
109

The Design, Implementation and Application of the
Software Framework for Distributed Computing

Kin-Yeung Wong, Yin-Man Choi, and Seng-Wa Lam

Abstract—A distributed computing application uses multiple
networked computers to work together to accomplish a big task. It
can be used to solve calculation-intensive problems such as weather
forecasting and astronomical analyzing. There are many common
tasks among different kinds of applications. To reduce the
development cycle, the goal of this paper is to design and implement
an API for constructing distributed applications. In this paper, the
core functions of the API are discussed, and real applications written
by the API are demonstrated.

Keywords—Distributed Computing, Distributed System, Software

Framework, Software Design, Parallel Processing.

I. INTRODUCTION
omplex scientific problems such as weather forecasting;
molecular modelling, air quality simulations,
astronomical analyzing, and quantum chemistry are

highly calculation-intensive. Supercomputers can be used to
tackle the problems. However, not many research parties and
organizations cannot afford the deployment and maintenance
of supercomputers that are both expensive and space
consuming.

Distributed computing environment [1] provides an
alternative to supercomputers to carry out the processing-
intensive problems due to its flexibility and scalability. A
distributed computing application uses two or more networked
computers to work together to accomplish a common objective
or task. For example, SETI@Home [2], a well-known
distributed computing project, makes use of the idle time of
millions of desktops in the world, during the screensaver time,
to analyze astronomical data to find intelligent life in the
universe. Another example is [3] which uses distributed
computing to solve Protein problem. Increasing desktop
processing power and communications bandwidth makes
distributed computing more practical.

The construction of a distributed computing application
involves a number of tasks such as task segmentation, task
selection and client selection, which are common to most
applications. Therefore, an Application Programming Interface
(API) for developers to handle the common tasks is desired.
The use of API not only effectively shortens the development
cycle, but also allows developers to focus on their own project
specified functions with less care and concern on the common
tasks.

Manuscript received December 16, 2007. This work was supported by

Macao Polytechnic Institute Research Grant (Project No. RP/ESAP-7/2006).
K. Y. Wong, Y. M. Choi, and S. W. Lam are with Computer Studies

Program, Macao Polytechnic Institute, Macao (phone: +853-85996440; fax:
+853-28719654; e-mail: kywong@ipm.edu.mo).

Fig 1. The general structure of centralized distributed computing

applications.

The goal of this paper is to design and implement of the API

for building distributed computing applications. This paper is
organized as follows. Section 2 describes about the design of
software framework. Section 3 discusses about the
implementation of the API and how it achieves the design
goals. Then, Section 4 shows the demonstration how the API
is used to build a simple distributed application. This API is
available for public download at our website [4].

II. SYSTEM DESIGN
Fig. 1 shows the general architecture of distributed

computing environment, in which there are software agents
installed on client nodes and at least one dedicated
management server. When a client node is ready to accept job,
it will notify the management server and ask for a task.
Having finished the downloaded task, the client node will
return the result to the server. The task should be done when
the client node is idle, and the task can be run in the form of a
screensaver or a background daemon. During the execution of
the task, if the user need to use its computer, processing of the
task will be immediately terminated and return the control to
the user.

The management server performs the role of a coordinator.
It divides a big job into many small tasks. It also needs to
assign those tasks for the available client nodes. Besides, it has
to interpret and integrate the results return from client nodes
into a meaningful final conclusion.

C

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 1, 2007

110

A. System Components

Fig. 2 shows the proposed software framework for building
distributed computing applications. The framework consists of
client and server sides. The client side consists of four
components, whereas the server side consists of six
components. Each component performs a specific task.

Functions for building user interface, boxes in grey, are not
provided by the API. It is up to the developers to
implementation the interface. The interface can be in a
command line mode, or in graphical mode or even in the form
of screensaver.

A server side application includes the following components:

Task Allocator: It is to divide a big job into a number

of small tasks for clients.

Task Table: It is a kind of data structure storing
tasks for the clients to download. It
also stores the corresponding
returned results returned for the tasks

Task Selector: It selects a job form the task pool, as

stored into Task Table.

Server Comm.
Unit:

It manages the connections between
server and clients.

Task Assembler: When all tasks are finished, this
component assembles all the results
are stored in the Task Table and form
the final outcome.

A client application includes the following components:

Client Comm.
Unit:

It manages the connections between
server and clients.

Session Holder: It maintains the status of the Task
Handler. When the client is
available, it asks for a new task from
the server.

Task Handler: It is the component which actually

performs the task. After the task is
finished, it returns the result to
Session Holder.

B. Design Criteria of the API

The primary goal of API is to provide a shorter development
cycle for developer to build distributed computing applications.
Therefore, the design criteria of the framework should include:

Simplicity: The steps to build an application

using the API should be minimized.

Easy to Use: The function calls should be
straightforward and involve less
number of arguments as well as
parameters.

Flexibility: It should support development of

various kinds of application.

Details Hiding: The function should be regarded as a
black box and the lower-layer details
should be hidden from the
developers.

Fig 2. Basic system components of the distributed computing

software framework

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 1, 2007

111

III. IMPLEMENTATION OF THE SOFTWARE FRAMEWORK
We implement the software framework of distributed

computing (i.e., the components discussed in section 2) using
Java language and produce a set of API. In the API, for
simplicity, all server components are included in the
DistributedServerService class, and all client components in
the DistributedRemoteClient class. This section discusses the
core classes provided by the proposed API.

This section describes the steps to develop distributed
computing applications using our API in section 3.2 and 3.3.

A. Core Classes Provided by the API

A.1 Task

It is for both client and server sides. The distributed

application divides a big job into many small tasks. The Task
class represents each task. It includes three important methods:

doTask()
This method uses developers to implement the act work
to be done in the client nodes.

setResult(Task t)
To input the result of the work done to Task object. With
the consideration of flexibility, the data type of the input
variable is the general Object class.

getResult()
To get the result from the t object specified in the
setResult(Result t). Developers can cast the
general Object to other specific type they want.

A.2 DistributedServerService

It is for server side. This class performs functions of the

server-side components shown in Fig. 2. The followings are
the essential methods:

DistributedServerService(int port)
This constructor is for developers to initiate the server
service object. The port number has to be input into this
object in order to form a contactable socket to
communicate with clients.

setTaskTableSize(int size)
This method is used to set the size of task table. Note that
the input variable, the table size, should be same as the
number of sub tasks formed.

activeServer
(TaskAllocator table, TaskAssembler task)
It parses the input objects, table and task, into the object
DistributedServerService object and starts up the
server. Two objects: TaskAllocator and
TaskAssembler are required to be concreted and
initiated in advance. After calling this method, the server
will start accepting requests from available client nodes.

A. 3 DistributedRemoteClient

It is for client side. DistributedRemoteClient involves
three concrete classes and an abstract class, for developers to
build the program the client node. The abstract method
doTask() has to be concreted before the
DistributedRemoteClient class can be used.

doTask()
This method triggers when the client application receives
a task from the server.

requestTask()
This method sends request to the server to get a task to
work.

sendBackResult(Task task)
This method returns the result back to the server.

activeClient()
This method starts up the client, after the object of
DistributedRemoteClient is initiated.

B. Steps of Building Server-side Programs

B.1 Preparation of the Task object

Developers use doTask() to define the actual work to be

done in client nodes. Developers also need to store the
calculated result in the resultObj internal object which can
be set and get by setResult() and getResult()
respectively.

public class MyTask extends Task {
:
 public void doTask(){
 // The actual work performed in
 // client nodes

 Object r = result
 this.setResult(r);
 }

 public void setResult(Object result){
 this.resultObj = result;
 }

 public Object getResult(){
 return resultObj;
 }
}

B.2 Building TaskAllocator

The purpose of TaskAllocator is to prepare to construct a

task pool for the server to assign tasks to clients. To achieve
that, programmers need to fill the abstract method
allocateTask() in the TaskAllocator class. The
DistributedServerService will make use the
TaskAllocator object to do task scheduling.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 1, 2007

112

TaskAllocator allo = new TaskAllocator(){

 public ArrayList allocateTask()
 {
 ArrayList al = new ArrayList();

 // New Task objects here and
 // add them into the al ArrayList
 }
};

B.3 Building TaskAssembler

The abstract method assemble() from the class

TaskAssembler is used for developers to assemble the
returned results from client nodes. The returned results can be
obtained by calling the getAllResult() method.

TaskAssembler assembler
 =new TaskAssembler(){

 public void assemble()
 {
 ArrayList result =this.getAllResult();

 // Write the algorithm to assemble
 // the returned results here

}
};

B. 4 Initialize DistributedServerService

After initialized the DistributedServerSevice, the

server side application can be started up by the method
activeServer().

DistributedServerService distServer =
 new DistributedServerService(9999);

distServer.activeServer(allo, assembler);

C. Steps of Building Client-side Programs

C.1 Extending DistributedRemoteClient

During inherent DistributeRemoteClient class, the

location IP and the registered port have to be inserted into a
self-defined constructor as initialise variables.

public class MyDistClient extends
DistributedRemoteClient {

 public MyDistClient(String ip, int port)
 {
 super(ip, port); }
 }
}

C.2 Concreting doTask()

It is to concrete the abstract doTask() method in the

DistributeRemoteClient class. This can be achieved by
calling the doTask() method in the Task class.

public Object doTask(Object task)
{
 MyTask t = (MyTask)task;
 t.doTask();
 return t.getResult();
}

C.3 Activate the client-side program

When the object of the class extended from extends

DistributeRemoteClient has been initiated, the client
application can be started up by the activeClient()
method.

MyDistClient client =
 new MyDistClient(localhost, 9999) ;
client.activeClient() ;

VI. EXAMPLES
In this section, four examples are presented to demonstrate

the simplicity, expandability and portability of the proposed
API. All the examples are based on the distributed summation
system.

In Example 1, the coding example of the system executed in
command-line mode is shown. Then, in Example 2, we
demonstrate how the system can be extended to include a
graphical user interface. After that, in Examples 3 and 4, we
demonstrate how the client-side program can be ported to the
mobile platform and can be integrated into a screensaver,
respectively. See Table I for the summary of the examples.

 Client Server
Example 1 Command-line Command-line
Example 2 Command-line Graphical
Example 3 Mobile Graphical
Example 4 Screen-saver Graphical

Table I. Summary of examples.

A. Example 1-Distributed Summation System (command-
line mode)

The purpose of this example is to demonstrate how the
proposed API can be used to build a simple application.

In the example, the server has 5 small tasks to do. Each task
is to sum two integers. When a client is free, it will ask the
server for a task to do. After finishing a task, the client will
return the result to the server and ask for another task. Fig. 3
illustrates the system environment.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 1, 2007

113

Fig 3. System environment of the example.

Fig. 4 shows the sample code files for the server-side

program whereas Fig. 5 shows the files for the client-side
program. This application is run in command line. As will be
seen in Section 4.4, graphical user interface version for the
same application can be applied.

As shown in Fig. 4(a), the doTask() method simply adds
two integers. The two integers are supplied in the Task object
initializations (see the step2 Fig. 4 (b)). When all results are
returned from clients, the server simply sums all of them (see
the step3 in Fig. 4(b)). Fig. 5 shows the coding of a basic
client-side application which just fills the doTask() method,
and activate the program.

Fig. 6 shows the screen capture for the server which was just
initiated. Note that, for better presentation, the stub text seen
in the screen capture is not shown in the code files shown in
Fig. 4(b). As can be seen, the server first reported all the
tasked assigned. At this point, the server is ready to accept
requests from clients. Initially, there was no client available
yet, so the screens shows that “Assigned Tasks : 0” and
“Online Workers : 0”. When we triggered a client which then
asked the server for a task to do, the screen immediately
shown that “Assigned Tasks : 1” and “Online Workers : 1”.
When the server successfully collects all results from clients, it
then stops replying any request and calls assemble()(see Fig.
4(b)) to assemble all the received results. In this example, it is
to simply sum up all of them.

public class MyTask extends Task {
:
 public void doTask(){
 total = inputA + inputB;
 this.setResult(new Integer(total));
 }

 public void setResult(Object result){
 this.resultObj = result;
 }

 public Object getResult(){
 return resultObj;
 }}

(a) MyTask.java

public class MainServer {

 public static void main(String[] args) {

 // 1) create distributed server object

 DistributedServerService distServer = new
 DistributedServerService(9999);

 // 2) build programmer's TaskAllocator

 TaskAllocator alloc = new TaskAllocator(){
 public ArrayList allocateTask(){
 ArrayList al = new ArrayList();
 MyTask t1 = new MyTask("task-A",1,10);
 MyTask t2 = new MyTask("task-B",11,20);
 :
 al.add(t1);
 al.add(t2);
 :
 }
 };

 // 3) build programmer's TaskAssembler

 TaskAssembler asm = new TaskAssembler(){
 public void assemble(){
 int total = 0;
 ArrayList result = this.getAllResult();
 for(int i=0; i<result.size(); i++){
 total=total+
 ((Integer)result.get(i)).intValue();
 }
 }
 };

 // 4) active the distributed server

 distServer.activeServer(alloc, asm);

}

(b) MainServer.java

Fig. 4. Coding for the server-side application.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 1, 2007

114

public class MyDistClient extends
DistributedRemoteClient {
…
 public Object doTask(Object task) {
 MyTask t = (MyTask)task;
 t.doTask();
 return t.getResult();
 }}
(a) MyDistClient.java

public class MainClient {
 public static void main(String args[]){
 MyDistClient myDC =
 new MyDistClient("localhost",9999);
 myDC.activeClient();
 }}
(b) MainClient.java

Fig. 5. Coding for the client-side application.

Fig 6. Screenshot of the initiation of the server.

Fig. 7. Screenshot of the server graphical interface.

B. Example 2-Distributed Summation System with User
Interface

The purpose of this example is to point out that the API can
be easily integrated with graphical interface.

This application is the extension of the one discussed in
section 4.1 with the user interface for the management server
(see Fig. 7). The interface provides a comprehensive and user-
friendly interface to monitor the process of the task.

Although the development of graphical interface is out of
the scope of the API which focuses on the core functions in
distributed computing, it is to show that the API can be easily
integrated with graphical interface.

One simple way is to achieve it is to include the core
functions in the ActionListener of the button launching the
server application. See below:

btn_start.addActionListener(new
ActionListener(){

 public void actionPerformed(ActionEvent
evt) {

 DistributedServerService distServer =
 new DistributedServerService(9999);
 TaskAllocator alloc = new
 TaskAllocator(){ };
 TaskAssembler assembler = new
 TaskAssembler() { };
 distServer.activeServer(alloc,
assembler);
 }
});

C. Example 3-Distributed Client on Mobile

The purpose of this example is to show that the application
built by our proposed API can be extended to work in the
mobile platform (J2ME).

In this example, we use the server developed before, but we
assume the client nodes are mobile phones supporting J2ME.
The screenshot of the distributed client in a simulated
environment is shown in Fig. 8. We are verifying this mobile
version using real mobile devices running different operating
systems (e.g., Palm OS and Windows Mobile).

The rationales of considering mobile platform are based on
the strong processing power and the Internet capability of the
recent mobile devices. Some devices are equipped a CPU over
600MHz which can be regarded as a low-end computer.
Besides, since the modern mobile networks (such as GPRS,
WCDMA, and HSDPA) allow mobile devices to connect to
the Internet all the time, it makes them able to keep contact
with the distributed computing server.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 1, 2007

115

Fig. 8. Screenshot of the distributed client on mobile device.

D. Example 4: Screensaver-based Distributed Client

The purpose of this example is to point out that the
distributed client implemented by the proposed API can be
converted into the form of a screensaver.

As mentioned before, SETI@Home, a well-known
distributed computing project, makes use of the computer idle
time during the screensaver time to analyze astronomical data.
That is, SETI@Home implements the distributed client
program as a screensaver. When a computer becomes idle, the
screensaver will be triggered, which implies that the
distributed client program is running.

The distributed client implemented by the proposed API can
be converted into the form of a screensaver. For example, to
convert the client program in Example 1 shown in section 4.1,
we first need to convert the (java) client program into a native
Windows EXE by using a third-party tool, such as java2exe,
JexePack, or exe4j. After that, we just need to rename the file
by change the “.exe” extension to the “.scr” extension to make
it become a screensaver for Windows (Windows regards the
file with the “.scr” extension as a screensaver.) Now, the
screensaver-based distributed client is ready and can be
launched when the screensaver is triggered.

Fig. 9 shows our simple screensaver-based client using the
java client written in Example 1. Since the java client is
originally command-line based, when the screensaver is
trigger, a big command-line screen is shown.

Fig. 9. The screen of the running of screensaver-based distributed

client.

V. DISCUSSION AND CONCLUSION
The proposed API meets the design criteria mentioned in

section 2.2:
Simplicity and Easy-to-Use: The basic construction of a

distributed computing application requires only the
implementation of a few methods. Besides, the methods call
involves minimal parameters passing (about two). Therefore,
simplicity and easy to use can be achieved.

Details Hiding: Since the details of server and client
components are included in DistributedServerService
and DistributedRemoteClient, respectively, that is,
developers do not need to concern the details of the system
components. They just need to create and maintain these two
classes.

Flexibility: Different distributed applications have different
requirements and ways of tasks presentations are different. For
example, protein folding modelling application involves of
many data samplings and simulations where as RSA
application requires analyzing heavy loading calculation to
compute private key. To provide flexibility, the classes for task
segmentation, result assemble and job table are defined as
abstract classes. On the other hand, most core parameters are
passed in the form of general Object type which allows
developers to cast it into their own data type.

Expendability and Portability: On the other hand, as can be
seen in Section 4, the applications can be easily integrated
with graphical interface and can be ported to mobile platform.
It proofs the expendability and portability of the proposed API.

In summary, using the proposed API can shorten the
development cycle of distributed computing applications.
Although some sophisticated programming library are
available, such as BOINC from UC Berkeley [5], they are
usually complex and difficult to work with. To build small-
scale distributed computing applications, our proposed API is
more appropriate because of its simplicity and flexibility. The
proposed API can be publicly downloaded at [4].

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 1, 2007

 116

REFERENCES
[1] M. Lathia, “A useful resource for parallel and distributed computing,”

IEEE Distributed Systems Online, vol. 6, iss. 4, April 2005.
[2] E. Korpela et al., “SETI@home-massively distributed computing for

SETI,” IEEE Computing In Science & Engineering, January/February
2001, pp. 78-83.

[3] K. Schreiner, “Distributed Projects Tackle Protein Mystery,” IEEE
Computing In Science & Engineering, January/February 2001, pp. 13-16.

[4] The API presented in this paper can be downloaded at
http://staff.ipm.edu.mo/~kywong/distributedcomputing/.

[5] Berkeley Open Infrastructure for Network Computing.
http://boinc.berkeley.edu/

Kin-Yeung Wong received his B.Sc. and
Ph.D. degrees, both in information
technology, from the City University of Hong
Kong. He is currently an associate professor
at Macao Polytechnic Institute. He is active
in research activities, and has served as a
reviewer and technical program committee
member in various journals and conferences.
His research interests include Internet
caching systems, wireless communications,
and network infrastructure security.

Yiu-Man Choi received his BSc of Computer
Studies from Macao Polytechnic Institute and
MSc of Electronic and Information
Engineering from Hong Kong City University.
Currently he works as Software Engineer at
ASL Automated Macau. His research interests
include inter-networking or the Internet
development.

Seng-Wa Lam received his B.Sc degree in
Computer Studies, from Macao Polytechnic
Institute. He is currently a software engineer at
Sociedade de Jogos de Macau who spends
much of his time developing applications using
Java.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 1, 2007

