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Abstract— In this paper, we consider emotion as a factor in the 
decision-making process and actions taken by an agent can be 
represented by a model, called “emotional model” created with 
specific focus on computer games development. It is designed to 
explore people’s behavior in certain circumstances, while under 
specified emotional states. Special attention was given to the thought 
process and actions displayed in the hypothetical scenarios. We 
characterized thoughts and actions associated with each scenario and 
emotional state. Each particular action or proof of steps taken in the 
thought process was given a percentage value directly proportional to 
answers given by the test population. Finally, we developed an 
experimental game program for the evaluation of our emotional 
decision making model.  The aim of the evaluation was to find out 
how real life agents reacted in certain situations and what processes 
the human mind runs through when thinking and acting upon certain 
situations. 
 

Keywords—Emotional Model, Computer Game, Evaluation, 
Intelligent Agents  

I. INTRODUCTION 
OMPUTER Game Software (CGS) has become 
increasingly popular. Unlike before, today’s games are 

geared toward an older demographic and as a result they have 
become much smarter and more complex. Players are 
constantly looking for challenging CGS and this is can be 
achieved due to the recent advances in Artificial Intelligence 
[1].  

Over the last five years, games have become increasingly 
intelligent and intellectually demanding [2]. If we compare an 
older game to any of the current generation games, it will 
become apparent that these new games are much more 
difficult to play. Opponents in these games have also become 
smarter and now seem to exhibit what could be considered 
intelligent behavior. Some games even have agents that learn, 
to a certain degree, and adjust their decisions accordingly, 
even cooperating against you though even at this stage, they 
are by no means perfect.  

Agents still seem to exhibit strange behavior, such as 
walking into walls and using items inefficiently. Even though, 
to a certain degree, agents currently seem to act in an 
intelligent way and make intelligent decisions, there is still 
something lacking in their behavior. Their actions are 
although intelligent still seem quite robotic. Therefore, this 
work addresses this area of study.  

This paper introduces emotion as a factor in the decision-
making process and actions taken by an agent. Human 
emotions play a large part in how an individual thinks and 
acts. For example, decisions made in anger can often be 
different from those made otherwise. Likewise, trying to 
perform an action like throwing a ball can also be affected by 
the mood an individual is in, which is governed by emotions. 
Emotions can be a driving force behind the types of decisions 
and actions and individual makes [3]. Depending on ones 
emotional state, the individual can make better or worst 
decisions and perform action more or less effectively [3, 4, 5]. 
Therefore to bring artificial intelligence to the next level, that 
is closer to human, emotions need to be incorporated in the 
decision-making process and actions of agents. If agents can 
be made to behave with emotion then they will appear more 
human, which is exactly what is wanted (computer controlled 
agents simulate a human opponent).  

Adopting this emotion approach to agents, artificial 
intelligence may not always result in an optimal decision or 
action [6, 7, 8]. Rather it will result in the best possible 
decision or action given the agents emotional state. Human 
players get angry, nervous and frustrated and this affects the 
way they play. This should be no different for computer 
controlled agents as the aim of this thesis is the development 
of an agent that exhibits human like behavior, mistakes and 
all.   

II. BACKGROUND 
Artificial intelligence (AI) has been growing and maturing 

in the passing years and the domain of video games has 
become an increasingly popular platform for artificial 
intelligence research [9, 10]. As games become more complex 
and realistic, so too does the AI that drives these games. 
Games may be simplified when compared to the real world 
but none the less they provide complex, dynamic 
environments and situations which even human players find 
challenging. Although AI in videogames has been constantly 
improving, it is still at a stage where inflexible and predictable 
behavior is exhibited. 

 

A. Goal and resource using ArchitecturE (GRUE) 
Gordon and Logan [8, 9] have proposed GRUE, which is a 

new architecture that aims at improving these weaknesses. It 
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uses teleo-reactive programs (TPRs) which basically consist 
of a series of rules, with each rule containing some number of 
conditions and actions. Running a TPR, it evaluates all the 
rules and executes the actions of the first rule whose 
conditions evaluate to true when compared to the world model 
that is stored in the agent’s memory. The resulting actions can 
be said to be durative as they carry out as long as its 
conditions are true. In this architecture the agents use TPR to 
pre-define plans for achieving goals. Furthermore it is here 
that multiple actions are allowed to be executed during each 
cycle. 

Game agents may encounter situations where several items 
may be adequate in achieving a task or where objects come in 
quantities such as money and ammunition. GRUE is designed 
specifically for these types of situations and is built around the 
key concept of resources. 

GRUE allows the game agent to generate new top-level 
goals depending on the current game situation and assign 
priorities to these goals based on the current situation. For 
example, an agents goal may be attacked, but if it is injured it 
may then generate a new goal which would be to heal itself 
before continuing with previous goal of attacking. Here the 
goal of healing would be given a higher priority and the first 
goal of attacking would be given a lower priority. Once the 
agent has carried out the goal of healing it will then continue 
with the original goal.  

Multiple tasks can run actions in parallel during each cycle 
when it is possible. If the agent’s task is to search for 
ammunition then actions needed to carry out this task can be 
run in parallel during each cycle. Actions may include 
searching, defending, attacking or healing when hurt and so 
forth.  

A complete GRUE has been implemented for the 
Tileworld environment and the agent performs well, 
demonstrating that resource use with preferred properties is 
advantageous. A basic GRUE has also been implemented for 
the Unreal Tournament game and performs less impressively 
showing predictable behavior. However, the authors do 
believe that a complete GRUE agent will perform much better.  
 

B. The use of influence diagrams (IDs) 
In recent years, game theory and decision theory have had 

a profound impact of artificial intelligence in video games [11, 
12]. Traditionally, multi-agent systems using game-theoretic 
analysis for decision making use a normative approach [2]. It 
is here that decisions are derived rationally from the game 
description. However, this approach is believed to be 
insufficient and it does not capture the decision making 
process of real life agents. Real life agents (real people) may 
be partially irrational or may use models other than the real 
world (the game model) to make decisions [8].  Also agents 
may be unsure about their opponents’ decision-making 
processes. Network Interface Diagram (NID), developed by 
Gal and Pfeffer, allows for situations in which agents have an 
incorrect mental model of how the world works and also 
allows for instances where a modeler has uncertainty about 
another agents model.  

The basic building blocks of a NID are influence 
diagrams (IDs). IDs consist of a direct graph with three types 
of nodes as described below: 

 
• Chance nodes – drawn as circles and represent 

random variables. 
• Decision nodes – drawn as rectangles and represent 

decision points 
• Value node – drawn as diamonds and represent the 

agent’s utility which is to be maximized 
 

C. Multi agents’ coordination  
Multi agents’ coordination is another important area in 

video game Artificial Intelligence. In many of today’s games 
computer controlled agents must work together in an 
intelligent and believable way against the human player. In 
multi agent coordination, the aim is to find a satisfactory 
solution that is fair, stable and optimal to all agents. In human 
society this often involves a trusted third party in the 
negotiating process among all agents to insure that all agents 
should cooperate and are committed [14, 16]. As with most 
Artificial Intelligence problems, this too will be modeled to 
work in the same way as the real world. 

Wu and Soo [13] described how a trusted third party can 
be involved in the negotiation of multi agent coordination to 
deal with many difficult and challenging game situations.  

Axelrod and Genesereth [10] showed that rational agents 
are able to coordinate and cooperate with a game theoretical 
deal-making mechanism even without communication.  

 

D. The Emotional Decision Making Model 
For our emotional decision making model to work and 

mimic realistic human behavior, we developed an 
experimental model. We wanted to find out how real life 
agents reacted in certain situations and what processes the 
human mind runs through when thinking and acting upon 
certain situations. 

As shown in Figure 1, there are seven key stages in the 
‘emotional decision making model’. These are numbered one 
through to seven respectively. Note that these numbers do not 
represent the process order or direction of navigation, rather, 
they are nothing more than identifiers which will aid us in the 
explanation of each of the parts that collectively make up the 
emotional decision making model.  

We begin at point (1), the game agent. The game agent 
represents any computer-controlled entity. This can be 
anything from an animal to an opposing character. In other 
words, a game agent is any ‘thing’ that is not controlled by the 
player. This game agent will, at any given time, be in an 
emotional state. Depending on this emotional state, the agent 
will make a decision, which will trigger an action. This action 
can then further affect the agent’s current emotional state, 
therefore changing it. This process is recursive, in that it is 
continually cycling and constantly changing until the game 
agent ceases to exist.  

Moving on to point (2), we have the game agent’s 
emotional state, referred to as ‘emotion’. It is here that the 
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agent’s current emotional state is stored, which will continue 
to change as the game progresses and the game agent makes 
decisions and performs actions. Actions performed by the 
game agent will be influenced by the emotion. This will be 
covered in greater detail throughout point (4). Note: that a 
game agent is in an emotional state at any given point in time, 
thus it is considered the heart and soul of this model. 

Next we have point (3), referred to as ‘decision’. Here 
with game agent will store all possible decision available 
while under a particular emotional state. The decision with the 
highest percentage value will always take precedence over 
decisions with lower percentage values, which will be 
executed. If there are two or more decisions with equal 
percentage values, the first decision in the list out of the 
possible decisions will be selected and executed. Decisions are 
stored as a list and are traversed until a suitable decision is 
found.  Let us set up a scenario to illustrate the mechanics of 
this step. This scenario will require the game agent to decide 
on weather to attack an overwhelming opponent, or retreated 
from battle. Possible choices available to the game agent are 
referred to as ‘decision candidates’ each decision has a 
percentage or weight attached to it.  The game agent is in a 
scared emotional state. Bellow is the agent’s possible 
decisions that correspond to the emotion it is in. 

 
Decision Candidates 
Attack 10% 
Retreat 90% 
 

As retreat has the highest percentage value the game 
agent’s decision will be to retreat from battle. This decision 
opens up possible actions that the agent may execute, which 
will be covered in the next section. Note that once a decision 
has been made ‘decision candidates’ are cleared in preparation 
for the next iteration. It is important to note that this is a 
simplified accounting of how this section of the decision 
making model works. Sub decisions may be needed to 
properly select the best course of action. For example, health 
remaining, distance and so on could be taken into 
consideration, though this paper will only cover simple, non-
nested decisions. 

Point (4) is referred to as ‘action’ and works in much the 
same way as point (3). It is important to note at this time that 
possible actions are provided by the decision selected. Here all 
possible actions available to the game agent will be stored in a 
list and the action with the highest percentage value will take 
precedence over lower valued actions. As before, actions with 
equal percentage values will be selected using the first-on-list 
method. As with ‘decision’, ‘action’ acts in much the same 
way, in that a list of possible actions are provided and selected 
based on their percentage value. Possible actions available are 
provided by the decision made. Note that in this step the 
emotional state of the game agents is no longer relevant. This 
is because the previous step, ‘decision’ was carried out while 
under the influence of ‘emotion’ and thus the possible actions 
provided to ‘action candidates’ will follow suit. It is important 
to remember that decisions made under the influence of a 
particular emotion will always lead to actions made 
corresponding to that emotion. In other words, decisions made 

in anger will lead to actions performed in anger. Below are 
possible ‘actions’ provided by ‘decision’. 

 
Action Candidates 
Retreat to area occupied by friendly 
game agents 40% 
Retreat to nearest safe location 30% 
Retreat to Base 30% 
 

As in the above example the choice with the highest 
percentage will be fired and ‘actions’ will be cleared in 
preparation for the next iteration. 

Now we reach what are known as ‘outside effectors’. Point 
(5) is the first of these and is referred to as ‘game 
environment’. During a game many things are simultaneously 
happening. Not only are the player and game agents 
performing actions that affect one another, but the game 
environment is constantly changing and also affecting the 
game agent. The game environment can be anything from rain 
in a game to a particular geographical stage structure, each of 
which will trigger selected emotions in the game agent, see 
Example 1. 

 Next, we reach point (6) referred to as ‘prior 
actions/decisions’. Here previous actions that may trigger 
particular emotions are stored. Once a game agent makes a 
decision and performs an action, often, the action performed 
may trigger further emotional states. Again this will be 
explained in greater detail in Example1. 

Finally, we reach the final point in the emotional decision 
making model, point (7). This is referred to as ‘other agent’s 
actions/decisions’. Many times in a game, there will be 
multiple game agents controlled by the computer. These 
agents will most likely interact with each other, thus having an 
effect on one-another’s emotional states. This allows for 
realistic teamwork and quarrels between game agents (i.e. if 
agent accidentally shoots team member, team member may 
fire back in anger). 

 
Fig. 1. The emotional decision making model 

 

III. MODEL SIMULATION  
For our emotional decision making model to work and 

mimic realistic human behavior [12], we developed an 
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experimental model. We wanted to find out how real life 
agents reacted in certain situations and what processes the 
human mind runs through when thinking and acting upon 
certain situations [13, 14, and 15]. 

 

A. Experimental game 
In this experiment we used two agents, namely A1 and A2 

that simulate the human reasoning process. When people 
reason about the behavior of others they often express their 
emotion (i.e., feeling sorry for someone, feeling happy for 
them, resenting their good fortune, or gloating over their bad 
fortune). To do this, agents maintain a list of cases 
establishing points of view of other agents and use these cases 
to take future actions. These two agents work in a cooperative 
environment in which the agent A2 should wait for a message 
from the agent A1 in order to take the right step in the right 
direction.  

The agents described in this experiment are able to 
participate in a multi-stage game in which one intelligent 
agent (A1) observes and interacts with a naïve agent (A2) 
express feelings about other agent’s actions. The naïve agent 
uses those emotions to take the right action. These emotions 
are vital to the decision-making process and to manage 
competing motivations.  

Our naïve agent can learn through the feedback from the 
intelligent agent. The agent can pass one room to another but 
has no knowledge of the environment. It does not know which 
sequence of doors the agent must pass to go outside the 
building.  

The game environment for the intelligent agent (A1) is a 
simple evacuation of an agent from any room in the building, 
see Figure 2. At the start of the game, the agent is allocated to 
Room C (initial state) and we want the agent to learn to go 
outside the house (F). At each landmark (initial state, obstacle 
and destination state), A1 should update the shared 
information.  

We consider each room (including outside the building) as 
a state. The agent's movement from one room to another room 
is called an action. Figure 3 shows that states are represented 
by nodes in the state diagram, while actions are represented by 
the arrows. 

From state C, the agent can go to state D because state C is 
connected to D but with reward zero because D is not the goal 
state. From state C, however, the agent cannot directly go to 
state B because there is no direct door connecting room B and 
C (thus, no arrow). From state D, the agent can go either to 
state B or state E or back to state C (look at the arrow out of 
state D). If the agent is in state E, then three possible actions 
are to go to state A with reward zero, or state F with reward 
100 (because F is the goal state) or state D. If the agent is in 
state B, it can go either to state F or state D. From state A, it 
can only go back to state E.  

The agents described in this experiment are able to 
participate in a multi-stage game in which one agent (A1) 
should learn through experience without a teacher by applying 
the Q-learning technique, which is a reinforcement learning 
technique that bridges the gap between supervised and 
unsupervised learning categories.  At the start, the agent can 

pass from one room to another but has no knowledge of the 
environment. It does not know which sequence of doors the 
agent must pass through to go outside the building. After a 
sequence of training sessions, the agent should be aware of the 
environment and the location of the target and other 
significant points. A map like for all of these pieces of 
information should be produced and saved in a sharable 
location to allow both robots easy access, see Figure 2 and 
Table 1.   

 
 

 
Fig. 2 a simple house evacuation 

 
 

 
 

 
Fig. 3 the state diagram 
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Table 1.  State reward values 
 

Action to go to state 
Agen
t in 

state 

A B C D E F 

A - - - - 0 - 
B - - - 0 - 100 
C - - - 0 - - 
D - 0 0 - 0 - 
E 0 - - 0 - 100 
F - 0 - - 0 100 

 
 

Table 2: Distances between landmarks, where N=North,  
S=South, E=East, W=West, NE=North East, SW=South West, 

SE=South East 
 

 B C D E F 
A 20/

E 
40/E 20/SE 20/S 40/NE 

B  20/E 30/S 50/SW 20/N 
C   20/S

W 
60/SW 50/NE 

D    20/SW 70/N 
E     50/NE 

 
 
Q-learning requires a similar matrix name Q in the brain of 

our agent that will represent the memory of what the agent has 
learned through many experiences. The rows of matrix Q 
represent the current state of the agent, the columns of matrix 
Q point to the action to go to the next state. As mentioned 
above, the agent starts without knowledge of the environment, 
thus we put Q as a zero matrix. The transition rule of this Q 
learning is the following simple formula  

 
Q(state, action)=R(state, action)+α. Max[Q(next state, all 
actions)]                               (1) 
 
Where, 
 
Q is the transition matrix; rows represent states and columns 
represent actions, 
 
R is the instant reward matrix, and    
 
α is the learning parameter. 
 

B. Q-Learning Technique 
Given: State diagram with a goal state 
(represented by matrix R)  
 

Find: Minimum path from any initial state 
to the goal state (represented by matrix 
Q)  
 
Q Learning Algorithm goes as follow: 
  

1. Set parameter α, and environment 
reward matrix R  

2. Initialise matrix Q to zero  
3. For each episode:  
o Select random initial state  
o Do while the goal state not 

reached  
 Select one among all possible 

actions for the current state  
 Using this possible action, 

consider to go to the next 
state  

 Get maximum Q value of this 
next state based on all 
possible actions using formula 
(1) 

 Set the next state as the 
current state  

End Do  
 

The above algorithm is used by our intelligent agent (A1) 
to learn from experience or training. It was proposed for 
Markovian’s problems decision, with discrete states and 
actions spaces. The Q-Learning is, therefore, well suited for 
on-line applications that are characterized by discrete states, 
and generally performs well in practice. Each episode is 
equivalent to one training session. In each training session, the 
agent explores the environment (represented by Matrix R), 
gets a reward (or nothing) until it reaches the goal state. The 
purpose of the training is to enhance the ‘brain' of our agent 
that is represented by the Q matrix. The Q-learning algorithm 
is guaranteed to converge to Q*(s, a), the optimal action value 
function, with probability 1 as long as each state-action pair is 
continually updated [12, and 13]. The Q-learning algorithm 
learns an action value function, which is the expected sum of 
discounted future rewards for taking action a in state s and 
behaving optimally thereafter. This action value function is 
often represented in a Q-table of the form Q(state, action), 
which is updated during the learning process, see Table 1. 
More training will produce a better Q matrix that can be used 
by the agent to move in an optimal way. In this case, if the Q 
matrix has been enhanced, instead of exploring around and 
going back and forth to the same room, the agent will find the 
fastest route to the goal state.  

Parameter α is in the range 0 to 1(0<< α<<1). If α is closer 
to zero, the agent will tend to consider only an immediate 
reward. If α is closer to one, the agent will consider a future 
reward with greater weight, and be willing to delay the receipt 
of a reward.  

To use the Q matrix, the agent traces the sequence of 
states, from the initial state to the goal state, hence producing 
a trajectory of its path. At each step of the sequence, the agent 
should find an action that maximizes Q for the current state. 
The intelligent agent was trained in the above mentioned 
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environment, see Figure 3. The training session started with 
α=0.25.  

 

C.  XML Map 
Once the path from the initial state to the goal state is 

found, the intelligent agent (A1) uses the distance table (Table 
2) to produce an XML map for future navigation and for 
coordinating the movements of the naïve agent (A2). In 
addition to the name and the description of each state, the map 
should have the distance from a current state to the next state 
in the navigation path. 

Using the above mentioned game environment, the 
intelligent agent produces the following direction and XML 
maps. 

 
Forward direction map (C -> D -> B -> F) with its calculated 
distance d=20+30+20=70 
 
Backward direction map (F -> B -> D ->C) with the same 
distance d=70 

 
 
<?xml version="1.0"?> 
<ENVIORNMENT>> 
 <LANDMARK “ID”=1> 

<CODE> C </CODE> 
    <EDGE TO “ID”=2 LENGTH=20  
               DIRECTION=”SW”> 

<DESCRIPTION>Initial State 
   </DESCRIPTION> 

 <URL>Obj1.jpg</URL> 
 </LANDMARK> 
<LANDMARK “ID”=2> 
 <ID>2</ID> 
 <CODE> D </CODE> 
 <EDGE TO “ID”=3 LENGTH=30  
               DIRECTION=”NW”> 

<DESCRIPTION>Obstacle  
</DESCRIPTION> 

 <URL>Obj2.jpg</URL> 
 </LANDMARK> 

<LANDMARK “ID”=3> 
 <ID>2</ID> 
 <CODE> D </CODE> 
 <EDGE TO “ID”=4 LENGTH=30  
                DIRECTION=”N”> 

<DESCRIPTION>Obstacle  
  </DESCRIPTION> 

 <URL>Obj2.jpg</URL> 
  </LANDMARK> 

<LANDMARK “ID”=4> 
<CODE> F </CODE> 

<EDGE TO “ID”=4” LENGTH=0   
DIRECTION=”T”> 

 <DESCRIPTION> Target State  
                </DESCRIPTION> 
 <URL>Obj3.jpg</URL> 
 </LANDMARK> 
</ENVIRNMENT> 
 

The XML map documents should conform to the 
following document type declaration: 
 
<!ELEMENT map (node*, location*, 
metalocation*) 
<!ELEMENT node (edge+)> 

  <!ATTLIST node id ID  
                #REQUIRED> 
<!ELEMENT edge (subnode*)> 
  <!ATTLIST edge to IDREF 
                #REQUIRED 

length CDATA #REQUIRED 
direction 

(N|S|E|W|NE|NW|SE|SW|T) #IMPLIED> 
<!ELEMENT subnode EMPTY> 
   <!ATTLIST subnode position  
               CDATA #REQUIRED> 

<!ELEMENT location (#PCDATA)> 
 <!ATTLIST location id ID  
   #REQUIRED node IDREF #REQUIRED 

category IDREFS #REQUIRED> 
<!ELEMENT metalocation (#PCDATA)> 
<!ATTLIST metalocation id ID #REQUIRED 
sublocations IDREFS #REQUIRED> 
 

D. Algorithm used by the naïve agent    
Input a list of emotions that produced by the intelligent 

agent (during the first play, the list is empty) and go through 
the following steps: 

 
1. Set current state = initial 

state.  
2. From current state, move to the 

next state. 
3. Add the emotional expression of 

the intelligent agent to the 
list. 

4. Set current state = next state  
 
Go to step 2 until current state = 

goal state  
 
The algorithm above returns a list of sequence of states and 
their associated emotional expressions from initial state until 
goal state. For the next game sessions, the naïve should use 
the list of emotions that is produced by the first play to make 
its future moves. 
 

IV. USING INTER-PROCESS COMMUNICATION SOCKETS 
Sockets are the most popular form of the Inter Process 

Communication (IPC) protocols. Network applications use 
sockets to communicate over a TCP/IP networks. A socket is 
one end-point of a two-way communication link between two 
programs running on the network. Because a socket is 
bidirectional, data can be sent as well as received through it.  

Our Agents send and receive messages from each other 
and these messages should match with the time calculated by 
each agent. This time is based on the distance and the time 
taken to finish the job. The naïve agent (A2) should send its 
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position to the intelligent agent (A1) at constant intervals of 
time and at landmark points; these are the point of origin (the 
initial state), the vertices, and the target. Also, A2 should send 
messages to A1 at critical events. These events are as follows: 

 
 task start (task_id, type)  

 task completion (task_id, type)  

 task failure (task_id, error 
message)  

 
Once the intelligent agent is trained, using the Q-Learning 

technique and the time intervals are recorded at each landmark 
point, the task environment becomes known. Each agent is 
capable of detecting the current position of the other agent and 
the position of the point of origin (the initial state), and the 
target, thus allowing the robots to maintain collision 
avoidance while they are moving, see for example [2, 13]. 

During the training sessions, the intelligent agent 
produces XML map that is used to navigate through the search 
space. As stated before, the movement of the naïve agent is 
known to the intelligent agent through the shared information 
that produced by the IPC mechanism. Also, the estimated time 
required for the naïve agent to move from one landmark (a 
spot or a target) to another is calculated and updated to reveal 
the current position and the estimated time required to reach to 
the next landmark, i.e. the naïve agent is required to send a 
message to the intelligent agent at each landmark. If for some 
reason that the naïve agent does not reach to the next 
landmark or a message is not received according to the 
anticipated time, a halt command (task failure) is issued to 
stop the process.  

Many functions and programming codes are implemented 
in order to accomplish the experiment. Some of these 
functions are as follows: 
 

Synchronize function: It is used to synchronize time and 
organize the movement of the robots. If one of the stationary 
robots is busy with a task, the other robot should wait until the 
task is finished.  

The pseudocode of this function is as follows: 

Timer() = current time or clock time 
Time_needed= the time needed to carry out 
the task at hand 
 
endTime = Time() + Time_needed 
do while endTime>Time() 
loop 
 
Winsock (Window Socket) Function: It defines a network 
programming interface for Microsoft Windows which is based 
on the "socket" paradigm popularized in BSD Unix. It 
encompasses both the familiar Berkeley socket style routines 
and a set of Windows-specific extensions. It is used here to 
allow smooth communications between programs that control 
the robots using the server/client paradigm. 

 
Start Function: It reads a user option. It first checks the 
status of the robots and issues a function call to the 
synchronize function if the required robot is not either in the 
busy or the wait state. After assigning the task to a robot, it 
should send a message to all.  
The pseudocode is as follows: 
 
Check if a robot x = true and connection = 
true; 
Then if user option = true; 
Then if user selection = true; 
   Then call the synchronize 

 function; 
    Call WinSocket(); 
    Send a message to the robots; 

Else send error-message “Error user 
selection”; 

   End; 
     Else send error-message “Error  
         user option”; 
End; 
Else send error-massage “No connection”; 
End; 

 
In order for the naïve agent to play a better game, it keeps 

the emotional expressions of the intelligent agent in a list 
named emotions. For each position in the game, that is, for 
each possible move, an emotional expression is added to the 
list representing the emotional state of the intelligent agent. 
When the naïve agent starts, the value of every entry in the list 
of emotions is initialized to zero, corresponding to the absence 
of any feedback from the intelligent agent. After each move, 
the naïve agent examines the emotional expression of the 
intelligent agent.   

V.    CONCLUSION 
This paper has attempted to address the possibility of 

incorporating emotion in game agents. It begins by proposing 
a model, the emotional decision making model, and then 
applying emotional data to drive our emotional decision 
making model. Emotional data was gathered via an emotional 
questionnaire aimed at identifying particular decisions and 
actions made under certain emotional states. The emotional 
states explored were the ‘normal’ emotional state and anxiety. 
The results of these were then studied and scrutinized and 
emotional traits were identified. The results achieved by the 
questionnaire were then applied to the emotional decision-
making model and examples of it in action were explored. 

Future research in the field of emotional decision making 
for game agents could span into a various directions. 

Firstly, a thorough analysis of decisions and actions while 
under particular emotional states could be carried out. This 
paper only addresses four emotions. There are countless 
emotions, all present in our everyday lives that would benefit 
gaming and game agents. 

Secondly, a gender specific study on emotional 
characteristics and emotional transitions could be carried out. 
Males may be more susceptible or more likely to show 
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evidence of particular emotional characteristics as opposed to 
females and vice versa, therefore doing such a study would 
help improve the believability of the game agent’s decisions 
and actions.  

Thirdly, the emotional decision-making model could be 
integrated with other decision-making models. This paper 
considers ‘emotion’ as the key factor in decision making, 
however in reality there is a number of key factors that are 
involved. By combining these, a more realistic and advanced 
decision-making model could be developed. 

Finally, the emotional decision making model could be 
implemented in a game situation. The model and data are 
already available, implementation would further confirm the 
ideas explored in this paper. 
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