

 88

Abstract— Trust plays an important role in a software system,

especially when the system is component based and varies due to

component joining and leaving. How to manage trust in such a

system is crucial for an embedded device, such as a mobile phone.

This article introduces a trustworthy middleware architecture that can

digitally manage trust in an autonomic way through adopting a

number of algorithms for trust prediction, assessment and

maintenance with regard to software component download and

execution.

Keywords—component software, trust, trusted computing, trust

management, trust modeling.

I. INTRODUCTION

he growing importance of software introduces special

requirements on trust. This normally implies that system

software consists of a number of components that are

combined to provide user features. Components interact over

well defined interfaces; they are exported to applications that

can combine and use the components. Thus, common

components can be effectively shared by applications. A

typical feature of devices with component software support is

to allow addition of components after deployment, which

creates the need for trust management with regard to software

component download and execution.

In this article, we introduce a solution of autonomic trust

management for a component software system. We aim to

build up a trustworthy middleware architecture in order to

support easy and late integration of software from multiple

suppliers and still have dependable and secure operation in the

resulting system.

We adopt a holistic notion of trust which includes several

properties, such as security, availability and reliability,

depending on the requirements of a trustor. Hence trust is

defined as the assessment of a trustor on how well the

observed behavior of a trustee meets the trustor’s own

standards for an intended purpose [1]. The behavior of the

trustee can be reflected and thus measured by a number of the

trustee’s quality attributes. From this, the critical

characteristics of trust can be summarized. It is both subjective

Manuscript received October 1, 2006. Revised version received March 10,

2007. This work was supported in part by the EU ITEA Trust4All project.

Zheng Yan is with the Nokia Research Center, Helsinki, Finland (e-mail:

zheng.z.yan@nokia.com).

Valtteri Niemi is with the Nokia Research Center, Helsinki, Finland (e-

mail: valtteri.niemi@nokia.com).

and dynamic. Concretely, trust is different for each individual

in a certain situation and, sensitive to change due to the

influence of many factors.

Obviously, it does not suffice to require the trustor (e.g.

most possibly a digital system user) to make a lot of trust

related decisions because that would destroy any attempt at

user friendliness. For example, the user may not be informed

enough to make sound decisions. Thus, establishing trust is

quite a complex task with many optional actions to take.

Rather trust should be managed automatically following a high

level policy established by the trustor. We call such trust

management autonomic.

Autonomic trust management concerns trust management in

an autonomic processing way with regard to evidence

collection, trust evaluation, and trust (re-)establishment and

control [5]. We need a proper mechanism to support

autonomic trust management not only on trust establishment,

but also on trust sustaining. This is important for a component

software system that should support trustworthy downloading

and executing of the software components. In this article, we

develop a trustworthy middleware architecture that can

manage trust in an autonomic way through adopting a number

of algorithms for trust assessment and maintenance with regard

to software component download and execution.

The rest of the article is organized as follows. Section 2

specifies the trust issues related to component software.

Section 3 presents a middleware architecture for digital

management of trust for component software. The concrete

solution of autonomic trust management is reported in Section

4 and Section 5. In Section 6, we compare our work with some

related work. Finally, conclusions and future work are

presented in the last section.

II. TRUST ISSUES ABOUT COMPONENT SOFTWARE

For the component-centered aspect we must consider trust at

several decision points: at download time and during

execution. At a component download time, we need to

consider whether a software provider can be trusted to offer a

component. Furthermore, we need to predict whether the

component is trustworthy for installation. More necessarily,

when the component is executed, we have to ensure it can

cooperate well with other components and the system provides

expected performance and quality. The trust relationship

between system entities changes during the above procedure.

When discussing a component software system, the

Digital Management of Trust for Component

Software

Zheng Yan, Valtteri Niemi

T

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 1, 2007

89

execution of components in relation to other entities of the

system needs to be taken into account. Even though the

component is trustworthy in isolation, the new joined

component could cause problems because it will share system

resources with others. This may impact the trustworthiness of

the whole system. Consequently, the system needs mechanisms

to control its performance, and to ensure its trustworthiness

even if internal and external environment changes.

Additionally, some applications (e.g. a health care service)

need special support for trust management because they have

high priority requirements, whereas other applications (e.g.

games), while exhibiting a similar functionality (e.g. a network

connection) will not have the same priority. Therefore, system-

level trustworthiness is dependent on the application domain.

So the system needs a trust management framework that can

support different trust requirements from the same or different

software components, depending on the context they are used.

III. ARCHITECTURE

The architecture of the component software system consists

of layered structure: an application layer that provides features

to a user; a component-based middleware layer that provides

functionality to applications; and, a platform layer that

provides access to lower-level hardware. Using components to

construct the middleware layer divides this layer into two sub-

layers: a component sub-layer that contains a number of

executable components and a runtime environment (RE) sub-

layer that supports component deployment and execution.

The component runtime supporting frameworks also exist at

the RE sub-layer. They provide functionalities for supporting

component properties and for managing components. These

frameworks also impose constraints on the components, with

regard to mandatory interfaces, associated metadata etc. The

runtime environment consists of a component framework that

treats DLL (Dynamic Link Library)-like components. It

provides a system-level management of the component

configuration inside a device. Each component contains

services that are executed and used by applications. The

services have interactions with other services; they consume

resources; and, they have metadata attached. The trust model

of the software component is one kind of the metadata. It

indicates required resources for providing specified

performance, requirements for cooperation with other

components, a trust priority level and composition rules for

composing this model with other trust models [1].

Some frameworks in the runtime environment have to be

supported with platform layer functionality. For example, for a

resource framework, support for resource usage accounting

and enforcement is required from the platform layer. In terms

of trust management, the system needs to provide security

mechanisms, such as access control, storage protection, secret

key generation and encryption/decryption. In this case the

security framework offers functionalities for the use of security

mechanisms, provided by the platform layer, to requests raised

by a trust management framework in order to establish and

maintain a secure system. The platform layer could also

provide trusted computing support on the upper layers [2].

Fig. 1. Relationships among trust framework and other frameworks

Fig. 1 describes interactions among different functional

blocks inside the runtime environment sub-layer. Placing trust

management inside this architecture means linking the trust

management framework with other frameworks responsible for

the component management (including download), the security

management, the system management and the resource

management.

The trust management framework is responsible for the

assessment on trust relationships and for automatically

selecting suitable trust control mechanisms, system

performance monitoring and autonomic trust management. The

download framework requests the trust management

framework to predict trust of components in order to decide if

to download a component and which kind of mechanisms

should be applied to this component. When a component

service needs cooperation with other components’ services, the

execution framework will be involved, but the execution

framework will firstly request the trust management framework

to predict trust of the cooperation. Normally, multiple

components with similar functionalities could exist or be

available at the same time in the system. It is wise for the

system to configure the components’ cooperation based on

trust prediction and assessment in order to achieve the best

performance. Thereby, it is important for the system

framework to configure the components according to the trust

prediction or assessment results. Similarly, the trust

management framework controls the security framework, to

ensure that it applies the proper security mechanisms to

maintain a trustworthy system. The trust management

framework is located at the core of the runtime environment

sub-layer. It monitors the system performance and instructs the

resource framework to assign suitable resources to different

processes. This allows the trust management framework to

shut down any misbehaving component, and to gather

evidence on the trustworthiness of a system entity. So briefly,

the trust management framework acts like a critical system

manager, ensuring that the system conforms to its trust

policies.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 1, 2007

90

IV. AUTONOMIC TRUST MANAGEMENT FOR COMPONENT

SOFTWARE

As defined in [3], trust management is concerned with

collecting the information required to make a trust relationship

decision; evaluating the criteria related to the trust relationship

as well as monitoring and re-evaluating existing trust

relationships; and automating the process. We think that this

concept needs to be extended in order to automatically control

and ensure trust in a dynamically changed component software

system. We employ autonomic trust management, which

includes the following four aspects:

• Trust establishment: the process to establish a trust

relationship between a trustor and a trustee.

• Trust monitoring: the trustor or its delegate monitors the

behaviour of the trustee. The monitoring process aims to

collect useful evidence for trust assessment.

• Trust assessment: the process for evaluating the

trustworthiness of the trustee by the trustor or its delegate

with respect to specified criteria or policy. The trustor

assesses the current trust relationship and decides if this

relationship has changed.

• Trust control and re-establishment: if the trust relationship

has changed, the trustor will find reasons and make a

decision if and which measures should be taken in order to

control or re-establish the trust relationship.

A. Factors Related to Trust

Fig. 2. Factors related to trust

We consider a component software system which is

composed of a number of entities, e.g. a component

(composition of components), an application, a sub-system and

the whole system. The trustworthiness of an entity depends on

a number of quality attributes of this entity. The quality

attributes can be the entity’s trust properties (e.g. security,

availability and reliability) and recommendations or

reputations with regard to this entity [16, 18]. The decision or

assessment of trust is conducted based on the trustor’s (e.g. a

system user or his/her delegate) subjective criteria or policies

and the trustee entity’s quality attributes, as well as influenced

by context. The context includes any information that can be

used to characterize the situation of the involved entities. The

quality attributes of the system entities can be controlled or

improved by applying a number of control modes. Particularly,

a control mode contains a number of control mechanisms or

operations, e.g. encryption, authentication, hash code based

integrity check, access control mechanisms, duplication of

process, reconfiguration of component linkage, man-in-middle

solution for improving availability, etc. It can be treated as a

special configuration of trust management that can be provided

by the system. The relationships of those factors related to the

trustworthiness of a system entity are illustrated in Fig. 2.

B. A procedure of Autonomic Trust Management

Fig. 3. An autonomic trust management procedure at runtime

Based on the above understanding, we propose a procedure

to conduct autonomic trust management at runtime in the

component software system targeting at a trustee entity

specified by a trustor entity, as shown in Fig. 3.

Trust control mode prediction is a mechanism to anticipate

the performance or feasibility of applying some control modes

before taking a concrete action. It predicts the trust value

supposed that some control modes are applied before the

decision to initiate those modes is made. Trust control mode

selection is a mechanism to select the most suitable trust

control modes based on the prediction results.

For a registered trustor at the trust management framework,

the trustworthiness of its specified trustee can be predicted

regarding various control modes supported by the system.

Based on the prediction results, a suitable set of control modes

could be selected to establish the trust relationship between the

trustor and the trustee. Further, a runtime trust assessment

mechanism is triggered to evaluate the trustworthiness of the

trustee through monitoring its behavior based on the

instruction of the trustor’s policies, as described in [1].

According to the runtime trust assessment results in the

underlying context, the system conducts trust control model

adjustment adaptively in order to reflect the real system

situation if the assessed trustworthiness value is below an

expected threshold. This threshold is generally set by the

trustor to express its real expectation on the assessment. Then,

the system repeats the procedure. The context-aware or

situation-aware adaptability of the trust control model is

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 1, 2007

91

crucial to re-select suitable control modes in order to fulfill

autonomic trust management.

C. A Trust Control Model

We developed a trust control model based on Fuzzy

Cognitive Map [14] to support autonomic trust management

[4, 5]. It is a signed directed graph with feedback, consisting of

nodes and weighted arcs. Nodes of the graph are connected by

signed and weighted arcs representing the causal relationships

that exist between the nodes. As shown in Fig. 4, there are

three layers of nodes in the graph. The node in the top layer is

the trustworthiness of the system entity. The nodes located in

the middle layer are the quality attributes of the entity, which

have direct influence on the entity’s trustworthiness. The nodes

at the bottom layer are control modes that could be supported

and applied inside the system. These control modes can

control and thus improve the quality attributes. Therefore, they

have indirect influence on the trustworthiness of the entity.

Concretely, a system entity’s trustworthiness is influenced

by a number of quality attributes),...,1(niQA
i

= . These

quality attributes are ensured or controlled through a number

of control modes supported by the system),...,1(mjC
j

= . A

control mode contains a number of control mechanisms or

operations that can be provided by the system. We assume that

the control modes are exclusive and that combinations of

different modes are used.

inessTrustworth

1
QA

2
QA

n
QA

1
C 2

C m
C

T

1QA
V

2QA
V

nQA
V

1C
V

2C
V

mC
V

1
w

2
w

n
w

11
cw

21
cw

22
cw

12
cw 2m

cw
mn

cw

1C
B

2C
B

mC
B

Fig. 4. Graphical modeling of trust control

Note that []1,0,, ∈TVV
ji CQA

, []1,0∈
i

w , and []1,1−∈
ji

cw .

old
T ,

old

QAi

V and
old

C j

V are old value of T ,
iQA

V , and
jC

V ,

respectively. oldTTT −=∆ stands for the change of

trustworthiness value.
jC

B reflects the current system

configuration on which control modes are applied. The

trustworthiness value T can be described as:






 +∑=

=

old
n

i
QAi

TVwfT
i

1

, (1)

such that 1
1

=∑
=

n

i
i

w . Where
i

w is a weight that indicates the

importance rate of the quality attribute
i

QA regarding how

much this quality attribute is considered at the trust decision or

assessment. The weight
i

w can be decided based on the

trustor’s criteria. We apply the Sigmoid function as a threshold

function f:
x

e
xf

α−
+

=
1

1
)((e.g. 2=α), to map node values

TVV
ji CQA
,, into [0, 1]. The value of the quality attribute is

denoted by
iQA

V . It can be calculated according to the

following formula:








∑ +=

=

m

j

old

QACCjiQA jjji

VBVcwfV
1

,

where
ji

cw is the influence factor of control mode
j

C on

i
QA ,

ji
cw is set based on the impact of

j
C on

i
QA . Positive

ji
cw means a positive influence of

j
C on

i
QA . Negative

ji
cw

implies a negative influence of
j

C on
i

QA .
Cj

B is the

selection factor of the control mode
j

C , which can be either 1

if
j

C is applied or 0 if
j

C is not applied.

The value of the control mode can be calculated using

()old

CCC jjj

VBTfV +⋅= ,

where T is the value of trustworthiness and
Cj

B is the

selection factor of the control mode
j

C .

Trustw

orthin

ess

Secu

rity

Avail

abilit

y

Relia

bility

C1 C2 C3

0.4
0.3

0.3

0.7
-0.4

0.5 -0.1
0.5

0.6

C1: security mode 1 with strong encryption

C2: security mode 2 with light encryption

C3: fault management mode

0.1

0.1

1 0 0

0.5 0.5

0.5

Fig. 5. An example of trust control model

An example of this model is shown in Fig. 5. The

trustworthiness of the trustee entity is influenced by three

quality attributes:
1

QA - Security;
2

QA - Availability;
3

QA -

Reliability, with important rates 4.0
1

=w , 3.0
2

=w , and

3.0
3

=w , respectively. There are three control modes that

could be provided by the system:

1
C : security mode 1 with a strong encryption service for

encrypting data, but medium negative influence on availability.

2
C : security mode 2 with a light encryption service for

encrypting data and light negative influence on availability.

3
C : fault management mode with positive improvement on

availability and reliability.

The influence factors of each control mode to the quality

attributes are specified by the arc weights. The values in the

square boxes are initial values of the concept nodes. In

practice, the initial value can be set as asserted one or expected

one, which can be specified in the trustor’s policy profile.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 1, 2007

 92

V. ALGORITHMS APPLIED FOR AUTONOMIC TRUST

MANAGEMENT

There are a number of algorithms adopted by the trust

management framework for autonomic trust management. For

details, refer to [1, 4, 5, 12].

A. Trust Prediction for Component Software Downloading

and Execution

Trustworthiness prediction is one of important issues that

should be considered with regard to trust management of

component software. The trustworthiness of a component

should be predicted before initiating a concrete action, and this

prediction should be comprehensive regarding multiple factors

that could influence trust. We proposed two algorithms to

predict trustworthiness for software components downloading

and execution, respectively. The methodology is based on a

trust model for component software, which indicates the

component’s asserted performance and requirements for

achieving the performance. Through evaluating the related

trust models and the component software system’s

competence, the algorithms can predict the trustworthiness of

the software components. The prediction result is significant to

determine whether to initiate the component downloading or

start the execution of the component services. It also helps in

locating system resources according to the trust priority level

in case of any conflict [12]. Notably, the trust management

framework applies this mechanism to cooperate with the

download framework and the execution framework to aid

establishing the trustworthiness of the system.

B. Trust Assessment at Runtime

We applied a simplified scheme of the Subjective Logic to

conduct runtime trust assessment based on observation [1]. At

runtime, a quality attribute monitor located at the trust

management framework monitors the trustee’s performance

with respect to its quality attributes. For each quality attribute,

if the monitored performance is better than the trustor’s criteria

the positive point of that attribute is increased by 1. If the

monitored result is worse than the criteria, the negative point

of that attribute is increased by 1. The trust opinion of each

quality attribute can be generated based on the opinion

generator θ [15]. In addition, based on the importance rates of

different quality attributes, a combined opinion on the trustee

can be calculated by applying the adding operator [1]. By

comparing to a trust threshold opinion (to), the trust

management framework can decide if the trustee is still trusted

or not. The runtime trust assessment results play as the

feedback to trigger trust control and re-establishment.

C. Control Mode Prediction and Selection

The trust control mode prediction is a mechanism to

anticipate the performance or feasibility of some control

modes supposed that those modes are applied before the

decision to initiate them is made. We developed an algorithm

based on the trust control model to conduct the trust control

mode prediction as described in [4]. We further developed

another algorithm in order to select the most suitable control

modes based on the above prediction results. In the component

software system, the control mode prediction and selection are

important functionalities with regard to the automatic

processing of trust management [5]. This mechanism also

enables the trust management framework to optimize the

underlying trust management configurations at runtime with

regard to a trust relationship.

D. Adaptive Trust Control Model Adjustment

It is important for the trust control model to reflect the real

system situation and context precisely. The influencing factors

of each control mode should be context-aware. The trust

control model should be dynamically maintained and

optimized in order to reflect the real system situation. Thereby,

it is sensitive to indicate the influence of each control mode on

different quality attributes in a dynamically changed context.

For example, when some malicious behaviors or attacks

happen, the currently applied control modes can be found not

feasible based on trust assessment. In this case, the influencing

factors of the applied control modes should be adjusted in

order to reflect the real system situation. Then, the system can

automatically re-predict and re-select a set of new control

modes in order to ensure the trustworthiness. In this way, the

system can avoid using the attacked or useless trust control

modes in an underlying context. Therefore, an adaptive trust

control model is important for supporting autonomic trust

management for the component software system. We

developed a couple of schemes to adaptively adjust the trust

control model in order to achieve the above purposes [5].

VI. RELATED WORK

A number of trusted computing and management work have

been conducted in the literature and industry, which mostly

focus on some specific aspects of trust. For example, TCG

(Trusted Computing Group) aims to build up a trusted

computing device on the basis of a secure hardware chip [2].

Some of trust management systems focus on protocols for

establishing trust in a particular context, generally related to

security requirements. Others make use of a trust policy

language to allow the trustor to specify the criteria for a trustee

to be considered trustworthy [3]. However, the focus on the

security aspect of trust tends to assume that the other non-

functional requirements [6], such as availability and reliability,

have already been addressed. In addition, TCG based trusted

computing solution can not handle the runtime trust

management issues of component software.

Recently, many mechanisms and methodologies are

developed for supporting trustworthy communications and

collaborations among computing nodes in distributed systems

[7-9]. These methodologies are based on digital modeling of

trust for trust evaluation and management. However, most of

existing solutions focus on the evaluation of trust, whilst they

lack a proposal regarding how to manage trust based on the

evaluation result. They generally ignore the influence of trust

control mechanisms on trustworthiness. We found that these

methods are not feasible for supporting the trustworthiness of a

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 1, 2007

 93

device software system.

Regarding software engineering, trust has been recognized

as an important factor for component software. A number of

interesting solutions have been proposed to ensure its

trustworthiness. Herrmann developed a special reputation

system based on a component user’s experience, other users’

experiences and the third trusted party’s certificate in order to

reduce the expense of evaluating components [11, 16]. The

runtime monitoring was implemented by a secure wrapper. It is

a piece of code extending a component, while the wrapper

does not change the behavior of the component. It monitors the

component interface for security flaws. In addition, the

intensity of the runtime observations about a component can

be adjusted based on the current trust value of the component.

Our work aim to conduct holistic trust management for

component software based on the system's competence in an

autonomic way. We apply a trust management framework at

the component software RE sub-layer to conduct runtime

observation based autonomic trust management in order to

release the development burden and support interoperability.

The trust assessment is based on observing a number of quality

attributes of the trustee entity for the purpose of adaptively

initiating trust control model adjustment to aware real system

situation or context for autonomic trust management.

A framework for dynamic re-configuration of different

qualities from the view of trust was constructed in [10, 17],

which provides a common mechanism in middleware to ease

the burden for trust component developers. Comparing with

previous works, it focused on a trust perspective to satisfy

various QoS demands of different users, and built a five-layer

trust management framework, which not only provides

common trust management facilities for trust components, but

also supplies components for dynamical (re-)configuration of

multi-properties. Based on the framework, the authors

presented an algorithm to adjust dynamically all the involved

trust properties according to predefined policies when the

environment changes. The solution proposed in [10, 17]

supports multiple properties of trust. The trust management is

centralized in middleware, which is similar to our solution, but

with different design since our design supports auto-selection

of trust control mechanisms. Also, the trust evaluation function

relies on users to customize. It is usually time-consuming and

prone to errors. It needs some automation functions in the trust

management framework to reduce more burdens of developers.

Regarding the dynamic reconfiguration of component trust

properties, it lacks necessary support to evaluate if trust can be

managed based on the system’s competence. The adjustment

based on predefined policies lacks flexibility and can not

predict cross-influence of various trust mechanisms on

different trust properties. Our solution attempts to overcome

the above problems and further release the burden of

component software developers.

The on-going TrustSoft project aims to study a holistic

approach to software trustworthiness through certifying

multiple quality attributes of the software [13]. We argue that

trust can be controlled according to its prediction or

assessment result. Special control modes can be applied into

the software system in order to ensure a trustworthy system in

an autonomic approach.

VII. CONCLUSIONS

In this article, we summarized our results towards

autonomic trust management for the component software

system. Our main contributions include that we developed a

couple of trust models to specify, predict, assess, set up and

maintain the trust relationships that exist among system entities

for the component software system. We further design an

autonomic trust management architecture that adopts a number

of algorithms for trust prediction, assessment and maintenance

during component download and execution. These algorithms

make use of the recent advances in Subjective Logic and

Fuzzy Cognitive Map to ensure the management of trust within

the component software system in an autonomic way.

For future work, we will further study the performance of

the algorithms towards practical use of our results.

REFERENCES

[1] Z. Yan and R. MacLaverty, “Autonomic trust management in a

component based software system,” in Proc. ATC’06, LNCS vol. 4158,

pp. 279-292, 2006.

[2] Trusted Computing Group (TCG), TPM Specification, version 1.2,

2003. Available: https://www.trustedcomputinggroup.org/specs/TPM/

[3] T. Grandison and M. Sloman, “A survey of trust in internet

applications,” IEEE Communications and Survey, Forth Quarter, 3(4),

pp. 2-16, 2000.

[4] Z. Yan, “A methodology to predict and select control modes for a

trustworthy platform,” WSEAS Trans. on Computer, Issue 3, vol. 6, pp

471-477, 2007.

[5] Z. Yan and C. Prehofer, “An adaptive trust control model for a

trustworthy component software platform,” in Proc. ATC’07, LNCS vol.

4610, pp. 226-238, 2007.

[6] S. Banerjee, C. A. Mattmann, N. Medvidovic, and L. Golubchik,

“Leveraging architectural models to inject trust into software systems,”

ACM SIGSOFT Software Engineering Notes, in Proc. the workshop on

software engineering for secure systems—building trustworthy

applications, vol. 30, Issue 4, 2005.

[7] Z. Zhang, X. Wang, and Y. Wang, “A P2P global trust model based on

recommendation,” in Proc. Int. Conf. on Machine Learning and

Cybernetics, vol. 7, pp. 3975-3980, 2005.

[8] C. Lin, V. Varadharajan, Y. Wang, and V. Pruthi, “Enhancing grid

security with trust management,” in Proc. IEEE Int. Conf. on Services

Computing (SCC 2004), pp. 303-310, 2004.

[9] Y. Sun, W. Yu, Z. Han, and K.J.R. Liu, “Information theoretic

framework of trust modeling and evaluation for ad hoc networks,” IEEE

J. Selected Area in Communications, vol. 24, Issue 2, pp. 305-317,

2006.

[10] M. Zhou, H. Mei, and L. Zhang, “A multi-property trust model for

reconfiguring component software,” in Proc. QAIC’05, pp. 142-149,

2005.

[11] P. Herrmann, “Trust-based protection of software component users and

designers,” in Proc. iTrust’03, LNCS, vol. 2692, pp. 75-90, 2003.

[12] Z. Yan, “Predicting trustworthiness for component software,” in Proc.

IEEE SecPerU’07, pp. 1-6, 2007.

[13] W. Hasselbring, and R. Reussner, “Toward trustworthy software

systems,” IEEE Computer, vol. 39, Issue 4, pp. 91-92, 2006.

[14] B. Kosko, “Fuzzy cognitive maps,” Int. J. Man-Machine Studies, vol.

24, pp. 65-75, 1986.

[15] A. Jøsang and S.J. Knapskog, “A metric for trusted systems,” in Proc.

the 21st National Security Conference, 1998.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 1, 2007

94

[16] P. Herrmann, “Trust-based procurement support for software

components,” in Proc. 4th Int. Conf. Electronic Commerce Research

(ICECR04), pp. 505-514, 2001.

[17] M. Zhou, W. Jiao, and H. Mei, “Customizable framework for managing

trusted components deployed on middleware,” in Proc. 10th IEEE Int.

Conf. Engineering of Complex Computer Systems ICECCS, pp. 283-

291, 2005

[18] Z. Yan and S. Holtmanns, “Trust modeling and management: from

social trust to digital trust,” in Computer Security, Privacy and Politics:

Current Issues, Challenges and Solutions, Subramanian R, Ed. IGI

Global, 2008.

Zheng Yan received the B. Eng in electrical

engineering and the M. Eng in computer science

and engineering from the Xi’an Jiaotong

University, Xi’an, China, in 1994 and 1997,

respectively. She received the second M. Eng in

information security from the National University

of Singapore, Singapore, in 2000. She received the

Licentiate of Science and the Doctor of Science in

Technology in electrical engineering from the

Helsinki University of Technology, Helsinki,

Finland, in 2005 and 2007, respectively.

She is currently a Member of Research Staff at the Nokia Research Center,

Helsinki, Finland. Before joining in the Nokia in 2000 as a Research

Engineer and later on a Senior Research Engineer, she worked as a Research

Scholar at the Institute for Information Research from 1997 to 1999 and a

Software Engineer at the IBM partner SingaLab from 1999 to 2000,

Singapore. She first-authored more than twenty paper publications and two

book chapters. She is the inventor and co-inventor of eight patent

applications. Her research interests are in trust modeling and management;

trusted computing; mobile applications and services; usable security/trust,

distributed systems and digital rights management.

Dr. Yan is a member of the IEEE and the IEEE Computer Society. She

also serves as a program committee member for a number of international

conferences and workshops.

Valtteri Niemi received the M.Sc degree from the

University of Turku, Finland, Mathematics

Department, in 1987 and the Ph. D. degree from the

same department in 1989. He held several research

and teaching posts at the University of Turku,

including acting as an Associate Professor in

Mathematics for the academic year 1992-3. In

1993, Niemi was nominated as an Associate

Professor in the Mathematics and Statistics

Department of the University of Vaasa, Finland,

where he stayed until joining the Nokia Research

Center, Mobile Networks laboratory, Helsinki in

1997. In 1999, he was nominated as a Research Fellow, and starting from

2004, he has been responsible for Nokia research in wireless security area.

Dr. Niemi now works on security issues in future mobile networks and

terminals, the main emphasis being on cryptological aspects. He has

participated 3GPP (3rd Generation Partnership Project) security

standardization group from the beginning, and starting from 2003, he has

been the chairman of the group.

In addition to cryptology and security, Dr. Niemi has done research on the

area of formal languages. He has authored/co-authored around 40 scientific

articles, he is a co-author of two books and more than 10 patents, and has

frequently given talks in conferences and workshops.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 1, 2007

