

Abstract—Many Network-based Intrusion Detection Systems

(NIDSs) are developed till now to respond these network attacks. As

network technology presses forward, Gigabit Ethernet has become the

actual standard for large network installations. Therefore, software

solutions in developing high-speed NIDSs are increasingly

impractical. It thus appears well motivated to investigate the

hardware-based solutions. Although several solutions have been

proposed recently, finding an efficient solution is considered as a

difficult problem due to the limitations in resources such as a small

memory size, as well as the growing link speed. Therefore, we propose

the FPGA-based intrusion detection technique to detect and respond

variant attacks on high-speed links. It was designed to fully exploit

hardware parallelism to achieve real-time packet inspection, to require

a small memory for storing signature. The technique is a part of our

system, called ATPS (Adaptive Threat Prevention System) recently

developed. Most of all, the proposed system has a novel content

filtering technique called Table-driven Bottom-up Tree (TBT) for

exact string matching. However, as the number of signatures to be

compared is growing rapidly, the improved mechanism is required. In

this paper, we present the multi-hash based TBT technique with

memory-efficiency. Simulation based performance evaluations

showed that the proposed technique used on-chip SRAM less than

20% of the one-hash based TBT technique. Finally, experimental

results about our system show a consistent performance in traffic level

and had nothing to do with increasing number of signatures applied.

Keywords—Intrusion Detection, Pattern Matching, Heuristic

Analysis, Memory-efficiency

I. INTRODUCTION

HE fast extension of inexpensive computer networks also

has increased the problem of unauthorized access and

tampering with data. As a response to increased threats, many

NIDSs have been developed to serve as a last line of defense in

the overall protection scheme of a computer system. These

NIDSs have two major approaches; misuse intrusion detection

and anomaly intrusion detection, but most of existing NIDSs,

such as Snort, NFR, and NetSTAT, only employs the misuse

detection approach for reducing a lowering of performance to

the minimum. Also, most NIDS has concentrated on catching

and analyzing only the audit source collected on Fast Ethernet

Manuscript received December 12, 2008: This work was supported in part

by Korea Ministry of Information and Communication under “Next Generation

Security System Development” Project.

Byoungkoo Kim is with Electronics and Telecommunications Research
Institute, 161 Gajeong-dong, Yuseong-gu, Daejeon, Korea (phone:

+82-42-860-4888; fax: +82-42-860-; e-mail: bkkim05@etri.re.kr).

Seungyong Yoon is with Electronics and Telecommunications Research
Institute, 161 Gajeong-dong, Yuseong-gu, Daejeon, Korea (e-mail:

syyoon@etri.re.kr).

Jintae Oh is with Electronics and Telecommunications Research Institute,
161 Gajeong-dong, Yuseong-gu, Daejeon, Korea (e-mail: showme@etri.re.kr).

links. However, with the advancement of network technology,

Gigabit Ethernet has become the actual standard for large

network installations. Therefore, the effort of performing NIDS

on high-speed links has been the focus of much debate in the

intrusion detection community, and several NIDSs that are run

on high-speed links actually have been developed [3]. But,

these NIDSs are still not practical because of technical

difficulties in keeping pace with the increasing network speed,

and real-world performance also will likely be less. Therefore,

there is an emerging need for security analysis techniques that

can keep up with the increased network throughput. Most of all,

content filtering problems have been extensively studied, and

many of the proposed solutions are based on the general

purpose pattern matching algorithms such as Boyer-Moore

(BM)[10], Aho-Corasick (AC)[11], and Wu-Manber

(WM)[12]. Although these algorithms greatly improve pattern

matching speed compared to naive string matching techniques,

providing real-time content filtering in high-speed networks is

still challenging. In the previous work, we proposed our Gigabit

IDS, called ATPS, to detect and respond attacks on the

high-speed network [1]. The proposed system has a novel

content filtering technique called TBT [2]. This paper presents

the improved mechanism, which used on-chip SRAM less than

20% of the previous TBT technique.

The remainder of the paper is structured as follows. The next

section presents related works about early studies of NIDS.

Then, section 3 presents the architecture of our system, and

describes the components. Section 4 shows the multi-hash

based TBT technique with memory-efficiency. Section 5 shows

the simulation based performance evaluations about the

improved TBT technique, which is compared with the previous

technique. Section 6 briefly introduces the prototype that we

have developed, and shows the experimental result of our

prototype system. Finally, we conclude and suggest directions

for further research in section 7.

II. RELATED WORK

Basically, IDS is classified into host-based IDS and

network-based IDS. Audit sources discriminate the type of

IDSs based on the input information they analyze. Host-based

IDS analyzes host audit source, and detects intrusion on a single

host. However, NIDS uses the network as the source of

security-relevant information. Consequently, NIDS moves

security concerns from the hosts and their operating systems to

the network and its protocols. Besides, IDS is classified into

two major approaches based on the detection method they

operate; misuse intrusion detection and anomaly intrusion

detection. The first, misuse intrusion detection is based on the

Multi-hash based Pattern Matching Mechanism

for High-Performance Intrusion Detection
Byoungkoo Kim, Seungyong Yoon, and Jintae Oh

T

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 1, Volume 3, 2009

115

detection of intrusions that follow well-defined patterns of

attack exploiting known vulnerabilities. Therefore, this

approach is based on the pattern of known misuse or abnormal

behavior. This approach is very efficient, but this is hard to

detect new intrusion patterns. Also, this approach is possible to

draw false negative detection. The second is based on the

detection of anomalous behavior or the abnormal use of the

computer resource. This approach is based on the database of

normal behavior. Therefore, it costs a great deal, but this

approach is capable of detecting unknown intrusions. Also, It is

possible to draw false positive detection, but hard to set a

threshold value. Like this, these approaches all have each

advantages and disadvantages. However, anomaly intrusion

detection approach does not apply to operate real-time intrusion

detection, since it tends to be computationally expensive

because of several maintained metrics that are updated after

every system activity. Therefore, most IDSs employed misuse

detection approach only because of performance and

availability consideration. Primary approaches to misuse

detection might be implemented by on the following

techniques: Expert Systems, State Transition Analysis, Model

based Approach and so forth. But, these techniques do not

present the definite mechanism, and sometimes contain

complex and ambiguous concepts. Also, these approaches are

not suited as a speedy detection mechanism in high-speed

network environments. Therefore, most IDSs focus on more

speedy and exact pattern matching algorithm and detection

mechanism about Denial of Service (DoS) attacks and Port

Scan attacks.

With the widespread use of the Internet, IDSs have become

focused on network attacks. Therefore, most IDSs employed

network-based IDS [14]. NIDS uses the network as the source

of security-relevant information. Essential to almost every

NIDS is the ability to search through packets and identify

content that matches known attacks. As network technology

presses forward, space and time efficient string matching

techniques have been important for identifying these packets at

line rate. Therefore, software solutions in developing

high-speed NIDSs are increasingly impractical. It thus appears

well motivated to investigate the hardware-based solutions.

With the advance of hardware technologies, there have been

several attempts to catch up the line speed using Field

Programmable Gate Arrays (FPGAs) [9]. Cho et al. [6]

proposed to use parallelized patterns (rule units) to find

matches in a four-byte input stream on every clock cycle. In

addition, Sidhu et al. [5] and Moscola et al. [13] mapped regular

expressions into a FPGA using Nondeterministic Finite

Automation (NFA) to minimize the space required for pattern

matching. Most FPGA-based approaches are successful in

keeping pace with line speed by exploiting the high degree of

parallelism and reconfigurable hardware characteristics.

However, hardware resource consumption linearly increases as

the number of patterns and the number of characters to be

stored increase. Another approach to achieve the high-speed

content filtering is to use a fast parallel pattern matching circuit,

called a Content Addressable Memory (CAM). Although the

CAM-based solutions are relatively easy to implement, and can

exploit fine grain pipelining in general, high hardware cost and

power consumption, as well as high area cost are the main

concerns. On the other hand, Dharmapurikar et al. [19]

addressed the high-speed content filtering problem with

parallel Bloom filters. Here, hardware-based Bloom filters, i.e.,

multiple independent hash functions, are programmed with

each possible length of all signatures, and then a detection

process is performed by testing membership of a string

extracted from packet payload for the stored signature set. The

main concern of this technique is that hardware parallelism can

be limited by the wide variation in the signature length as noted

in [20]. This technique was extended using the Extended

Bloom Filter (EBF) [21] recently. Finally, Tuck et al. [22]

proposed to use a bit-mapping and path compression technique

to reduce the size of the memory required to store the SNORT

rule set. Although the authors showed that the compressed

version of the AC algorithm exhibits the deterministic

worst-case running time, and thus is suitable for hardware

implementation, the implementation details were not

thoroughly examined.

As appeared in the related works, the content filtering at

gigabit line speeds is still a challenging problem due to the

limitations in resources such as memory size and the growing

line speed. In addition, the number of signatures to be

compared is growing rapidly and thus giving the signature

explosion problem. With current processor and hardware

technologies, neither increasing the speed of network processor

nor providing more network processors to keep up with the

multi-giga bits links is practical and cost-efficient. In addition,

the number of signatures to be compared with the payload of

each packet has been doubled during the last two years. For

example, the number of signatures in SNORT [7] has increased

from 1,500 in 2003 to 2,800 in 2005. Therefore,

software-only-solutions in developing high-speed NIDS are

increasingly impractical. It thus appears well motivated to

investigate the hardware-based solutions. In particular, several

content filtering techniques have been proposed to used FPGAs

for taking advantage of the hardware parallelism and the

configurable nature of the device [4], [5], [6]. However, the

FPGA has to be reprogrammed to modify the signature

database, which could lead the network infrastructure at stake

in the presence of the zero-day attack [23]. Another concern in

FPGA-based solutions is that an on-chip SRAM is generally

favored for constructing signature database primarily due to the

faster access time compared to an off-chip SRAM. However,

the size of an on-chip SRAM is generally hundreds of

kilobytes, whereas the space required for storing only all the

characters in the latest SNORT signatures is almost 512

Kilobytes. Therefore, finding efficient techniques, which can

minimize the memory consumption, is becoming a key success

factor in the development of high-speed NIDSs.

This paper presents a novel FPGA-based content filtering

technique, called TBT, which is a multiple hash

implementation of a bottom-up tree. The hashing scheme helps

in reducing the data access time, while the bottom-up tree helps

in minimizing the memory consumption in TBT. The TBT was

evaluated through extensive simulations, and implemented in a

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 1, Volume 3, 2009

116

XILINX FPGA, XC2VP70 [8].

III. SYSTEM DESCRIPTION

In this section, we briefly introduce the architecture of our

system and components of the architecture called ATPS. And

then, we present efficient detection techniques for high-speed

intrusion detection and response. Through these techniques, our

proposed system can perform the real-time operations as

inline-mode.

A. System architecture and components

Our system is aimed at real-time network-based intrusion

detection based on misuse detection approach [15]. As shown

in the figure 1, the proposed system consists of two parts;

Application Task for policy management, alert management

and system management, and Security Engine Board for

wire-speed packet forwarding, packet preprocessing,

high-performance intrusion detection and response.

Fig. 1 The system architecture of ATPS

Most of all, for detecting network intrusions more efficiently

on high-speed links, Security Engine Board is composed of

several sub FPGA Logics. Here, communication between

Security Engine Board and Main CPU is run through PCI

interface. Communication through PCI interface is divided into

two channels. One is a channel for policy enforcement. The

other is a channel for alert information transmission. Through

the interoperability of these components, our system analyzes

data packets as they travel across the network for signs of

external or internal attack. That is, the major functionality of

our system is to perform the real-time traffic analysis and

intrusion detection on high-speed links. Therefore, we focus on

effective detection strategies applied FPGA Logics.

As shown in the figure 2, Security Engine Board is

composed of three FPGA chips and one FPGA chip for PCI

interfacing. First, ATIE (Anomaly Traffic Inspection Engine)

FPGA chip uses the XILINX XC2VP70 FPGA chip. And, it is

connected to the PM3386 for incoming packet forwarding.

Also, it uses external TCAM and SRAM for incoming packet

scheduling and management. Briefly, the main function of

ATIE is the wire-speed packet forwarding and response

coordinating such as alert message generation and packet

filtering. Basically, incoming packets from PM3386 is sent to

PPE FPGA chip, and if it is determined as attack according to

the analysis result from other FPGA chips, alert information is

sent to the main CPU through FPGA chip for PCI interfacing.

Second, PPE (Pre-Processing Engine) FPGA chip uses the

XILINX XC2VP50 FPGA chip. And, it uses two external

SRAM for session management, IP de-fragmentation and TCP

reassembly. Briefly, the main function of PPE FPGA chip is to

process the before steps for intrusion detection. The

preprocessing function supports the SPI (Stateful Packet

Inspection) based intrusion detection and IDS evasion attack

detection. Finally, IDE (Intrusion Detection Engine) FPGA

chip uses the XILINX XC2VP70 FPGA chip. It uses three

mechanisms for high-performance intrusion detection; Flexible

Header Combination Lookup Algorithm for packet header

pattern matching, Linked Word based Store-less Running

Search Algorithm for string pattern matching about packet

payload, and Traffic Volume based Heuristic Analysis

Algorithm for DoS and Port-scan attack detection.

Fig. 2 the FPGA Chips Arrangement of Security Engine Board

Through these mechanisms, it executes the

high-performance intrusion detection without packet loss.

B. Detection Mechanisms

The detection mechanism of our system is mainly performed

on IDE FPGA Chip. For effective high-performance intrusion

detection, our system has three detection mechanisms. One is

the header lookup mechanism for flexible header combination

lookup, another is the payload matching mechanism for packet

payload matching, and the other is heuristic analysis

mechanism for DoS and Port-scan attack detection. Besides,

session management mechanism on PPE FPGA Chip supports

SPI based intrusion detection.

1) Header Lookup Mechanism

Header lookup mechanism is performed by flexible header

combination lookup algorithm. This algorithm compares

pre-defined header related rule-sets with header information of

incoming packets. If the incoming packet is matched with

existing header patterns, 256 bits match result is sent to payload

matching logic and traffic volume based heuristic analysis logic.

As shown in Figure 3, this mechanism uses three memory

maps: TCAM Lookup Map for each header field matching,

Rule Combination Check Map for multiple header field

matching, and Sequence Check Map for don’t care field

matching.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 1, Volume 3, 2009

117

Fig. 3 Header Lookup Mechanism

First, TCAM Lookup Map is composed of three internal

TCAM: 8bits lookup map for 8bits header fields such as ICMP

type, TCP flags, and so forth, 16bits lookup map for 16bits

header fields such as service port value, IP identification, and

so forth, and 32bits lookup map for 32bits header fields such as

IP address field. These maps have each 128entries, 64entries. In

other words, our system supposes that header values of all

rule-sets are within the entry number of each map. The match

result of these lookup maps is used by Rule Combination Check

Map and Sequence Check Map. Second, Rule Combination

Check Map is composed of 256*256 block select RAM

memories. Match address from TCAM Lookup Map is used for

256bits result of this memory map. This 256bits result presents

the rule-set matching result about current matching field. If

match result of ICMP type field is “{255{2’b0}, 2’b1}”, the

first rule-set is to be matched. Therefore, it is possible to

support the multiple matching. In other words, our system

supposes that the combination of all rule-sets is within the 256

entry numbers. Finally, Sequence Check Map is composed of

32*256 block select RAM memories, and includes don’t care

information about current matching field. If don’t care

information of ICMP type field is “{255{2’b0}, 2’b1}”, the

first rule-set is always to be matched. In other words, our

system supposes that the kinds of packet header fields are

within the 32 entry numbers. The result of this map is combined

with result of Rule Combination Check Map.

Basically, the above operations are performed recursively

about all packet fields of incoming packet. Finally, updated

256bits match result is referred by logics for packet payload

matching and traffic volume based analysis.

2) Payload Matching Mechanism

Payload matching mechanism is performed by linked word

based store-less running search algorithm. This algorithm

compares pre-defined packet payload related rule-sets with

packet payload information of incoming packets. If the

incoming packet is matched with existing payload patterns,

alert message is generated according to the 256bits header

lookup result. For this operation, this algorithm uses the

signature tokenizing technique. Each token size has boundary

of size5 or 7 because of the limit of block memory in FPGA

Chip. Here, same tokens are stored in the same memory space.

Through signature tokenizing like this, our system can have

about 2,000~3,000 rule-sets in the limited memory storage on

FPGA Chip.

Fig. 4 Linked Word based Store-less Running Search Algorithm

Most of all, our system has the linked word based store-less

running search algorithm for performing the payload pattern

matching. This algorithm uses the spectrum dispersion

technique as shown in the figure 4. The spectrum dispersion

technique is method to calculate unique hash values about each

signature token. For example, 5bytes “/etc/” pattern has the

9bits hash value “011010011” by sum about shifted values of

each character. These hash values are used as the rule memory

address for each token. The memory construction like this is

performed by Embedded CPU when the system booting is run

in advance. After system booting, IDE FPGA Logic performs

the hash value calculation about the incoming packet to the unit

of byte. If the payload in incoming packet is matched with the

pattern in memory pointed by the calculated hash value, then it

is checked out which the related reconstructed patterns is

matched or not. If all reconstructed patterns are matched with

incoming packet, alert message is generated according to the

header lookup results. Through these operations, our system

performs the pattern matching operation without lowing of

performance and packet loss.

3) Traffic Volume based Heuristic Analysis Mechanism

Fig. 5 Traffic Volume based Heuristic Analysis Algorithm

Traffic volume based analysis mechanism is performed by

traffic volume based heuristic analysis algorithm. Like pattern

matching mechanism, this algorithm also compares pre-defined

rule-sets with packet information of incoming packets. But, this

mechanism is based on the traffic volume. In other words, this

mechanism generates alert message by traffic volume within

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 1, Volume 3, 2009

118

time threshold. As shown in the figure 5, if the incoming packet

is matched with existing rule-set, then count value of the

rule-set is increased, and count threshold and time threshold is

checked out. If the count threshold is exceeded by the incoming

packet within time threshold, alert message is generated.

Through these operations, our system is capable of detecting

the DoS and Port-scan attacks such as TCP syn flooding attack,

UDP Bomb, SYN/ACK/XMAS Port-scans, and so forth.

4) Session Management Mechanism

Session Management Mechanism supports the SPI based

intrusion detection. Because stateless IDS only look at one

packet at a time, a lot of false positive alerts generate during

attempt to attack using IDS evasion tool, for example, “stick”

or “snot”. To prevent this problem, SPI was employed in our

system.

Fig. 6 Session Management Mechanism

For this, the session table stores session entries that are

indexed and managed by the hash key generator. 4-tuple

information including a source IP address, a destination IP

address, a source port, and a destination port is input, as

information used to hash a newly received packet, to the hash

key generator. Once the packet is inputted, a packet parser

extracts this information from the packet. The hash key

generator indexes and manages a session entry corresponding

to the received packet based on the input 4-tuple information.

Hash key generator has a dual hash structure with two different

hash functions Hash1(x) and Hash2(x). The hash functions

Hash1(x) and Hash2(x) are well-known functions that are used

to hash packets. For example, XOR or CRC functions can be

used as these hash functions. One hash function “Hash1(x)” is

used to generate indices that point to hash sets permitting hash

collisions in order to achieve faster session table search. The

other hash function “Hash2(x)” is used to generate hash

addresses that are used to identify session entries in a hash set

pointed by the hash function “Hash1(x)”. Session table may be

designed and implemented using two or more SRAM devices,

if necessary. In our system, the session table is constructed

using two SRAMs (SRAM#1 and SRAM#2), which can be

accessed simultaneously or in parallel using a hash set index

that is generated by the Hash1(x) to achieve faster session table

search.

The session table stores session data of packets inputted from

an external network. For efficient session table management,

the session table has an N-way set associative session table

structure in which each hash set in the session table can include

N session entries. The session table shown in figure 6 is a

32-way set associative session table that is constructed using

two 72-Megabit SRAMs with each session entry having a

length of 36 bits. Each session entry stored in the session table

includes current state, time stamp, and hash address parts. The

current state part includes current connection state information

of a corresponding session, the time stamp part is used to

determine which session entry is to be deleted when the session

table is full, and the hash address part is used to identify each

session entry in the same hash set. The time stamp is updated by

an internal timer each time a corresponding session is accessed.

If any hash sets of the session table are full so that new session

cannot be allocated to the hash sets, current time of internal

timer is compared with the time stamp of each session entry to

replace the oldest session with a new session.

Session state information is separately managed in

embryonic state and established state for timeout mechanism.

Embryonic state includes sessions that TCP 3-way handshaking

does not finish, on the other hand established state includes

completed sessions. It is necessary to manage separately states,

because embryonic session needs to have shorter timeout value

than that of established session. The SPI devices and computers

have vulnerabilities to SYN flooding attack in nature. This

mechanism helps to prevent against denial-of-service attack

such as SYN flooding. Although a Transmission Control

Protocol (TCP) session is terminated without sending an RST

or FIN packet, a corresponding session entry is immediately

removed if a time stamp in the session entry exceeds a timeout

threshold predetermined by the administrator. Accordingly, a

session which has been terminated without sending an RST or

FIN packet is positively removed from the session table.

The session management mechanism searches the session

table according to the received packet. Specifically, it obtains a

hash set pointer from Hash1(x) calculated by the hash key

generator and then searches the session table for a session entry

corresponding to the hash value from Hash2(x). The session

management mechanism performs a process for adding,

deleting, and changing sessions of the session table in order to

maintain the session table. The state info generation module

generates state information regarding the direction of the

packet and session establishment information and then

transmits this information to intrusion detection engine (IDE

FPGA) with packet data.

Finally, our work related protocol anomaly detection method

is described by Dong-Ho Kang at al. [8] in detail. Through the

interoperability of these mechanisms, our system analyzes data

packets as they travel across the network for signs of external or

internal attack. That is, the major functionality of our system is

to perform the real-time traffic analysis and intrusion detection

on high-speed links. In this paper, we focus on effective

detection strategies applied FPGA Logics. Especially, content

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 1, Volume 3, 2009

119

filtering mechanism for payload pattern matching is very

important because of hardware resource limitation.

IV. MULTI-HASH BASED TBT MECHANISM

In this section, we briefly introduce the previous content

filtering mechanism for payload pattern matching, called TBT.

Then, we present the multi-hash based TBT technique with

more memory-efficiency than the previous one hash based TBT

technique.

A. Previous TBT Mechanism

In the previous work, we present our novel content filtering

mechanism, so called TBT, which is one hash implementation

of a bottom-up tree [2]. Figure 7 shows the basic architecture

of the previous work.

Fig. 7 The basic hardware architecture of TBT scheme

When a packet arrives, the first k-byte substring is extracted

from the beginning of the payload. For the successive

substrings, the k-byte window shifts toward the end of the

payload one byte at a time. Therefore, p - k + 1 substrings are

extracted for a p bytes packet. For each substring, the hash

function generates an index, and the corresponding slots in all

the hash tables are accessed simultaneously. In Fig. 1, the

simultaneous accesses for the multiple hash tables are

represented with dashed-lines. If the key values in the accessed

slots match the substring (of the packet) and the addresses of

the accessed slots match the values in the previous slot address

registers (PSA registers), then the registers are updated with the

matched slot addresses. Otherwise, the PSA registers are

cleared. Here, the PSA register is cross-referred by each Table

Blocks (TBs), and PSA register comparison is performed only

when the matched slot is not the first substring, called the head

substring, in a signature. An attack is detected when the last

substring (the tail substring) in a signature is matched.

The main advantage of the TBT architecture is its flexibility.

Firstly, as discussed in the previous section, one of the main

disadvantages in FPGA-based solutions is that the FPGA has to

be re-programmed to modify signatures. In TBT, operations

such as addition and deletion in the signature database do not

involve any hardware modification. Therefore, the signature

modification is simple so that any update to the database can be

made interactively. Secondly, TBT is flexible in expressing

various types of signatures. Currently, 40% of SNORT

signatures contain special characters such as * and ?, which

represent an arbitrary length of a string and any one byte

character, respectively. In general, hardware-based content

filtering techniques are targeted to reduce the overhead of

exhaustive pattern matching algorithms by exploiting

simplicity and regularity in hardware. Therefore, the ability to

represent various signatures is limited. However, the current

design of TBT can support most of regular expressions easily.

For example, content filtering, which involves the signature

with a variable length wildcard character, *, is implemented in

the PSA register comparison block by simply delaying the

register clearing. Thirdly, TBT supports real-time packet

content inspection by exploiting hardware parallelism.

Although the prototype currently offers 2 Gbps throughput, it

can be improved up to 10 Gbps when the clock speed is

optimized. Finally, TBT requires a small memory for storing

signatures. In fact, only 350 Kilobytes of on-chip memory are

used for storing the latest version of SNORT rule, consisting of

2770 signatures. This is less than 30% of memory used in the

other techniques for storing 1533 signatures.

B. Multi-hash based TBT Mechanism

To detect certain patterns from packets, the attack patterns

(signatures) have to be effectively stored in the memory to

minimize memory consumption and to facilitate data retrievals.

Therefore, we proposed the design concepts of the TBT

mechanism in terms of the data structure and the algorithm. The

solution that we propose takes advantage of a bottom-up tree to

maximize the memory efficiency, and uses multiple hash tables

to improve the run-time performance of the content filtering

algorithm. All hash tables used in TBT share the same

structure, and a slot in the hash tables consists of four fields:

substring, previous node pointer (Prev_Ptr), flags to indicate

the head node and the tail node, and a field to store signature

specific information such as signature description. For

example, figure 8 and figure 9 illustrate how a bottom-up tree is

constructed when k is 5 or 7. As shown in the figure 8, the first

five-byte substring of “/bin/echo” pattern is equal to the first

five-byte substring of “/bin/kill” pattern. Therefore, “/bin/”

substring is stored in the same memory space. Through this

tokenizing, other patterns are also constructed. Here, a way to

improve memory utilization is to use a bottom-up tree, where

each child node points to the address of its parents.

Fig. 8 Signature Tokenizing

Given the signatures, each signature is divided into 5 or 7

byte substrings, and each substring is hashed into a 9bit value,

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 1, Volume 3, 2009

120

called a token. A bottom-up tree, then, is constructed using the

tokens as showed in figure 9. Here, the sequence of tokens

computed from a signature forms a unique path in the tree and,

thereby, completely identifies the signature. First, a signature,

“/bin/echo”, is divided into five-byte substrings, “/bin/” and

“echo”, and then the substrings are hashed to find the tokens, 30

and 10 respectively. Finally, “/bin/” and “echo” are inserted at

slots 30 of the hash table in Table Block 1 (T1) and slots 10 of

the hash table in Table Block 4 (T4). Then, the link between the

adjacent tokens is represented by Prev_Ptr. Similarly, other

signatures are stored in each Table Blocks.

Fig. 9 Hash Collision Problem

Here, the value of slot 180 induces the hash collision

problem. For example, “motd” collides with the previously

inserted key of “kill”. In TBT, collisions can be resolved simply

by searching all the hash tables simultaneously and using the

first table with unoccupied slots for the corresponding token.

Therefore, the new key is inserted in other same copying Table

Block. Although the sequential search on multiple tables is an

expensive operation when implemented with software, it can be

easily converted into a parallel search with hardware. However,

the more it does if the hash collision like figure 9 frequently

happen, the waste of the hardware resource becomes severe.

Fig. 10 Multi-hash based Signature Table Configuration

Therefore, we propose the multi-hash based TBT mechanism.

If hash collision happens frequently by 1st hash function,

signature table configuration by multi-hash based TBT can be

performed by 2nd hash function as shown in the figure 10. That

is, although the key by 1st hash function collides with the

previous inserted key, the key by 2nd hash function can be used.

Here, the 1st hash function and the 2nd hash function are the

hash function which is suitable to the hardware

implementation.

After above signature table configuration, linked word based

store-less running search algorithm is performed as string

pattern matching mechanism. This algorithm uses the hardware

architecture of multi-hash based TBT scheme as shown in the

figure 11. When a packet arrives, the first k-byte substring is

extracted from the beginning of the payload. For the successive

substrings, the k-byte window shifts toward the end of the

payload one byte at a time. For each substring, the multiple

hash function generates an index, and the corresponding slots in

all the hash tables are accessed simultaneously. In figure 11, the

simultaneous accesses for the multiple hash tables are

represented with dashed-lines. If the key values in the accessed

slots match the substring (of the packet) and the addresses of

the accessed slots match the values in the previous slot address

registers (PSA registers), then the registers are updated with the

matched slot addresses. Otherwise, the PSA registers are

cleared. Here, the PSA register is cross-referred by each Table

Blocks, and PSA register comparison is performed only when

the matched slot is not the first substring, called the head

substring, in a signature. An attack is detected when the last

substring (the tail substring) in a signature is matched.

Fig. 11 The hardware architecture of Multi-hash based TBT

Through these operations, our system performs the string

pattern matching operation without lowing of performance and

packet loss.

V. SIMULATION BASED PERFORMANCE EVALUATION

The approach that we presented here is a part of an Intrusion

Detection System, called ATPS recently developed. A

prototype of multi-hash based TBT was implemented in a

XILINX Virtex-II Pro platform FPGA. The FPGA device,

XC2VP70, has 74,448 logic cells and 5.9Mbits of an on-chip

SRAM, which is a configurable block select memory. There are

various ways to configure the block memory in the XC2VP70

FPGA to implement TBT. As shown in the previous work, 512

entries per hash table h with the substring length k of 1~7 bytes

showed the best performance in terms of the memory

consumption and utilization. However, Implementing 4~7

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 1, Volume 3, 2009

121

bytes wide hash tables requires two memory blocks in parallel,

since the single block width of XC2VP70 with 512 entries is

4.5 bytes.

Table 1 One-hash based TBT Implementation Result

Token size

(bytes)
Tables

BlockRAMs

(18Kbits)

7 9 18 Head/Body

Tokens 5 16 32

7 4 8

6 3 6

5 3 6

4 4 8

3 4 4

2 3 3

Tail Tokens

1 1 1

SUM 47 86

Table 2 Multi-hash based TBT Implementation Result

Token size

(bytes)
Tables

BlockRAMs

(18Kbits)

7 4 8 Head/Body

Tokens 5 8 16

7 2 4

6 1 2

5 1 2

4 2 4

3 2 2

2 1 1

1
st

Hash
Tail Tokens

1 1 1

7 3 6 Head/Body

Tokens 5 6 12

7 1 2

6 1 2

5 1 2

4 1 2

3 1 1

2 1 1

2
nd

Hash
Tail Tokens

1 0 0

 SUM 37 68

The current implementation of our prototype is capable of

performing only single-content filtering. Therefore, 1660

signatures except signatures with header only and multiple

contents are loaded in the prototype system. Here, Table 1

summarizes the amount of the block memory used by the

one-hash based TBT implementation. Next, Table 2 shows it by

the multi-hash based TBT implementation. As shown in Table

1 and 2, multi-hash based TBT used 68 block memories, which

is less than 20% of the previous one-hash based TBT.

VI. IMPLEMENTATION AND EXPERIMENTAL RESULTS

We have developed Gigabit IDS based on our architecture,

called ATPS. Our system is implemented in programming

languages that is best suited for the task it has to perform.

Basically, application tasks of our system are implemented in C

programming language. FPGA Logic of our system is

implemented in verilog HDL (Hardware Description

Language) that is best suited for high-speed packet processing.

That is, our system has developed in the side of improvement in

performance for packet processing. As shown in the figure 12

(a), our system was implemented in a XILINX Virtex-II Pro

platform FPGAs. In the above figures, it is marked with the red

square. Also, the screen shots were captured during

experiments to validate the performance of the prototype. The

screen shot (b) shows that web-related attacks were detected.

The next screen shot (c) shows that rule-sets for intrusion

detection and response were applied.

Fig. 12 The Prototype of ATPS

Figure 13 shows our test-bed environment. We applied the

snort rule-sets for the whole performance evaluation of our

system. And we used IXIA Traffic Generator [25] for

background traffic generation, IDS Informer Attack Tool [26],

Nessus Vulnerability Scanner [27] for attack traffic generation,

and so forth.

Fig. 13 Test-bed for Experiments

Most of all, detection rate is most important factor in

SPI-based intrusion detection system. Generally, both traffic

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 1, Volume 3, 2009

122

rate and the number of signatures have an effect on detection

rate. For performance evaluation of our prototype system, we

observed the rate of alert generation when background traffic

generated by IXIA increase gradually. That is, we measured the

decrease in effectiveness of the detection when the traffic rate

increases. As shown in the figure 14 (a), increasing traffic rate

hasn’t an effect on detection rate. The second, our experiment

was run with a constant traffic rate of 100Mbps and an

increasing number of signatures. The experiment starts with

only the 200 rule-sets that are needed to achieve maximum

detection for the given attacks. As shown in the figure 14 (b),

increasing number of signatures also hasn’t an effect on

detection rate of our system. The previous two experiments

using Snort sensors are performed by Kruegel et al. [24].

Compared with Snort sensor, our system showed a consistent

performance in traffic level and had nothing to do with

increasing number of signatures applied.

Fig. 14 Performance Evaluation

VII. CONCLUSION

Providing seamless protection for secure network service is

becoming difficult primary because of the increasing link speed

and the number of attack patterns, signatures to be maintained.

In this paper, we designed the architecture of our system, called

ATPS that performs the real-time traffic analysis and intrusion

detection on high-speed links, and proposed the novel detection

mechanism in FPGA-based reconfiguring hardware that

supports more efficient intrusion detection. Also, we have

developed the prototype of our system. Most of all, our system

focus on reducing a lowering of performance caused by

high-speed traffic analysis to the minimum. Therefore, we

present an improved content filtering techniques, called

multi-hash based TBT. The hashing scheme helps to reduce the

data access time, while the multi-hash based TBT technique

helps to minimize the memory consumption. Also, it has the

advantage that is capable of supporting the effective response

by using inline mode monitoring technique on four Gigabit

links. However, the current prototype is very preliminary and a

thorough evaluation will require experimentation in a

real-world environment. In future, for resolving the problem

derived from the verification of implemented system, we will

go and consider on system performance, availability,

faults-tolerance test with prototype. Also, we will keep up our

efforts for improvement in performance of detection

mechanism on high-speed links. Finally, we will implement

and expand our designed system and give more effort to

demonstrate effectiveness of our system.

Simulation-based performance evaluation showed that the

proposed technique is memory efficient, thereby outperforming

the previous one-hash based technique. A prototype of the

proposed approach implemented on a FPGA, used the

minimum amount of memory for storing 1661 signatures,

whereas it can support a 2Gbps link regardless of the number

and length of the signatures. Although the prototype can only

perform single pattern comparison as of now, we are currently

working toward the complete implementation of the TBT

architecture to support multi-pattern signatures. Our future

work includes optimizing the circuit timing to achieve higher

throughput, and extending current TBT to harmonize with the

high-speed signature generation approaches that employ packet

content filtering.

REFERENCES

[1] Byoungkoo Kim, Seungyong Yoon, and Jintae Oh, "ATPS – Adaptive

Threat Prevention System for High-Performance Intrusion Detection and

Response," In Antonio Lagana et al., editors, Proceedings of the 10th
Asia-Pacific Network Operations and Management

Symposium(APNOMS 2007), volume 4773 of LNCS, pp. 344~353,

Sapporo, Japan, Oct., 2007. Springer-Verlag.
[2] Sungwon Yi, Byoung-koo Kim, Jintae Oh, Jongsoo Jang, George Kesidis

and Chita R. Das, "Memory-Efficient Content Filtering Hardware for

High-Speed Intrusion Detection Systems," Proceedings of the 2007 ACM
Symposium on Applied Computing, pp. 264-269, Seoul, Korea, 11~15

March, 2007.

[3] Kruegel, C., Valeur, F., Vigna, G. and Kemmerer, R. "Stateful intrusion
detection for high-speed networks," In Proceedings of the IEEE
Symposium on Security and Privacy, pp. 266-274, 2002.

[4] M. Aldwairi, T. Conte, and P. Franzon, "Configurable string matching
hardware for speeding up intrusion detection," In ACM SIGARCH

Computer Architecture News, March 2005, pp. 99-107.

[5] R. Sidhu and V. K. Prasanna, "Fast Regular Expression Matching using
FPGAs," In IEEE Symposium on Field Programmable Custom

Computing Machines, April 2001.

[6] Y. Cho, S. Navab, and W. Mangione-Smith, "Specialized Hardware for
Deep Network Packet Filtering," In Proceedings of International

Conference on Field-Programmable Logic and Application, September

2002.
[7] M. Roesch. "Snort-Lightweight Intrusion Detection for Networks," In

Proceedings of the USENIX LISA ’99 Conference, November, 1999.

[8] Xilinx inc., http;//www.xilinx.com.
[9] Thomas Ptacek and Timothy Newsham, "Insertion, Evasion, and Denial

of Service: Eluding Network Intrusion Detection," Secure Networks Inc.,

1998.
[10] R. Boyer and J. Moore, "A Fast String Searching Algorithm,"

Communications of the ACM, vol. 20, no. 10, pp. 762-772, 1977.

[11] A. V. Aho and M. J. Corasick, "Efficient string matching: An aid to
bibliographic search," Communications of the ACM, vol. 18, no. 6, pp.

333-340, 1975.
[12] S. Wu and U. Manber, "A Fast Algorithm for Multi-Pattern Searching,"

Technical Report TR-94-17, Department of Computer Science,

University of Arizona, 1994.
[13] J. Moscola, J. Lockwood, R. p. Loui, and M. Pachos, "Implementation of

a Content-Scanning Module for an Internet Firewall," In IEEE

Symposium on Field-Programmable Custom Computing
Machines(FCCM), April 2003.

[14] H. Debar, M. Dacier and A. Wespi, "Research Report Towards a

Taxonomy of Intrusion Detection Systems," Technical Report RZ 3030,
IBM Research Division, Zurich Research Laboratory, Jun., 1998.

[15] S. Kumar and E. Spafford, "A pattern matching model for misuse

intrusion detection," In Proceedings of the 17th National Computer
Security Conference, pp. 11-21, Oct., 1994.

[16] Dong-Ho Kang, Byoung-Koo Kim, and Jin-Tae Oh, "Protocol Anomaly

and Pattern Matching based Intrusion Detection System," WSEAS
Transaction on Communications, Issue 10, Vol. 4, October 2005,

pp.994-1001

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 1, Volume 3, 2009

123

[17] Slobodan Bojanic, Vladimir Milovanovic, Zorana Bankovic, Carlos

Carerras, and Octavio Nieto-Taladriz, "Intrusion Detection Using New
FPGA Architecture," WSEAS Transaction on Communications, Issue 10,

Vol. 4, October 2005, pp.1077-1085

[18] M. Mehde, M. Bensebti, A. Anou, and M. Djebari, "Real Time Solution
for Computer Network Intrusion Detection," WSEAS Transaction on

Computers, Issue 1, Vol. 5, January 2006, pp.216-222

[19] S. Dharmapurikar, P. Krishnamurthy, T. Sproull, and J. Lockwood,
"Deep Packet Inspection using Parallel Bloom Filters," in IEEE Micro,

2004, vol. 24.

[20] F. Yu, R. H. Katz, and T. V. Lakshman, "Gigabit Rate Packet
Pattern-Matching Using TCAM," in Proceedings of the International

Conference on Network Protocols (ICNP), 2004.

[21] H. Song and J. W. Lockwood, "Multi-pattern Signature Matching for
Hardware Network Intrusion Detection Systems," in IEEE GLOBECOM,

November 2005.

[22] N. Tuck, T. Sherwood, B. Calder, and G. Varghese, "Deterministic
Memory-Efficient String Matching Algorithms for Intrusion Detection,"

in Proceedings of the IEEE INFOCOM, March 2004.

[23] J. R. Crandall, Z. Su, and S. F. Wu, "On deriving unknown vulnerabilities
from zero-day polymorphic and metamorphic worm exploits," in CCS
'05: Proceedings of the 12th ACM conference on Computer and

Communications Security, 2005, pp. 235-248.
[24] C. kruegel, F. Valeur, G. Vigna, and R. Kemmerer, "Stateful Intrusion

Detection for High-Speed Networks," in Proceedings of the IEEE

Symposium on Research on Security and Privacy, Oakland, CA, IEEE
Press, May 2002.

[25] http://www.ixiacom.com
[26] http://www.bladesoftware.net

[27] http://www.nessus.org

Byoungkoo Kim received the B.S. and M.S. degrees in Information and

Communication Engineering from Sungkyunkwan University in 1999 and
2001, respectively. Since 2001, he has stayed in Security Gateway System

Team, Electronics and Telecommunications Research Institute (ETRI) of

Korea to study Network Security related Topics.

Seungyong Yoon received the B.S. and M.S. degrees in Computer

Engineering from Chungnam National University in 1999 and 2001,
respectively. Since 2001, he has stayed in Security Gateway System Team,

Electronics and Telecommunications Research Institute (ETRI) of Korea to

study Network Security related Topics.

Jintae Oh received the B.S and M.S degrees in Electronics Engineering from

Kyungpook National University in 1990 and 1992, respectively. He worked at
ETRI (Electronics and Telecommunications Research Institute) from 1992 to

1998. During 1998-1999, he stayed in MinMax Tech, USA, as a Research staff.

He served as a Director in Engedi Networks, USA, during 1999-2001. He was
both Co-founder and CTO Vice President in Winnow Tech. USA during

2001-2003. From 2003, he works with the Security Gateway Team, ETRI,

Daejeon, Korea.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 1, Volume 3, 2009

124

	ijcomputers-115
	ijcomputers-118
	ijcomputers-119
	ijcomputers-120
	ijcomputers-121
	ijcomputers-122
	ijcomputers-123
	ijcomputers-124
	I. INTRODUCTION
	II. GPS system
	A. Module selection
	B. Sensitivity and accuracy
	C. Determining direction of moving

	III. Electronic compass
	A. Measuring Earth's magnetic field
	B. Compass calibration
	C. Third dimension of magnetic field
	D. Making compass operate independently of its position
	E. Determining compass position

	IV. Walking assistant for visually impaired persons
	A. Functionalities
	B. Hardware selection
	C. Voice user's interface
	1) Hardware
	2) Software

	D. System architecture
	E. Communication with PC computer
	F. Software
	1) Software modules
	2) Optimization

	V. Summary

	ijcomputers-125
	ijcomputers-126
	I. INTRODUCTION
	II. Domain Suitability And Problem Formulation
	A. Organic Reaction and Mechanism

	III. Qualitative Process Theory (qpt) As The knowledge Capture Tool
	A. QPT Modeling Constructs

	IV. Qriom: The Simulation Engine
	A. Two-tier Knowledge Base

	V. Methods
	A. Inputs, Outputs, and Reaction Types
	B. Modeling of Organic Reactions as QPT Processes
	C. Simulation Engine Design

	VI. Results Discussion
	A. Simulation Scenario
	B. The Molecule Update Routine (MUR)

	I. Conclusion And Future Works

	ijcomputers-127
	ijcomputers-128

