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Abstract—Recently, model checking has played an important
role in design of embedded systems, complex systems, and other
critical systems. However, it is inefficiency to verify the entire
systems. This article considers the case where designers of
systems can extract check-points easily in model checking of
formal verification. Moreover, we propose a method by which
temporal formulas can be obtained inductively for specifications
in model checking. Finally, we demonstrate verification results
for some arbitration modules by NuSMV model checking tool.

Index Terms—Model checking, Linear temporal logic, Check-
points extraction method.

I. I NTRODUCTION

T ODAY, industrial designs are becoming more and more
complex as technology advances and demand for higher

performance increases. Especially, hardware and software sys-
tems are widely used in applied field where no failure is per-
mitted: telephone switched network, electronic commerce, and
medical equipment, etc. The validity of a design accompanies
checking whether the physical design satisfies its specification.
In traditional design flow, validation is accomplished through
simulation and testing. Some errors inside a design may exhibit
nondeterministic behaviors, and therefore, will not be reliably
repeatable. This makes testing and debugging using simulation
difficult. Also, exhaustive testing for nontrivial designs is
generally infeasible, therefore, testing provides at best only
a probabilistic assurance[1].

In design of complex and embedded systems and other
critical systems, model checking has played an important
role. Model checking in formal verification ascertains whether
designed systems can be executed or specified. Various formal
methods for verification have been studied[1], [2], [3], [4].
However, formal verification has problems of its own class too.
The major problem with automatic formal verification is that
a large amount of memory and time is often required, because
the underlying algorithm in these methods usually involves
systematic examination of all reachable states of the system
to be verified. As the number of reachable states increases
rapidly with the size of the system, the basic algorithm by
itself becomes impractical: the number of states for the system
is often too large to check exhaustively within the limited time
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and memory that is available. This phenomenon is known as
the state space explosion problem[1], [2].

In this research, we focus on specification process of model
checking in formal verification shown inFig.1, and to propose
a new method which can extract verification check-points
inductively from modeling systems. System designers can
easily derive check-points of verified systems by using the
method. The rest of this article is organized as follows: In
section 2, Model Checking, Temporal Logic, Signal Transition
Graph are briefly explained, and in section 3 our proposed
Check-Points Extraction Method is described by means of
procedure of specification. Moreover, some benchmarks are
used for verification to compare by NuSMV model checking
tool in section 4. Finally, we summarize the discussion in
section 5.

II. PRELIMINARIES

A. Model Checking

The principal validation methods for complex systems are
simulation, testing, deductive verification, and model check-
ing. Simulation and testing both involve making experiments
before deploying the system, testing is performed on the actual
product. In the case of circuits, simulation is performed on
the design of the circuit, whereas testing is performed on
the circuit itself. In both cases, these methods typically inject
signals at certain points in the system and observe the resulting
signals at other points. These methods can be a cost-efficient
way to find many errors. However, checking all of the possible
interactions and potential pitfalls using simulation and testing
techniques is rarely possible. Formal verification attempts to
overcome the weakness of non-exhaustive simulation by prov-
ing the correspondence between some abstract specification
and the design in hand.

An important issue in specifications completeness. Model
checking provides means for checking that a model of the
design satisfies a given specification, but it is impossible
to determine whether the given specification covers all the
properties that the system should satisfy.

• Safety propertyexpresses that, under certain conditions,
nothing badwill happen.

• Liveness propertyexpress that, under certain conditions,
something goodwill eventually happen.

In this article, behaviors of a system are specified by temporal
formulas.

B. Temporal Logic

Temporal logic[1], [2], [4], [8] is a formalism for describing
sequences of transitions between states in a reactive system.
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Fig. 1. The framework of proposed method.

In the temporal logics that we will consider, time is not
mentioned explicitly; instead, a formula might specify that
eventuallysome designated state is reached, or that an error
state isneverentered. Properties likeeventuallyor neverare
specified using specialtemporal operators. These operators
can also be combined with boolean connectives or nested
arbitrarily. Temporal logics differ in the operators that they
provide and the semantics of those operators. Its operators
mimic linguistic constructions (the adverbs ”always” , ”un-
til” , the tenses of verbs, etc.) with the result that natural
language statements and their temporal logic formalization
are fairly close. Finally, temporal logic comes with a formal
semantics, an indispensable specification language tool. Here,
Linear Temporal Logicin temporal logic will be explained in
following section.

1) Linear Temporal Logic(LTL):Temporal logic allows
us to formalize the properties of a run unambiguously and
concisely with the help of a small number of special temporal
operators. Most relevant to the verification of asynchronous
process systems is a specific branch of temporal logic that is
known as linear temporal logic(LTL), commonly abbreviated
as LTL. The semantics of LTL is defined over infinite runs.
With help of the stutter extension rule, however, it applies
equally to finite runs[1]. Here we give descriptions of LTL.
LTL is a sort of temporal logic, which has the following
formulas:

• ¤ q : means thatq always holds for all successor states
on a certain path.

• ♦ q : represents thatq must be sometimes true for only
one successor state of the path, and is similar to the
formula which expresses future in linear temporal logic.

• pUq : is thatp must be true on the path states, beginning
at the current state, untilq becomes true.

• Xp : then simply states thatp is true in the immediately

following state of the run.
The correctness of properties to be verified is usually

specified in LTL. The LTL is extending propositional logic
with temporal operators that express how propositions change
their truth values over time. Here we use temporal operators:
Operators¤, ♦, and X meaningglobally, sometime in the
future, andnext time, respectively.

C. Signal Transition Graph

In order to describe highly concurrent systems, graph-
based specification methods have been widely used. An Signal
Transition Graph (STG)[6], a labeled interpreted Petri Net[7],
has been considered as a well-suited specification method to
describe asynchronous circuits.

Definition 1: (Petri Net (PN)). A Petri Net is a bipartite
directed graph consisting of 4-tuple

∑
= (P, T, F,m0), where

1. P is a finite set of places.
2. T is a finite set of transitions, satisfyingP ∩ T = ϕ and

P ∪ T = ϕ .
3. F is a flow relationF ⊆ (P × T ) ∪ (T × P ), specifies

binary relation between transitions and places.
4. m0 is the initial marking of the PN.

When transitions are interpreted as rising and falling transi-
tions of signals of a control circuit, an STG is one interpreta-
tion of a PN.

Definition 2: (Signal Transition Graph (STG)). Let J be a
set of signals of a network, ASignal Transition Graphdefined
on J is a Petri Net

∑
J = ⟨ P, T, F,M0 ⟩ with T : J → { +

, - } .

Each transition of the STG is interpreted as a rising transition
or a falling transition of a signal.

Consider an arbiter module shown inFig.2. An STG for the
arbiter module is shown inFig.3, where ’+’ mean a rising edge
and ’-’ means a falling edge of a certain signal, respectively.
This example uses two signalsu0 and u1. Black circle on a
transition edge indicates a token. A transition is enabled when
all input places have at least one token. When an enabled
transition fires, it removes one token from each input place
and adds one token to each output place.
　

III. C HECK-POINTS EXTRACTION METHOD

A. Strong/Weak Temporal Order Relation

In verifying behaviors of a system, checking all signal
events is inefficient. Reducing signal events to be checked is
necessary for specifying behaviors of the system[8], [9]. Here,
We consider a system which has 3-inputs (a , b , c) and 2-
outputs (x , y) shown inFig.4. Suppose that behaviors of the
system occur asa → x → b → c → y → a , repeatedly.

All relations of the signal events can be indicated as follows:

{(a , x) , (a , y) , (x , b) , (b , c) , (b , y) , (c , y)},
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Fig. 2. An arbiter module.
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Fig. 3. A signal transition graph forFig.2

where (a , x) indicates that outputx occur after inputa .
Although outputy is not an immediate successor of inputa
, (a, y) can be considered because outputy must occur after
inputa in the future. Definitions ofstrong/weak temporal order
relationsare as follows:

Definition 3: (strong temporal order relation). A strong
temporal order relationis any inverse input-output relation of
event sequences.

Here, we focus on relation (x , b). We notice that (x ,
b) indicates an inverse relation of input and output events.
However, it is not necessary that inputb must occur after
output y in many cases excepting systems of 1-input and
1-output. Thus such an inverse input-output relation can be
reduced by astrong temporal order relation.

a
b
c

x
y

Fig. 4. An example system.

Definition 4: (weak temporal order relation). A weak
temporal order relationis any relation of input signal events.

Further, we focus on relation (b , c). We notice that the relation
only indicates inputs. Outputy is a successor of inputsb and
c by relations (b , y) and (c , y). On the other hand, outputy
can occur by rendezvous of inputsb andc. Outputy can occur
independently of relation (b , c). Therefore, such a relation can
be reduced by aweak temporal order relation.

Thus, behaviors of the system can be specified by introducing
strong/weak temporal order relations as follows:

{ (a , x) , (a , y) , (b , y) , (c , y) }

Its specification shows that outputx can occur after inputa
and outputy can occur by rendezvous inputsa, b, andc.

B. Converting STG to State Graph

To explain the procedure of the proposed method, we
especially consider an arbiter module shown inFig.2. Thus
we describe specification of temporal formulas for the arbiter
module. The STG of the arbiter module can be drawn inFig.3.
Firing processes for the STG are indicated asFig.5, where the
initial state isState0. The states are connected with labeled
edges as shown inFig.6 to represent order relations of events.
Converting the STG to the state graph can be made by Petrify
tool[10] automatically. A branch expression forFig.6 is shown
in Fig.7. The procedure of the proposed specification method
is described in the succeeding sections.

C. Procedure of Specification

In this section, we describe the procedure of the proposed
specification method shown inFig.8. This procedure corre-
sponds to the part in the wavy arrow line inFig.1. The
procedure is composed of five steps shown inFig.8. Here,
we explain the procedure as follows:

[STEP.1]
In this step, event sequences are extracted from branch expres-
sion, for example, path (A), (B), (C), (D) and (E) are extracted
from Fig.7.

(A) u0i+ u0o+ u1i+ u1o+ u0i− u0o− u1i− u1o−
(B) u0in+ u0o+ u1i+ u1o+ u0o− u1i− u0i− u1o−
(C) u0i+ u0o+ u1o+ u0i− u1i+ u0o− u1i− u1o−
(D) u0i+ u1o+ u0o+ u0i− u1i+ u0o− u1i− u1o−
(E) u0i+ u1o+ u0i− u0o+ u1i+ u0o− u1i− u1o−

[STEP.2]
In this step, checked signal events can be reduced by intro-
ducingstrong/weak temporal order relations.

(A) {(u0i+ , u0o+), (u0i+ , u1o+), (u1i+ , u1o+),
(u1i+ , u0o−), (u0i− , u0o−), (u0i− , u1o−),
(u1i− , u1o−)}
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Fig. 5. Firing processes forFig.3.

(B) {(u0i+ , u0o+), (u0i+ , u1o+), (u0i+ , u0o−),
(u1i+ , u1o+), (u1i+ , u0o−), (u1i− , u1o−),
(u0i− , u1o−)}

(C) {(u0i+ , u0o+), (u0i+ , u1o+), (u0i− , u0o−),
(u0i− , u1o−), (u1i+ , u0o−), (u1i− , u1o−)}

(D) {(u0i+ , u1o+), (u0i+ , u0o+), (u0i− , u0o−),
(u0i− , u1o−), (u1i+ , u0o−), (u1i+ , u1o−),
(u1i− , u1o−)}

(E) {(u0i+ , u1o+), (u0i− , u0o+), (u0i− , u0o−),
(u0i− , u1o−), (u1i+ , u0o−), (u1i− , u1o−)}

[STEP.3]
In each path, if IO relation shows that there is immediate
successor, specified asX operator, otherwise specified as♦
operator.

(A) {X(u0i+ , u0o+), ♦(u0i+ , u1o+), X(u1i+ , u1o+),
♦(u1i+ , u0o−), X(u0i− , u0o−), ♦(u0i− , u1o−),

X(u1i− , u1o−)}

(B) {X(u0i+ , u0o+), ♦(u0i+ , u1o+), ♦(u0i+ , u0o−),
X(u1i+ , u1o+), ♦(u1i+ , u0o−), ♦(u1i− , u1o−),
X(u0i− , u1o−)}

(C) {X(u0i+ , u0o+), ♦(u0i+ , u1o+), ♦(u0i− , u0o−),
♦(u0i− , u1o−), X(u1i+ , u0o−), ♦(u1i− , u1o−)}

(D) {X(u0i+ , u1o+), ♦(u0i+ , u0o+), ♦(u0i− , u0o−),
♦(u0i− , u1o−), X(u1i+ , u0o−), ♦(u1i+ , u1o−),
X(u1i− , u1o−)}

(E) {X(u0i+ , u1o+), X(u0i− , u0o+), ♦ (u0i− , u0o−),
♦(u0i− , u1o−), X(u1i+ , u0o−), X(u1i− , u1o−)}

[STEP.4]
In all paths, relations of the same temporal operator and the
same IO can be extracted. Otherwise only the same IO relation
can be extracted. Since♦ expresses ”sometime in the future,”
thenextoperatorX can be covered asX ⊆ ♦ in order to apply
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Fig. 7. A branch expression for the state graph.

Partial Order Reduction. Thus, the extracted same IO relation
can be gathered by♦.

¤ [ ♦(u0i+ , u1o+) ∨ ♦u1i+ , u0o−)
∨ ♦(u0i− , u1o−) ∨ ♦(u1i− , u1o−)
∨ ♦(u0i+ , u0o+) ∨ ♦(u1i+ , u1o+)
∨ ♦(u0i− , u0o−) ∨ ♦(u0i+ , u0o−)
∨ ♦(u1i+ , u1o−) ∨ ♦(u0i− , u0o+) ]

[STEP.5]
In all paths, relations of the same output can be combined.

¤ [ ♦(u0i+ , u0o+) ∨ ♦(u0i+ ∧ u1i+ , u0o−)
∨ ♦(u0i+ ∧ u1i+ , u1o+) ∨ ♦(u0i− ∧ u1i+ , u1o−)]

Check-points can be extracted by repeating the above-
mentioned steps. Finally, we can get temporal formulas only
considering necessary signal events. For these formulas, signal
transition graph can be indicated inFig.9.

[STEP.1]

Extracting all paths from branch expression.

[STEP.2]

Extracting IO(Input-Output) relations.

[STEP.3]

Introducing temporal operators to an IO relation.

[STEP.4]

Specifying all paths using temporal formulas.

[STEP.5]

Combining transition relations for the same output.

Fig. 8. Procedure of Specification.

u0i+ u1o+ u0i- u1o-

u0o+ u1i+ u0o- u1i-

Fig. 9. A reduced signal transition graph forFig.3 by check-points extraction
method

IV. V ERIFICATION RESULTS

In this section, we show verification results for a shared
resources access structure shown inFig.10.

All these model verifications are performed on an 2.4GHz
Core 2 Duo processor under Linux with 2GB of available
RAM. In this article, all simulations are verified by NuSMV
version 2.4.3[11].

For the structure, we report the number of OBDD nodes
necessary to represent the corresponding structure, transitions,
and memory required by the systems to analyze the structure
shown inFig.11 andFig.12. Here,CPE indicates verification
results with check-points extraction method, andNormal
indicates verification results without the method, respectively.
For small models such as queue and mutex, results are not
much different between the two methods. On the other hand,
as the models become larger, the effect begins to appear in the
results. It is remarkable especially for elevator control systems.

V. CONCLUSION

Formal verification plays an important role in large scale
and complex systems. However, it is inefficiency to verify the
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Fig. 10. A shared resources access structure.

entire systems. We proposed a method by which check-points
can be obtained inductively for specifications in model check-
ing. Users must generally know well temporal specification
because the specification might be complex. Our proposed
method can gain temporal formula specifications inductively.
We aimed at input-output order relations for systems, not con-
sidering output-input order relations. Furthermore, we defined
strong/weak temporal order relations in the procedure of speci-
fication. Weak temporal order relations include orders of inputs
implicitly. Strong temporal order relations express inverse
input-output order relations. We showed that the verification
tasks are reduced for states, transitions, and memory with our
proposed inductive specification method. System designers can
easily lead complex temporal formulas by using the method.
In verification results, especially, required memory was able
to reduced for formal verification. Then, it is assumed to be
research work in the future to verify more large scale systems.
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