

}

float M3(int k){

 int v[10], i, p;

 int err[10], l;

 if (k < 0 || k > 10){

 printf("Error: n or m outside the

 range ");

 return -1000;

 }

 printf("V vector’s elements:");

 p = 1;

 l = 0;

 for(i = 0; i < k; i++){

 printf("v[%d]=", i);

 scanf("%d",&v[i]);

 if (v[i] < -10 || v[i] > 10){

 err[l] = v[i];

 l++;

 }

 p *= v[i];

 }

 if (l > 0){

 printf("Error: ");

 for(i = 0; i < l; i++)

 printf("%d, ", err[i]);

 printf("outside the range ");

 return -1000;

 }

 if (p == 0){

 printf("Error: elements’ product is

 0");

 return -1000;

 }

 return 1.0/p;

}

float M4(){

 int b, c;

 printf("b=");

 scanf("%d", &b);

 printf("c=");

 scanf("%d", &c);

 if (c == 0){

 printf("Error: c is 0");

 return -1000;

 }

 if ((1.0 * b)/c < 0){

 printf("Error: -b/c is negative");

 return -1000;

 }

 return sqrt((1.0 * b)/c);

}

void main(){

 int n, m;

 float rez = 0;

 printf("n=");

 scanf("%d", &n);

 printf("m=");

 scanf("%d", &m);

 if (n != m){

 if (n == 0 || m == 0)

 rez = M3(n == 0? m: n);

 else

 rez = M1(n, m);

 }

 else{

 if(n == 1)

 rez = M4();

 else

 rez = M2(n);

 }

 if (rez != -1000)

 printf("The result is %.2f", rez);

}

After runtime, having the given test data sets defined in

tables 1, 2, 3 and 4 we obtain table 12.

Test Program’s result Expected result

T11 Error: n out of

range

Error: n out of range

T12 Error: m out of

range

Error: m out of

range

T13 Error: n and m out

of range

Error: n and m out

of range

T14
Error: -101 out of

range

Error: -101 out of

range

T15
Error: 102 out of

range

Error: 102 out of

range

T16
Error: elements’

sum is 0

Error: elements’

sum is 0

T17 Result is 0.20 Result is 0.20

T21 Error: n and m out

of range

Error: n and m out

of range

T22 Error: -101, 101 Error: -101, 101 out

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 1, Volume 3, 2009

72

out of range of range

T23

Error: elements’

sum from the

secondary diagonal is

0

Error: elements’

sum from the

secondary diagonal is

0

T24 Result is 0.00 Result is 0.00

T25 Result is 0.80 Result is 0.80

T31 Error: n or m out of

range

Error: n or m out of

range

T32 Error: n or m out of

range

Error: n or m out of

range

T33
Error: 11 out of

range

Error: 11 out of

range

T34
Error: elements’

product is 0

Error: elements’

product is 0

T35 Result is -0.16 Result is -0.16

T41 Error: c is 0 Error: c is 0

T42
Error: -b/c is less

than 0

Error: -b/c is less

than 0

T43
Error: -b/c is less

than 0

Error: -b/c is less

than 0

T44 Result is 0.00 Result is 0.00

T45 Result is 1.00 Result is 1.00

Table 12. PROG3 program result after runtime

It can be observed that after running the tests, there are no

more errors.

The correctness indicator, ICP3, for PROG3 program is 0.

CM for PROG3 is identical with CM for PROG2.

So the level of correctness and McCabe complexity

programs PROG1, PROG2 and PROG3 is presented in Table

13 and Figure 11.

 Index of

correctness (ICP)

McCabe Complexity

(CM)

PROG1 0,46 6

PROG2 0,30 18

PROG3 0 18

Table 13. The level of accuracy and reliability programs

PROG1, PROG2 and PROG3

Figure 11. The relationship between correctness and

McCabe complexity

The coefficient of correlation between the level of

correctness and McCabe complexity CC is calculated by the

formula:

() ()
CMICP

NV

i

ii

SSNV

CMCMICPICP

CC
⋅⋅

−⋅−

=
∑

=1
2

 (5)

where:

NV - represents the number of variations of the program

 -- The index represents the average accuracy given by:

NV

ICP

ICP

NV

i

i∑
== 1

 (6)

 -- Represents the average level of complexity date:

CM - represents the average CM given by:

NV

CM

CM

NV

i

i∑
== 1

 (7)

SICP – is given by:

()
NV

ICPICP

S

NV

i

i

ICP

∑
=

−

= 1

2

 (8)

SCM - is given by:

()
NV

CMCM

S

NV

i

i

CM

∑
=

−

= 1

2

 (9)

For the program variants described in Table 13, rezults:

NV = 3

25,0
3

030,046,0
=

++
=ICP

 (10)

14
3

18186
=

++
=CM

 (11)

 ICP -

ICP

(ICP -

ICP)2

CH - CH (CH -

CH)2

PROG1 0,21 0,04 -8 64

PROG2 0,05 0,00 4 16

PROG3 -0,25 0,06 4 16

Table 14. Necessary values in computing the correlation

between the correctness index and the cyclomatic complexity

0,00
0,46 0,30 0,00

Correctness level

0,00

2,00

4,00

6,00

8,00

10,00

12,00

14,00

16,00

18,00

20,00

McCabe complexity

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 1, Volume 3, 2009

73

19,004,0
3

06,001,004,0
==

++
=ICPS

 (12)

66,532
3

161664
==

++
=CMS

 (13)

76,0

23,3

47,2

66,519,03

4)25,0(405,0)8(21,0

−=

=
−

=
⋅⋅

⋅−+⋅+−⋅
=CC

 (14)

IV. CONCLUSION

As the coefficient of CF correlation is closest either -1 or 1

there is a strong link between the level of linear correctness

and the McCabe complexity.

The Correlation stability on the results of the characteristics

of quality is obtained through:

• Improving test procedures

• Enriching the list of programs under review

• Raising experience test team

• Increasing the diversity of spatial data test

• Implementation of the concept of completeness of

the process of testing.

The use of quantitative methods for determining the

intervals of confidence, too, stable is intended to create a new

image on trust of users in the quality of results that the

application informatics them to bring their disposal.

REFERENCES

[1] Ivan Ion, Popescu Mihai - Metrici software, BYTE Romania, vol.2,

nr.5, mai 1996, pg.73-82

[2] Ivan Ion, Teodorescu LaurenŃiu, Pocatilu Paul, Creşterea calităŃii

software prin testare, QMedia, Nr. 5, 2000

[3] Ivan Ion, Amancei Cristian, Stabilitatea coeficienŃilor modelului global

de calitate software, Editura ASE, Bucureşti, 2006

[4] Ion IVAN, Cǎtǎlin BOJA, Analiza metricilor software, Studii şi

Cercetǎri de Calcul Economic şi Ciberneticǎ Economicǎ, vol. 40, nr. 1,

2006, pg.65- 78, ISSN 0585-7511

[5] Ion IVAN, Nicolae Iulian ENESCU, Stabilirea nivelului de

corectitudine pentru aplicaŃii informatice distribuite, Editura ASE,

Bucureşti, 2009

[6] Nicolae Iulian ENESCU, “Modele pentru evaluarea corectitudinii

aplicatiilor informatice distribuite”, Teza de Doctorat, Bucuresti, 2008

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 1, Volume 3, 2009

74

