

K. Shihab is currently an Associate Professor in the School of Computing & Design, Swinburne University of Technology (Sarawak Campus), Jalan Simpang
Tiga, 93350 Kuching, Sarawak, Malaysia,Tel: 60 82 416 353 Ext: 7718, Mobile: +60 14 9903139, Fax: +60 82 423 594, email: kshihab@swinburne.edu.my.

Abstract— In this paper, we consider emotion as a factor in the
decision-making process and actions taken by an agent can be
represented by a model, called “emotional model” created with
specific focus on computer games development. It is designed to
explore people’s behavior in certain circumstances, while under
specified emotional states. Special attention was given to the thought
process and actions displayed in the hypothetical scenarios. We
characterized thoughts and actions associated with each scenario and
emotional state. Each particular action or proof of steps taken in the
thought process was given a percentage value directly proportional to
answers given by the test population. Finally, we developed an
experimental game program for the evaluation of our emotional
decision making model. The aim of the evaluation was to find out
how real life agents reacted in certain situations and what processes
the human mind runs through when thinking and acting upon certain
situations.

Keywords—Emotional Model, Computer Game, Evaluation,
Intelligent Agents

I. INTRODUCTION
OMPUTER Game Software (CGS) has become
increasingly popular. Unlike before, today’s games are

geared toward an older demographic and as a result they have
become much smarter and more complex. Players are
constantly looking for challenging CGS and this is can be
achieved due to the recent advances in Artificial Intelligence
[1].

Over the last five years, games have become increasingly
intelligent and intellectually demanding [2]. If we compare an
older game to any of the current generation games, it will
become apparent that these new games are much more
difficult to play. Opponents in these games have also become
smarter and now seem to exhibit what could be considered
intelligent behavior. Some games even have agents that learn,
to a certain degree, and adjust their decisions accordingly,
even cooperating against you though even at this stage, they
are by no means perfect.

Agents still seem to exhibit strange behavior, such as
walking into walls and using items inefficiently. Even though,
to a certain degree, agents currently seem to act in an
intelligent way and make intelligent decisions, there is still
something lacking in their behavior. Their actions are
although intelligent still seem quite robotic. Therefore, this
work addresses this area of study.

This paper introduces emotion as a factor in the decision-
making process and actions taken by an agent. Human
emotions play a large part in how an individual thinks and
acts. For example, decisions made in anger can often be
different from those made otherwise. Likewise, trying to
perform an action like throwing a ball can also be affected by
the mood an individual is in, which is governed by emotions.
Emotions can be a driving force behind the types of decisions
and actions and individual makes [3]. Depending on ones
emotional state, the individual can make better or worst
decisions and perform action more or less effectively [3, 4, 5].
Therefore to bring artificial intelligence to the next level, that
is closer to human, emotions need to be incorporated in the
decision-making process and actions of agents. If agents can
be made to behave with emotion then they will appear more
human, which is exactly what is wanted (computer controlled
agents simulate a human opponent).

Adopting this emotion approach to agents, artificial
intelligence may not always result in an optimal decision or
action [6, 7, 8]. Rather it will result in the best possible
decision or action given the agents emotional state. Human
players get angry, nervous and frustrated and this affects the
way they play. This should be no different for computer
controlled agents as the aim of this thesis is the development
of an agent that exhibits human like behavior, mistakes and
all.

II. BACKGROUND
Artificial intelligence (AI) has been growing and maturing

in the passing years and the domain of video games has
become an increasingly popular platform for artificial
intelligence research [9, 10]. As games become more complex
and realistic, so too does the AI that drives these games.
Games may be simplified when compared to the real world
but none the less they provide complex, dynamic
environments and situations which even human players find
challenging. Although AI in videogames has been constantly
improving, it is still at a stage where inflexible and predictable
behavior is exhibited.

A. Goal and resource using ArchitecturE (GRUE)
Gordon and Logan [8, 9] have proposed GRUE, which is a

new architecture that aims at improving these weaknesses. It

Emotional Agents in Computer Games
Khalil Shihab

C

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 3, 2009

270

uses teleo-reactive programs (TPRs) which basically consist
of a series of rules, with each rule containing some number of
conditions and actions. Running a TPR, it evaluates all the
rules and executes the actions of the first rule whose
conditions evaluate to true when compared to the world model
that is stored in the agent’s memory. The resulting actions can
be said to be durative as they carry out as long as its
conditions are true. In this architecture the agents use TPR to
pre-define plans for achieving goals. Furthermore it is here
that multiple actions are allowed to be executed during each
cycle.

Game agents may encounter situations where several items
may be adequate in achieving a task or where objects come in
quantities such as money and ammunition. GRUE is designed
specifically for these types of situations and is built around the
key concept of resources.

GRUE allows the game agent to generate new top-level
goals depending on the current game situation and assign
priorities to these goals based on the current situation. For
example, an agents goal may be attacked, but if it is injured it
may then generate a new goal which would be to heal itself
before continuing with previous goal of attacking. Here the
goal of healing would be given a higher priority and the first
goal of attacking would be given a lower priority. Once the
agent has carried out the goal of healing it will then continue
with the original goal.

Multiple tasks can run actions in parallel during each cycle
when it is possible. If the agent’s task is to search for
ammunition then actions needed to carry out this task can be
run in parallel during each cycle. Actions may include
searching, defending, attacking or healing when hurt and so
forth.

A complete GRUE has been implemented for the
Tileworld environment and the agent performs well,
demonstrating that resource use with preferred properties is
advantageous. A basic GRUE has also been implemented for
the Unreal Tournament game and performs less impressively
showing predictable behavior. However, the authors do
believe that a complete GRUE agent will perform much better.

B. The use of influence diagrams (IDs)
In recent years, game theory and decision theory have had

a profound impact of artificial intelligence in video games [11,
12]. Traditionally, multi-agent systems using game-theoretic
analysis for decision making use a normative approach [2]. It
is here that decisions are derived rationally from the game
description. However, this approach is believed to be
insufficient and it does not capture the decision making
process of real life agents. Real life agents (real people) may
be partially irrational or may use models other than the real
world (the game model) to make decisions [8]. Also agents
may be unsure about their opponents’ decision-making
processes. Network Interface Diagram (NID), developed by
Gal and Pfeffer, allows for situations in which agents have an
incorrect mental model of how the world works and also
allows for instances where a modeler has uncertainty about
another agents model.

The basic building blocks of a NID are influence
diagrams (IDs). IDs consist of a direct graph with three types
of nodes as described below:

• Chance nodes – drawn as circles and represent

random variables.
• Decision nodes – drawn as rectangles and represent

decision points
• Value node – drawn as diamonds and represent the

agent’s utility which is to be maximized

C. Multi agents’ coordination
Multi agents’ coordination is another important area in

video game Artificial Intelligence. In many of today’s games
computer controlled agents must work together in an
intelligent and believable way against the human player. In
multi agent coordination, the aim is to find a satisfactory
solution that is fair, stable and optimal to all agents. In human
society this often involves a trusted third party in the
negotiating process among all agents to insure that all agents
should cooperate and are committed [14, 16]. As with most
Artificial Intelligence problems, this too will be modeled to
work in the same way as the real world.

Wu and Soo [13] described how a trusted third party can
be involved in the negotiation of multi agent coordination to
deal with many difficult and challenging game situations.

Axelrod and Genesereth [10] showed that rational agents
are able to coordinate and cooperate with a game theoretical
deal-making mechanism even without communication.

D. The Emotional Decision Making Model
For our emotional decision making model to work and

mimic realistic human behavior, we developed an
experimental model. We wanted to find out how real life
agents reacted in certain situations and what processes the
human mind runs through when thinking and acting upon
certain situations.

As shown in Figure 1, there are seven key stages in the
‘emotional decision making model’. These are numbered one
through to seven respectively. Note that these numbers do not
represent the process order or direction of navigation, rather,
they are nothing more than identifiers which will aid us in the
explanation of each of the parts that collectively make up the
emotional decision making model.

We begin at point (1), the game agent. The game agent
represents any computer-controlled entity. This can be
anything from an animal to an opposing character. In other
words, a game agent is any ‘thing’ that is not controlled by the
player. This game agent will, at any given time, be in an
emotional state. Depending on this emotional state, the agent
will make a decision, which will trigger an action. This action
can then further affect the agent’s current emotional state,
therefore changing it. This process is recursive, in that it is
continually cycling and constantly changing until the game
agent ceases to exist.

Moving on to point (2), we have the game agent’s
emotional state, referred to as ‘emotion’. It is here that the

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 3, 2009

271

agent’s current emotional state is stored, which will continue
to change as the game progresses and the game agent makes
decisions and performs actions. Actions performed by the
game agent will be influenced by the emotion. This will be
covered in greater detail throughout point (4). Note: that a
game agent is in an emotional state at any given point in time,
thus it is considered the heart and soul of this model.

Next we have point (3), referred to as ‘decision’. Here
with game agent will store all possible decision available
while under a particular emotional state. The decision with the
highest percentage value will always take precedence over
decisions with lower percentage values, which will be
executed. If there are two or more decisions with equal
percentage values, the first decision in the list out of the
possible decisions will be selected and executed. Decisions are
stored as a list and are traversed until a suitable decision is
found. Let us set up a scenario to illustrate the mechanics of
this step. This scenario will require the game agent to decide
on weather to attack an overwhelming opponent, or retreated
from battle. Possible choices available to the game agent are
referred to as ‘decision candidates’ each decision has a
percentage or weight attached to it. The game agent is in a
scared emotional state. Bellow is the agent’s possible
decisions that correspond to the emotion it is in.

Decision Candidates
Attack 10%
Retreat 90%

As retreat has the highest percentage value the game
agent’s decision will be to retreat from battle. This decision
opens up possible actions that the agent may execute, which
will be covered in the next section. Note that once a decision
has been made ‘decision candidates’ are cleared in preparation
for the next iteration. It is important to note that this is a
simplified accounting of how this section of the decision
making model works. Sub decisions may be needed to
properly select the best course of action. For example, health
remaining, distance and so on could be taken into
consideration, though this paper will only cover simple, non-
nested decisions.

Point (4) is referred to as ‘action’ and works in much the
same way as point (3). It is important to note at this time that
possible actions are provided by the decision selected. Here all
possible actions available to the game agent will be stored in a
list and the action with the highest percentage value will take
precedence over lower valued actions. As before, actions with
equal percentage values will be selected using the first-on-list
method. As with ‘decision’, ‘action’ acts in much the same
way, in that a list of possible actions are provided and selected
based on their percentage value. Possible actions available are
provided by the decision made. Note that in this step the
emotional state of the game agents is no longer relevant. This
is because the previous step, ‘decision’ was carried out while
under the influence of ‘emotion’ and thus the possible actions
provided to ‘action candidates’ will follow suit. It is important
to remember that decisions made under the influence of a
particular emotion will always lead to actions made
corresponding to that emotion. In other words, decisions made

in anger will lead to actions performed in anger. Below are
possible ‘actions’ provided by ‘decision’.

Action Candidates
Retreat to area occupied by friendly
game agents 40%
Retreat to nearest safe location 30%
Retreat to Base 30%

As in the above example the choice with the highest
percentage will be fired and ‘actions’ will be cleared in
preparation for the next iteration.

Now we reach what are known as ‘outside effectors’. Point
(5) is the first of these and is referred to as ‘game
environment’. During a game many things are simultaneously
happening. Not only are the player and game agents
performing actions that affect one another, but the game
environment is constantly changing and also affecting the
game agent. The game environment can be anything from rain
in a game to a particular geographical stage structure, each of
which will trigger selected emotions in the game agent, see
Example 1.

 Next, we reach point (6) referred to as ‘prior
actions/decisions’. Here previous actions that may trigger
particular emotions are stored. Once a game agent makes a
decision and performs an action, often, the action performed
may trigger further emotional states. Again this will be
explained in greater detail in Example1.

Finally, we reach the final point in the emotional decision
making model, point (7). This is referred to as ‘other agent’s
actions/decisions’. Many times in a game, there will be
multiple game agents controlled by the computer. These
agents will most likely interact with each other, thus having an
effect on one-another’s emotional states. This allows for
realistic teamwork and quarrels between game agents (i.e. if
agent accidentally shoots team member, team member may
fire back in anger).

Fig. 1. The emotional decision making model

III. MODEL SIMULATION
For our emotional decision making model to work and

mimic realistic human behavior [12], we developed an

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 3, 2009

272

experimental model. We wanted to find out how real life
agents reacted in certain situations and what processes the
human mind runs through when thinking and acting upon
certain situations [13, 14, and 15].

A. Experimental game
In this experiment we used two agents, namely A1 and A2

that simulate the human reasoning process. When people
reason about the behavior of others they often express their
emotion (i.e., feeling sorry for someone, feeling happy for
them, resenting their good fortune, or gloating over their bad
fortune). To do this, agents maintain a list of cases
establishing points of view of other agents and use these cases
to take future actions. These two agents work in a cooperative
environment in which the agent A2 should wait for a message
from the agent A1 in order to take the right step in the right
direction.

The agents described in this experiment are able to
participate in a multi-stage game in which one intelligent
agent (A1) observes and interacts with a naïve agent (A2)
express feelings about other agent’s actions. The naïve agent
uses those emotions to take the right action. These emotions
are vital to the decision-making process and to manage
competing motivations.

Our naïve agent can learn through the feedback from the
intelligent agent. The agent can pass one room to another but
has no knowledge of the environment. It does not know which
sequence of doors the agent must pass to go outside the
building.

The game environment for the intelligent agent (A1) is a
simple evacuation of an agent from any room in the building,
see Figure 2. At the start of the game, the agent is allocated to
Room C (initial state) and we want the agent to learn to go
outside the house (F). At each landmark (initial state, obstacle
and destination state), A1 should update the shared
information.

We consider each room (including outside the building) as
a state. The agent's movement from one room to another room
is called an action. Figure 3 shows that states are represented
by nodes in the state diagram, while actions are represented by
the arrows.

From state C, the agent can go to state D because state C is
connected to D but with reward zero because D is not the goal
state. From state C, however, the agent cannot directly go to
state B because there is no direct door connecting room B and
C (thus, no arrow). From state D, the agent can go either to
state B or state E or back to state C (look at the arrow out of
state D). If the agent is in state E, then three possible actions
are to go to state A with reward zero, or state F with reward
100 (because F is the goal state) or state D. If the agent is in
state B, it can go either to state F or state D. From state A, it
can only go back to state E.

The agents described in this experiment are able to
participate in a multi-stage game in which one agent (A1)
should learn through experience without a teacher by applying
the Q-learning technique, which is a reinforcement learning
technique that bridges the gap between supervised and
unsupervised learning categories. At the start, the agent can

pass from one room to another but has no knowledge of the
environment. It does not know which sequence of doors the
agent must pass through to go outside the building. After a
sequence of training sessions, the agent should be aware of the
environment and the location of the target and other
significant points. A map like for all of these pieces of
information should be produced and saved in a sharable
location to allow both robots easy access, see Figure 2 and
Table 1.

Fig. 2 a simple house evacuation

Fig. 3 the state diagram

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 3, 2009

273

Table 1. State reward values

Action to go to state
Agen
t in

state

A B C D E F

A - - - - 0 -
B - - - 0 - 100
C - - - 0 - -
D - 0 0 - 0 -
E 0 - - 0 - 100
F - 0 - - 0 100

Table 2: Distances between landmarks, where N=North,
S=South, E=East, W=West, NE=North East, SW=South West,

SE=South East

 B C D E F
A 20/

E
40/E 20/SE 20/S 40/NE

B 20/E 30/S 50/SW 20/N
C 20/S

W
60/SW 50/NE

D 20/SW 70/N
E 50/NE

Q-learning requires a similar matrix name Q in the brain of

our agent that will represent the memory of what the agent has
learned through many experiences. The rows of matrix Q
represent the current state of the agent, the columns of matrix
Q point to the action to go to the next state. As mentioned
above, the agent starts without knowledge of the environment,
thus we put Q as a zero matrix. The transition rule of this Q
learning is the following simple formula

Q(state, action)=R(state, action)+α. Max[Q(next state, all
actions)] (1)

Where,

Q is the transition matrix; rows represent states and columns
represent actions,

R is the instant reward matrix, and

α is the learning parameter.

B. Q-Learning Technique
Given: State diagram with a goal state
(represented by matrix R)

Find: Minimum path from any initial state
to the goal state (represented by matrix
Q)

Q Learning Algorithm goes as follow:

1. Set parameter α, and environment
reward matrix R

2. Initialise matrix Q to zero
3. For each episode:
o Select random initial state
o Do while the goal state not

reached
 Select one among all possible

actions for the current state
 Using this possible action,

consider to go to the next
state

 Get maximum Q value of this
next state based on all
possible actions using formula
(1)

 Set the next state as the
current state

End Do

The above algorithm is used by our intelligent agent (A1)
to learn from experience or training. It was proposed for
Markovian’s problems decision, with discrete states and
actions spaces. The Q-Learning is, therefore, well suited for
on-line applications that are characterized by discrete states,
and generally performs well in practice. Each episode is
equivalent to one training session. In each training session, the
agent explores the environment (represented by Matrix R),
gets a reward (or nothing) until it reaches the goal state. The
purpose of the training is to enhance the ‘brain' of our agent
that is represented by the Q matrix. The Q-learning algorithm
is guaranteed to converge to Q*(s, a), the optimal action value
function, with probability 1 as long as each state-action pair is
continually updated [12, and 13]. The Q-learning algorithm
learns an action value function, which is the expected sum of
discounted future rewards for taking action a in state s and
behaving optimally thereafter. This action value function is
often represented in a Q-table of the form Q(state, action),
which is updated during the learning process, see Table 1.
More training will produce a better Q matrix that can be used
by the agent to move in an optimal way. In this case, if the Q
matrix has been enhanced, instead of exploring around and
going back and forth to the same room, the agent will find the
fastest route to the goal state.

Parameter α is in the range 0 to 1(0<< α<<1). If α is closer
to zero, the agent will tend to consider only an immediate
reward. If α is closer to one, the agent will consider a future
reward with greater weight, and be willing to delay the receipt
of a reward.

To use the Q matrix, the agent traces the sequence of
states, from the initial state to the goal state, hence producing
a trajectory of its path. At each step of the sequence, the agent
should find an action that maximizes Q for the current state.
The intelligent agent was trained in the above mentioned

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 3, 2009

274

environment, see Figure 3. The training session started with
α=0.25.

C. XML Map
Once the path from the initial state to the goal state is

found, the intelligent agent (A1) uses the distance table (Table
2) to produce an XML map for future navigation and for
coordinating the movements of the naïve agent (A2). In
addition to the name and the description of each state, the map
should have the distance from a current state to the next state
in the navigation path.

Using the above mentioned game environment, the
intelligent agent produces the following direction and XML
maps.

Forward direction map (C -> D -> B -> F) with its calculated
distance d=20+30+20=70

Backward direction map (F -> B -> D ->C) with the same
distance d=70

<?xml version="1.0"?>
<ENVIORNMENT>>
 <LANDMARK “ID”=1>

<CODE> C </CODE>
 <EDGE TO “ID”=2 LENGTH=20
 DIRECTION=”SW”>

<DESCRIPTION>Initial State
 </DESCRIPTION>

 <URL>Obj1.jpg</URL>
 </LANDMARK>
<LANDMARK “ID”=2>
 <ID>2</ID>
 <CODE> D </CODE>
 <EDGE TO “ID”=3 LENGTH=30
 DIRECTION=”NW”>

<DESCRIPTION>Obstacle
</DESCRIPTION>

 <URL>Obj2.jpg</URL>
 </LANDMARK>

<LANDMARK “ID”=3>
 <ID>2</ID>
 <CODE> D </CODE>
 <EDGE TO “ID”=4 LENGTH=30
 DIRECTION=”N”>

<DESCRIPTION>Obstacle
 </DESCRIPTION>

 <URL>Obj2.jpg</URL>
 </LANDMARK>

<LANDMARK “ID”=4>
<CODE> F </CODE>

<EDGE TO “ID”=4” LENGTH=0
DIRECTION=”T”>

 <DESCRIPTION> Target State
 </DESCRIPTION>
 <URL>Obj3.jpg</URL>
 </LANDMARK>
</ENVIRNMENT>

The XML map documents should conform to the
following document type declaration:

<!ELEMENT map (node*, location*,
metalocation*)
<!ELEMENT node (edge+)>

 <!ATTLIST node id ID
 #REQUIRED>
<!ELEMENT edge (subnode*)>
 <!ATTLIST edge to IDREF
 #REQUIRED

length CDATA #REQUIRED
direction

(N|S|E|W|NE|NW|SE|SW|T) #IMPLIED>
<!ELEMENT subnode EMPTY>
 <!ATTLIST subnode position
 CDATA #REQUIRED>

<!ELEMENT location (#PCDATA)>
 <!ATTLIST location id ID
 #REQUIRED node IDREF #REQUIRED

category IDREFS #REQUIRED>
<!ELEMENT metalocation (#PCDATA)>
<!ATTLIST metalocation id ID #REQUIRED
sublocations IDREFS #REQUIRED>

D. Algorithm used by the naïve agent
Input a list of emotions that produced by the intelligent

agent (during the first play, the list is empty) and go through
the following steps:

1. Set current state = initial

state.
2. From current state, move to the

next state.
3. Add the emotional expression of

the intelligent agent to the
list.

4. Set current state = next state

Go to step 2 until current state =

goal state

The algorithm above returns a list of sequence of states and
their associated emotional expressions from initial state until
goal state. For the next game sessions, the naïve should use
the list of emotions that is produced by the first play to make
its future moves.

IV. USING INTER-PROCESS COMMUNICATION SOCKETS
Sockets are the most popular form of the Inter Process

Communication (IPC) protocols. Network applications use
sockets to communicate over a TCP/IP networks. A socket is
one end-point of a two-way communication link between two
programs running on the network. Because a socket is
bidirectional, data can be sent as well as received through it.

Our Agents send and receive messages from each other
and these messages should match with the time calculated by
each agent. This time is based on the distance and the time
taken to finish the job. The naïve agent (A2) should send its

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 3, 2009

275

position to the intelligent agent (A1) at constant intervals of
time and at landmark points; these are the point of origin (the
initial state), the vertices, and the target. Also, A2 should send
messages to A1 at critical events. These events are as follows:

 task start (task_id, type)

 task completion (task_id, type)

 task failure (task_id, error
message)

Once the intelligent agent is trained, using the Q-Learning

technique and the time intervals are recorded at each landmark
point, the task environment becomes known. Each agent is
capable of detecting the current position of the other agent and
the position of the point of origin (the initial state), and the
target, thus allowing the robots to maintain collision
avoidance while they are moving, see for example [2, 13].

During the training sessions, the intelligent agent
produces XML map that is used to navigate through the search
space. As stated before, the movement of the naïve agent is
known to the intelligent agent through the shared information
that produced by the IPC mechanism. Also, the estimated time
required for the naïve agent to move from one landmark (a
spot or a target) to another is calculated and updated to reveal
the current position and the estimated time required to reach to
the next landmark, i.e. the naïve agent is required to send a
message to the intelligent agent at each landmark. If for some
reason that the naïve agent does not reach to the next
landmark or a message is not received according to the
anticipated time, a halt command (task failure) is issued to
stop the process.

Many functions and programming codes are implemented
in order to accomplish the experiment. Some of these
functions are as follows:

Synchronize function: It is used to synchronize time and
organize the movement of the robots. If one of the stationary
robots is busy with a task, the other robot should wait until the
task is finished.

The pseudocode of this function is as follows:

Timer() = current time or clock time
Time_needed= the time needed to carry out
the task at hand

endTime = Time() + Time_needed
do while endTime>Time()
loop

Winsock (Window Socket) Function: It defines a network
programming interface for Microsoft Windows which is based
on the "socket" paradigm popularized in BSD Unix. It
encompasses both the familiar Berkeley socket style routines
and a set of Windows-specific extensions. It is used here to
allow smooth communications between programs that control
the robots using the server/client paradigm.

Start Function: It reads a user option. It first checks the
status of the robots and issues a function call to the
synchronize function if the required robot is not either in the
busy or the wait state. After assigning the task to a robot, it
should send a message to all.
The pseudocode is as follows:

Check if a robot x = true and connection =
true;
Then if user option = true;
Then if user selection = true;
 Then call the synchronize

 function;
 Call WinSocket();
 Send a message to the robots;

Else send error-message “Error user
selection”;

 End;
 Else send error-message “Error
 user option”;
End;
Else send error-massage “No connection”;
End;

In order for the naïve agent to play a better game, it keeps

the emotional expressions of the intelligent agent in a list
named emotions. For each position in the game, that is, for
each possible move, an emotional expression is added to the
list representing the emotional state of the intelligent agent.
When the naïve agent starts, the value of every entry in the list
of emotions is initialized to zero, corresponding to the absence
of any feedback from the intelligent agent. After each move,
the naïve agent examines the emotional expression of the
intelligent agent.

V. CONCLUSION
This paper has attempted to address the possibility of

incorporating emotion in game agents. It begins by proposing
a model, the emotional decision making model, and then
applying emotional data to drive our emotional decision
making model. Emotional data was gathered via an emotional
questionnaire aimed at identifying particular decisions and
actions made under certain emotional states. The emotional
states explored were the ‘normal’ emotional state and anxiety.
The results of these were then studied and scrutinized and
emotional traits were identified. The results achieved by the
questionnaire were then applied to the emotional decision-
making model and examples of it in action were explored.

Future research in the field of emotional decision making
for game agents could span into a various directions.

Firstly, a thorough analysis of decisions and actions while
under particular emotional states could be carried out. This
paper only addresses four emotions. There are countless
emotions, all present in our everyday lives that would benefit
gaming and game agents.

Secondly, a gender specific study on emotional
characteristics and emotional transitions could be carried out.
Males may be more susceptible or more likely to show

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 3, 2009

276

evidence of particular emotional characteristics as opposed to
females and vice versa, therefore doing such a study would
help improve the believability of the game agent’s decisions
and actions.

Thirdly, the emotional decision-making model could be
integrated with other decision-making models. This paper
considers ‘emotion’ as the key factor in decision making,
however in reality there is a number of key factors that are
involved. By combining these, a more realistic and advanced
decision-making model could be developed.

Finally, the emotional decision making model could be
implemented in a game situation. The model and data are
already available, implementation would further confirm the
ideas explored in this paper.

REFERENCES
[1] Bererton C., State estimation for game AI using particle filters. In: D. Fu,

S. Henke and J. Orkin, Editors, Challenges in Game Artificial
Intelligence: Papers from the 2004 AAAI Workshop, AAAI Press,
Menlo Park, CA (2004), pp. 36–40 Technical Report WS-04-04.

[2] Fielding D., M. Fraser, B. Logan and S. Benford, Reporters, editors and
presenters: Using embodied agents to report on online computer games.
In: N.R. Jennings, C. Sierra, L. Sonenberg and M. Tambe, Editors,
Proceedings of the Third International Joint Conference on Autonomous
Agents and Multi-Agent Systems (AAMAS 2004) vol. 3, IEEE, New
York , pp. 1530–1531, 2004.

[3] Orkin J., Symbolic representation of game world state: Toward real-time
planning in games. In: D. Fu, S. Henke and J. Orkin, Editors, Challenges
in Game Artificial Intelligence, AAAI Press, Menlo Park, CA (2004),
pp. 26–30 Technical Report WS-04-04.

[4] El Rhalibi A., Nick Baker and Madjid Merabti, Emotional agent model and
architecture for NPCs group control and interaction to facilitate
leadership roles in computer entertainment, ACM International
Conference Proceeding Series; Vol. 265, Proceedings of the 2005 ACM

SIGCHI International Conference on Advances in computer
entertainment technology, Pages: 156 – 163, 2005.

[5] Chang, Yi-Hsing, Lu, Tsung-Yi, Fang, Rong-Jyue, A validity E-learning
system based on knowledge management and intelligent agents, WSEAS
Transactions on Systems, Vol. 6, No. 17, 2007, pp. 1297-1309.

[6] Hunyadi D.,Pah L. and Chiribuca D. A Global Model for Virtual
Educational System, WSEAS Transactions on Information Science and
Applications, Vol 6, 2009, pp. 374-383

[7] Shihab K. Performance Tuning of Novell Netware Based on Fuzzy
Reasoning, International Journal of Computers, Issue 1, Volume 2, 2008,
pp. 80-88, 2008.

[8] Gordon, E., and Logan, B., Managing goals and real world objects in
dynamic environments. In Davis, D., ed., Visions of Mind: Architectures
for Cognition and Affect, 2004.

[9] E. Gordon and B. Logan, Game over: You have been beaten by a GRUE.
In: D. Fu, S. Henke and J. Orkin, Editors, Challenges in Game Artificial
Intelligence: Papers from the 2004 AAAI Workshop, AAAI Press,
Menlo Park, CA (2004), pp. 16–21 Technical Report WS-04-04.

[10] Robert Axelrod, The Evolution of Cooperation, Basic Books, Inc., New
York, 1984.

[11] O’Brien, J., A flexible goal-based planning architecture. In Rabin, S., ed.,
AI Game Programming Wisdom. Charles River Media. 375–383, 2002.

[12] Freeman D., Creating Emotion in Games, New Riders Publisher, ISBN:
1592730078, 2004.

[13] Wu, S. H. and Soo, V. W., Game Theoretic Approach to Multi-Agent
Coordination by Negotiation with a Trusted Third Party, In Proceeding
of the Third International Conference on Autonomous Agents, 1999.

[14] Wooldridge M. An Intoduction to MultiAgent Systems, 2ed, John Wiley
& Sons, 2009.

[15] Parra C, Colina E, Chacón E, Intelligent Supervisory Control Design
Framework for Fault Exposed Processes. NAUN InternacionalJournal of
Circuits, Systems and SignalProcessing, Vol 1, Issue 3, 2007, pp. 251-
258.

[16] Magdy Saeb, M and Fathy, C. Performance Evaluation of Mobile Agent-
based Dynamic Load Balancing Algorithm, WSEAS Transactions on
Computers, Issue 3, Vol. 2, 2003, pp. 811-819.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 3, 2009

277

