
 

 

  
Abstract—In this paper, a new first-order logical framework and 

method of formalizing and verifying cryptographic protocols is 
presented. From the point of view of an intruder, the protocol and 
abilities of the intruder are modeled in Horn clauses. Based on 
deductive reasoning method, secrecy of cryptographic protocols is 
verified automatically, and if the secrecy is violated, attack scenarios 
can be presented through back-tracing.  The method has been 
implemented in an automatic verifier, many examples of protocols 
have been analyzed in less then 1s. 
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I. INTRODUCTION 

A cryptographic protocol is a precisely defined sequence of 
communication and computation steps using cryptographic 
mechanism, its aim is ensuring the security of the transaction 
and communication in network or distributed systems. The 
rapid extending of the internet causes a growing need for 
cryptographic protocols, but it is well known that the design of 
such protocols is difficult and error-prone. Therefore, it is 
necessary to study formal analysis methods and automatic 
verification tools for the cryptographic protocols. Researchers 
have adopted many theories and techniques to build automatic 
verification tools. The theories are mainly derived from 
logic[1,3,6], algebra[7,8,9], complexity theory[11,15] and 
automata theory[13], the popular techniques are model 
checking[14,16,17] and theorem proving[18,20, 3]. Verifiers 
based on model checking suffer from the problem of the state 
space explosion, while verifiers based on theorem proving 
usually need manual intervention. 

In this paper, we present a new formal approach for 
automatic verification of cryptographic protocols. This 
approach is fully automatic and terminable. The main 
contributions of the paper are: a general framework of 
formalizing cryptographic protocol and abilities of the intruder, 
a practical solving algorithm based on automatic reasoning, and 
a simple method to find the attack scenarios. 
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II. RELATED WORK 
The logic-based approach has been proved to be particularly 

well-suited for automation. Its early application in analysis of 
cryptographic protocol is Millen’s Interrogator[19]. Using 
Prolog, Interrogator searches for instantiations of a goal 
signifying the intruder’s knowledge of specified data which 
would lead to an insecure state. Interrogator can find protocol 
flaws successfully, but the search time varies significantly 
depending on the precise format of the protocol specification 
and the amount of information about the insecure state, and the 
search heuristics may prevent some flaws from being noticed. 

Combining the benefits of the finite state analysis and the 
inductive method, C.Weidenbach develops the automated 
theorem prover SPASS[3], in which the protocols are 
formalized in monadic first-order Horn logic. Based on sort 
resolution, he also proves that parts of the used first-order 
fragments can be decided. By taking Neumann-Stubblebine 
protocol as an executing instantiation, he shows that SPASS 
can automatically prove security properties of the protocol and 
detect potential errors of an implementation. 

Blanchet’s verifier[12] is another efficient automatic tool. It 
is based on logic programming and abstractions,  the protocol 
and attacker’s abilities are specified by means of Prolog rules, 
cryptographic primitives are represented by constructors and 
destructors, fresh values are modeled as functions of previously 
received messages of the principal. An abstraction is made by 
forgetting the number of times a message appears and 
remembering the fact that it has appeared. The state of 
principals is not explicitly maintained, principals’ rules are not 
ordered into runs, the same rule can be applied more than once 
and in different order with respect to the original protocol. 
These approximations may lead to giving “false attacks” 
despite they are rather rare. By a two-phase algorithm based on 
resolution and depth-first backward search, the verifier can 
prove the secrecy of   cryptographic protocols. 

III. 3. MODELING CRYPTOGRAPHIC PROTOCOLS 
 

Modeling the cryptographic protocol is the first step of 
protocol verification. We use first-order theory to formalize 
cryptographic protocols and intruders. The final form of our 
method is similar to Blanchet’s, but the modeling process is 
more regular and impersonal. 

We assume that messages transmitted by each principal can 
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be received by the intruder, and messages received by each 
principal can be known by the intruder. We test the security of 
cryptographic protocols at the standpoint of the intruder. The 
intruder holds some initial knowledge, he can get information 
by observing the communications between principals,  and gain 
knowledge by computing on the basis of known information. 
So, the protocol representation includes three parts: initial 
knowledge of the intruder, message exchange of the protocol 
itself, and computation abilities of the intruder. 
 

A. Syntax of protocol representation 
 

Our cryptographic protocol theory is expressed by terms, 
predicate and  implication rules.  

The terms represent messages that are exchanged between 
participants of the protocol. Constant symbols, variables, and 
function symbols are used to build terms. By convention, we 
use upper case to denote constants, lower case to denote 
variables, function and predicate begin with an upper letter. 

In order to deduct efficiently, we introduce term types to 
specify the structure of messages and perform type check 
before computation. Term  types  have the following structure. 

τ, τ’::=msg       message 
|princ       principal 
|nonce      nonce 
|ident       identifier 
|key            key 
|compmsg     compound message 

key::=shK        symmetric session key 
|pubK       public key 
|privK        private key 
|longtK       long-term key 

compmsg ::=H[τ]     hash value 
|SCτ, τ’ ]         symmetric cipher 
|AC[τ, τ’ ]  asymmetric message cipher 
|SN[τ, τ’ ]      signature 
|T[τ, τ’ ]   tuple 

A term has type τ can be represented by t: τ..Constant symbol 
can be A, B, S, I, … which represent principals and have type 
msg, or  terms which represent  keys, nonces, identifiers etc. A 
variable can represent any term. The typical function symbols 
appear as below:  

(m1,…,mn): tuple of messages, where mi(i=1,…n) has type 
msg. 

Host(x): identity of x: princ. 
Pk(x): public key of x: princ. 
Sk(x): private key of x: princ. 
E(m,k): encrypt m: msg with k: shK 
PE(m,pk): encrypt m: msg with pk: pubK 
SG(m, sk): sign m: msg with sk: privK 
H(m): hash of m: msg 
Hk(m, k): keyed hash of m under key k 
X(m, n): bitwise exclusive-or of m and n 
Inc(m): addition of  m by 1 

The function value has certain type too. 

The predicate has only one form of Intr(M) which means   
“intruder knows M”. The implication rules are used to 
formalize the protocol steps and intruder’s computation 
abilities. 

B. Protocol specification 
A protocol is composed of some communication steps 

executed by protocol principals. Every principal plays a 
different role in the protocol. Typically, the roles can be 
protocol initiator and responder, there often exits a trusted third 
party in the protocol too. We use axioms to depict the 
communicating actions of each role. The intruder can know all 
communications between the protocol roles. When a role 
receives a message, the intruder also know it, on the premise of 
receiving messages, the role would generate a new message and 
transmit it, the new message can be known by intruder too.  The 
predicate corresponding to role’s message receiving can be 
affiliated to the  axiom by logical connective ∧, and the 
predicate corresponding to role’s message transmitting can be 
the conclusion of the implication relation. The universal 
quantification ∀ is used to eliminate the limitation for protocol 
runs, and existential quantification ∃ is used to denote 
generating of key or nonce, and through renaming and 
consistency check, ensure the refreshness and boundlessness of 
the new value. For example, for the Denning-Sacco key 
distribution protocol  which can be expressed as follow: 

1．A→S: A, B 
2．S→A: Pk(A), Pk(B) 
3． A→B: Pk(A), Pk(B), PE(SG(k, Sk(A)), Pk(B)) 
4．B→A: E(s, k) 
where A and B are two principals whose goal is to establish 

a shared private key k. Pk (A) and Pk (B) are public keys of A 
and B respectively, they are contained in their digital 
certificates distributed by the trusted server S. Step 4 is not 
really part of the protocol, we include it for the purpose of 
secrecy verification.  

The input of protocol specification in our first order logic 
can be shown as below: 

Φi : A, B (Intr(Host(A), Host(B)) ∧ Intr(Pk(A), Pk(B)) → 
∃ k (Intr(pk(A), pk(B), PE (SG(k, Sk(A)), Pk(B))∧ 
Intr(E(s,k))))                                                                (1) 

Φr : ∀A, B ∀k (Intr(Pk(A), Pk(B), PE (SG(k, Sk(A)), 
 Pk(B))) → Intr(E(s,k)))                                            (2) 

Φs : ∀A, B (Intr(Host(A), Host(B)) →  
Intr(Pk(A),Pk(B)))                                                   (3)                     

The axiom Φi corresponds to the initiator role, Φr 
corresponds to the responder role, and Φs corresponds to the 
trusted server. 

For brevity, we transform the axioms into Horn clauses and 
remove the redundant facts, gain a set of clauses: 

∀A, B (Intr(Host (A), Host (B)))                                   (4) 
∀A, B ∃ k (Intr(Pk (A), Pk (B)) → 
 Intr(PE (SG(k, Sk (A)), Pk (B))))                                (5) 

∀A, B ∃ k (Intr(Pk (A), Pk (B)) → 
 Intr(E(s,k)))                                                                 (6) 
∀A, B ∀k (Intr(Pk (A), Pk (B), PE (SG(k, Sk (A)), Pk (B))) 
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 → Intr(E(s,k)))                                                          (7) 
∀A, B (Intr(Host (A), Host (B)) →  
Intr(Pk (A), Pk (B)))                                                  (8) 

Then, we use a new name to replace the existential 
quantifier by skolemization, for instance, k[x] stands for 
generating a new name k depending on x. 

The initiator roles can not restrict their sent messages to be 
accepted only by someone, and responder roles can not know 
where their received messages really come from. Assuming A 
and B are legal principals and they are willing to talk to any 
principals, we can transform (4)—(8) by removing the 
existential quantifiers and universal quantifiers, making 
resolution and eliminating the rules which are implicated by 
other rules[12], finally we gain formulae: 

Intr (Host (x))                                                               (9) 
Intr (Pk (x)) →  

Intr (PE (SG(k[Pk (x)], Sk (A)), Pk (x)))            (10)                                                           
Intr (Pk (x)) → Intr (E(s, k[Pk (x)]))                          (11) 
Intr (PE (SG(k, Sk (A)), Pk (B))) →  

Intr (E(s,k))                                                        (12) 
Intr (Host (x)) → Intr (Pk (x))                                   (1) 
In order to construct the attack trace later, each Horn clause 

above is associated with a message number according to its 
conclusion, and the message number can be passed to the new 
rule inferred by resolution. We can notice that the rule(10) and 
(12) are just the same rules representing the protocol in [12]. 
From the instantiation of  (9) and (13), we can obtain the 
intruder’s initial knowledge in [12]. 

C. The intruder’s  abilities 
Following Dolev-Yao Model, the protocol is executed in 

the presence of an intruder that can intercept all messages, 
generate new messages from the messages he has received, 
and send messages whenever he wants to do so. An intruder 
can gain information either by passive means, such as 
eavesdropping and taking advantage of public information, or 
by active means such as encrypting,  decrypting, 
reconstructing and replaying messages, impersonating other 
principals. So the computation abilities of the intruder can be 
represented as below: 

Compose:  Intr (n1) ∧ Intr (n2) ∧…∧ Intr (nk)→ 
 Intr (n1, n2, …nk) for every k ≥ 0                (14) 

Decompose:   Intr (n1, n2, …nk) → Intr (ni)  
for every k ≥ i ≥ 0                                    (15) 

Encrypt:   Intr (k) ∧ Intr (x) →  
Intr (E(x, k)), for k: key, x:msg                      (16) 

Decrypt:   Intr (E(x, k)) ∧ Intr (k) →  
Intr (x) , for k: key, x:msg                              (17) 

Public Encrypt:   Intr (x) ∧ Intr (Pk (y)) →  
Intr (PE(x, Pk (y))), for x:msg, y:princ        (18) 

Public Decrypt:   Intr (PE(x, Pk(y))) ∧ Intr (Sk(y)) → 
 Intr (x) , for x:msg, y:princ               (19) 

Sign:  Intr (x) ∧ Intr (Sk(y)) → 
 Intr (SG(x, Sk(y))) , for x:msg, y:princ               (20) 

Check Sign:   Intr (SG(x, Sk(y))) ∧ Intr (Pk(y)) → 
 Intr (x) , for x:msg, y:princ                    (21) 

Hash:   Intr (x) → Intr (H(x))                                          (22) 
Key Hash:  Intr (x) ∧ Intr (k) → Intr (H(x, k))                (23) 

Generate key:   Intr (Sk (x)) →  
Intr (Pk (x)) , for x, y:princ                    (24) 

Exclusive-or:   Intr (x) ∧ Intr (y) → Intr (X(x, y))           (25) 
The intruder’s abilities also contain his initial knowledge, 

such as: 
Secret Key:   Intr(Sk(I))                                                    (26) 
Public Key:   Intr(Pk(I))                                                  (27) 
Here, Sk(I) and Pk(I) are the secret key and public key of the 

intruder. (26) and (27) denote that the intruder knows his own 
secret key and public key. In addition, the intruder can gain 
some initial information about the protocol and principals, 
such as public keys of others. 

IV. VERIFYING THE SECRECY OF CRYPTOGRAPHIC PROTOCOL  
We adopt deductive reasoning method to verify the secrecy 

property of cryptographic protocols. If the intruder can not 
obtain any information about message M through interacting 
with the protocol, we say that the protocol keeps the secrecy of 
M.  

A. Verifying algorithm 
we consider the secrecy property as a goal, and check 

whether it can be inferred from the known rules. The known 
rules form a rule base B containing the Horn clauses of 
protocol description and abilities of the intruder. If the goal can 
be inferred from the base, the sequence of rules applied will 
lead to the description of an attack scenario. 

Definition 1 (Rule activation)  Let F be a fact, A rule is 
activated if its conclusion is unifiable with F. 

Definition 2 (Provability)  Let F be a closed fact, and B be 
a set of Horn clauses. F is provable from B, if and only if there 
exists a finite proof tree defined as follow: 

1. Its root node is F. 
2. Its parent nodes are all conclusions of activated Horn 

clause. A parent node and his son nodes denote a rule, parent 
node is the conclusion and son nodes are premises. 

3. Its leaf nodes are all closed facts which are contained in 
B or unifiable with facts in B. 

Theorem  If Intr(M) is not provable from the initial facts 
and rules of our notation, then M is secret. 

Prove  The functions of cryptographic primitives in our 
notation correspond to the constructor in [12], and rules of 
intruder’s abilities implicate the function of destructor. Rules 
representing the protocol are logical equivalence with the 
model of Selinger[10], we make a transform on the assumption 
that principal A is the legal initiator and B is the legal 
responder, this make A cannot play the role of B and 
vice-versa. This is one of the remarks of Branchet[12] too. By 
giving explicit names to subformulas, Selinger’ model can be 
translated to a linear logic model[2], from a linear logic model 
which is simplified with respect to the model[2], Branchet’s 
logic programming rules can be inferred, so our notation 
embodies Branchet’s prolog rules. Thus we can use the idea of 
secrecy of Branchet’s[12], if Intr(M) is not provable from the 
logic programming rules of our notation, it is not derivable 
from the Branchet’s notation, according to theorem 4 in [12], 
M is secret. 
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We use the converse deductive reasoning method to prove 
the secrecy, the prove tree is established by using Generalized 
Modus Ponens rule backwards. The simplified deductive 
algorithm can be described as below: 

Derive (B,F) returns a series of applied rules and a set of 
substitutions 

Trace_rule = {} 
Derive_list(B, [F],{}) 

End 
Derive_list(B, qlist, curr_subst, Trace_rule) 

If qlist is empty then return curr_subst, Trace_rule 
Sub={} 
Sort(qlist) 
Q←head(qlist) 
 for each atom sentence Pi’ in B such that σi ← Unify(Pi’, 
Q) succeeds and σi is in consistent with curr_subst do 

          Trace_rule = Trace_rule ∪ Pi’ 
Sub=sub∪ append(curr_subst, σi) 

end 
for each noncycle rule Ri =P1∧ P2∧…Pn→Qi in B such 
that σi ← Unify(Qi, Q) succeeds and σi is in consistent 
with curr_subst do 

 Trace_rule = Trace_rule ∪ Ri’ 
      sub= sub ∪Derive_list(B, (σiP1, σiP2,…σiPn), 

append(curr_subst, σi) , Trace_rule) 
end 
return the union of Derive_list(B, tail(qlist), curr_subst, 
Trace_rule) for each substitution ∈sub 

end 
A cycle rule is the rule which is activated just after their 

reverse computing rule has been activated. The Compose and 
Decompose, Encrypt and Decrypt, Public Encrypt and Public 
Decrypt, Sign and Check Sign rules are all mutual reverse. If  
the two reverse rules are activated in succession, it will cause 
non-termination. So these cases should be avoided. Otherwise, 
the search space is finite. 

B. Finding attacks 
From the proof tree for the secrecy of Denning-Sacco 

protocol, an intruder can know s which should be secret 
between principals A and B, if he knows the names of the 
principals and his own keys. We can find the attack trace by 
checking the recorded clause and substitution in reverse 
direction with that they are applied in the unification. Each 
clause associates a set of attack steps, the intruder obtains 
information by these steps, if he need some unknown 
information, a new session should be established. Each session 
has an identifier. The attack scenario is shown in table 1. 

In our discussion, we have ignored the timestamp in the 
message PE(SG((k,TA), skA), pkB) of step 3, so this attacker 
only succeeds in the condition of timestamp is fresh. 

V. EXPERIMENTAL RESULTS 
Based on our first order logic theory for the cryptographic 

protocols, we implement a prototype of protocol verifier in 
Visual C++, and perform tests on a Pentium Ⅳ 1.86GHz, 
512MB RAM, under Windows XP/2000/2003. By 22 

protocols’ verification, our method is proved to be efficient. 
These protocols are NSPK, NSSK, Otway-Rees, Wide 
Mouthed Frog, Yahalom, Denning-Sacco, needham, Andrew 
secure RPC, Carlsen’s Secret Key Initiator and ISO four-Path 
Authentication protocol and their transmutations, The 
minimum time is 110ms(for Denning-Sacco protocol), 
maximum time is 1547ms(for NSSK protocol), most protocol 
can be verified in 1s. The number  of rules approximates the 
Blanchet’s. However, the visualizing of the first order  proof 
search is the main superiority over other verifier. 

VI. CONCLUSION  
Using first order logic to verify cryptographic protocols is 

an efficient and practical approach. We choose to study 
protocol representation and reasoning using first order logic 
because it is by far the most studied and best understood 
scheme in artificial intelligence. Based on Delov-Yao model, 
we have constructed a general framework for formalizing the 
protocol and abilities of the intruder in Horn clauses. Using 
deductive reasoning method, we have realized the secrecy 
verification of cryptographic protocols, and presented a 
method of constituting attack scenario. Our future work will 
focus on study of the optimization of the solving algorithm, the 
goal is to analyze complicated protocols and verify more 
security properties of cryptographic protocols in a uniform 
mechanism. 

TABLE I 
AN ATTACK SCENARIO FOR DENNING-SACCO PROTOCOL 

Rule Substitution Attack scenario 
Intr(Pk (x11)) 
→ Intr(PE 
(SG(k[Pk 
(x11)], Sk(A)), 
Pk (x11))) 

I / x11 
 

1.A → I: A, I and I → S: A, I 
2.S → I: Pk (A), Pk (I) and I → A: Pk 
(A), Pk (I) 
3.A → I: Pk (A), Pk (I), PE (SG(k[Pk 
(I)], Sk (A)), Pk (I)) 

Intr(PE(x10, Pk 
(I))) ∧ 
Intr(Sk(I)) → 
Intr(x10) 

SG(k[Pk (I)], 
Sk (A)) /x10  

Decrypt PE (SG(k[Pk(I)], Sk (A)), 
PK), gain SG(k[Pk(I)] , Sk (A)) 

Intr(Host(x9)) B/x9 1’.A → I: A, B and I → S: A, B 
Intr(Pk (B)) B/x8 2’.S → I: Pk (A), Pk (B) and I → A: 

Pk (A), Pk (B) 
Intr(x7) ∧ 
Intr(Pk(y2)) → 
Intr(PE(x7, Pk 
(y2))) 

SG(k[Pk(I)], 
Sk (A)) /x7 
B/y2 

Encrypt SG(k[Pk(I)] , Sk (A)) with 
Pk (B) 
Gain PE (SG(k[Pk(I)], Sk (A)), Pk 
(B)) 

Intr (PE (SG(k, 
sk(A)), Pk (B))) 
→ Intr(E(s,k)) 

k=k[Pk(I)] 3’.A → I: Pk (A), Pk 
(B),PE(SG(k[Pk (B)], Sk (A)), Pk 
(B)) 
Replace PE(SG(k[Pk (B)], Sk (A)), 
Pk (B)) with PE (SG(k[Pk(I)], 
Sk(A)), Pk (B)) 
I → B: Pk (A), Pk (B), PE 
(SG(k[Pk(I)],Sk(A)), Pk (B)) 
B → I: Intr(E(s, k[Pk(I)])) 
I → A: Intr(E(s, k[Pk(I)])) 

Intr(SG(x2, 
Sk(y1))) ∧ 
Intr(Pk (y1)) → 
Intr(x2) 

A/y1, k= 
k[Pk(I)]/x2 

Check sign of SG(k[Pk(I)] , Sk(A)), 
gain k[Pk(I)] 

Intr(E(x1, k)) 
∧Intr(k) → 
Intr(x1) 

s/x1, 
k=k[Pk(I)] 

Decrypt E(s, k[Pk(I)]), gain s 
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