

Abstract—In this paper, a new first-order logical framework and

method of formalizing and verifying cryptographic protocols is
presented. From the point of view of an intruder, the protocol and
abilities of the intruder are modeled in Horn clauses. Based on
deductive reasoning method, secrecy of cryptographic protocols is
verified automatically, and if the secrecy is violated, attack scenarios
can be presented through back-tracing. The method has been
implemented in an automatic verifier, many examples of protocols
have been analyzed in less then 1s.

Keywords—Cryptographic protocol, First-order logic, Automatic
verification, Secrecy, Attack scenarios, Deductive reasoning.

I. INTRODUCTION

A cryptographic protocol is a precisely defined sequence of
communication and computation steps using cryptographic
mechanism, its aim is ensuring the security of the transaction
and communication in network or distributed systems. The
rapid extending of the internet causes a growing need for
cryptographic protocols, but it is well known that the design of
such protocols is difficult and error-prone. Therefore, it is
necessary to study formal analysis methods and automatic
verification tools for the cryptographic protocols. Researchers
have adopted many theories and techniques to build automatic
verification tools. The theories are mainly derived from
logic[1,3,6], algebra[7,8,9], complexity theory[11,15] and
automata theory[13], the popular techniques are model
checking[14,16,17] and theorem proving[18,20, 3]. Verifiers
based on model checking suffer from the problem of the state
space explosion, while verifiers based on theorem proving
usually need manual intervention.

In this paper, we present a new formal approach for
automatic verification of cryptographic protocols. This
approach is fully automatic and terminable. The main
contributions of the paper are: a general framework of
formalizing cryptographic protocol and abilities of the intruder,
a practical solving algorithm based on automatic reasoning, and
a simple method to find the attack scenarios.

Authors are with the Zhengzhou Information Science and Technology

Institute, Henan, CHINA 450004. The corresponding author is Jihong Han
(phone: 86-0371-63538431; fax: 86-0371-63538431; e-mail: hnhanjh@
yahoo.com) . Manuscript received January 5, 2007; Revised April 21, 2007

II. RELATED WORK
The logic-based approach has been proved to be particularly

well-suited for automation. Its early application in analysis of
cryptographic protocol is Millen’s Interrogator[19]. Using
Prolog, Interrogator searches for instantiations of a goal
signifying the intruder’s knowledge of specified data which
would lead to an insecure state. Interrogator can find protocol
flaws successfully, but the search time varies significantly
depending on the precise format of the protocol specification
and the amount of information about the insecure state, and the
search heuristics may prevent some flaws from being noticed.

Combining the benefits of the finite state analysis and the
inductive method, C.Weidenbach develops the automated
theorem prover SPASS[3], in which the protocols are
formalized in monadic first-order Horn logic. Based on sort
resolution, he also proves that parts of the used first-order
fragments can be decided. By taking Neumann-Stubblebine
protocol as an executing instantiation, he shows that SPASS
can automatically prove security properties of the protocol and
detect potential errors of an implementation.

Blanchet’s verifier[12] is another efficient automatic tool. It
is based on logic programming and abstractions, the protocol
and attacker’s abilities are specified by means of Prolog rules,
cryptographic primitives are represented by constructors and
destructors, fresh values are modeled as functions of previously
received messages of the principal. An abstraction is made by
forgetting the number of times a message appears and
remembering the fact that it has appeared. The state of
principals is not explicitly maintained, principals’ rules are not
ordered into runs, the same rule can be applied more than once
and in different order with respect to the original protocol.
These approximations may lead to giving “false attacks”
despite they are rather rare. By a two-phase algorithm based on
resolution and depth-first backward search, the verifier can
prove the secrecy of cryptographic protocols.

III. 3. MODELING CRYPTOGRAPHIC PROTOCOLS

Modeling the cryptographic protocol is the first step of
protocol verification. We use first-order theory to formalize
cryptographic protocols and intruders. The final form of our
method is similar to Blanchet’s, but the modeling process is
more regular and impersonal.

We assume that messages transmitted by each principal can

A Logic for Automatic Verification of
Cryptographic Protocols

Jihong Han, Zhiyong Zhou , and Yadi Wang

INTERNATIONAL JOURNAL of COMPUTERS,
Issue 1, Vol. 1, 2007

10

be received by the intruder, and messages received by each
principal can be known by the intruder. We test the security of
cryptographic protocols at the standpoint of the intruder. The
intruder holds some initial knowledge, he can get information
by observing the communications between principals, and gain
knowledge by computing on the basis of known information.
So, the protocol representation includes three parts: initial
knowledge of the intruder, message exchange of the protocol
itself, and computation abilities of the intruder.

A. Syntax of protocol representation

Our cryptographic protocol theory is expressed by terms,
predicate and implication rules.

The terms represent messages that are exchanged between
participants of the protocol. Constant symbols, variables, and
function symbols are used to build terms. By convention, we
use upper case to denote constants, lower case to denote
variables, function and predicate begin with an upper letter.

In order to deduct efficiently, we introduce term types to
specify the structure of messages and perform type check
before computation. Term types have the following structure.

τ, τ’::=msg message
|princ principal
|nonce nonce
|ident identifier
|key key
|compmsg compound message

key::=shK symmetric session key
|pubK public key
|privK private key
|longtK long-term key

compmsg ::=H[τ] hash value
|SCτ, τ’] symmetric cipher
|AC[τ, τ’] asymmetric message cipher
|SN[τ, τ’] signature
|T[τ, τ’] tuple

A term has type τ can be represented by t: τ..Constant symbol
can be A, B, S, I, … which represent principals and have type
msg, or terms which represent keys, nonces, identifiers etc. A
variable can represent any term. The typical function symbols
appear as below:

(m1,…,mn): tuple of messages, where mi(i=1,…n) has type
msg.

Host(x): identity of x: princ.
Pk(x): public key of x: princ.
Sk(x): private key of x: princ.
E(m,k): encrypt m: msg with k: shK
PE(m,pk): encrypt m: msg with pk: pubK
SG(m, sk): sign m: msg with sk: privK
H(m): hash of m: msg
Hk(m, k): keyed hash of m under key k
X(m, n): bitwise exclusive-or of m and n
Inc(m): addition of m by 1

The function value has certain type too.

The predicate has only one form of Intr(M) which means
“intruder knows M”. The implication rules are used to
formalize the protocol steps and intruder’s computation
abilities.

B. Protocol specification
A protocol is composed of some communication steps

executed by protocol principals. Every principal plays a
different role in the protocol. Typically, the roles can be
protocol initiator and responder, there often exits a trusted third
party in the protocol too. We use axioms to depict the
communicating actions of each role. The intruder can know all
communications between the protocol roles. When a role
receives a message, the intruder also know it, on the premise of
receiving messages, the role would generate a new message and
transmit it, the new message can be known by intruder too. The
predicate corresponding to role’s message receiving can be
affiliated to the axiom by logical connective ∧, and the
predicate corresponding to role’s message transmitting can be
the conclusion of the implication relation. The universal
quantification ∀ is used to eliminate the limitation for protocol
runs, and existential quantification ∃ is used to denote
generating of key or nonce, and through renaming and
consistency check, ensure the refreshness and boundlessness of
the new value. For example, for the Denning-Sacco key
distribution protocol which can be expressed as follow:

1．A→S: A, B
2．S→A: Pk(A), Pk(B)
3． A→B: Pk(A), Pk(B), PE(SG(k, Sk(A)), Pk(B))
4．B→A: E(s, k)
where A and B are two principals whose goal is to establish

a shared private key k. Pk (A) and Pk (B) are public keys of A
and B respectively, they are contained in their digital
certificates distributed by the trusted server S. Step 4 is not
really part of the protocol, we include it for the purpose of
secrecy verification.

The input of protocol specification in our first order logic
can be shown as below:

Φi : A, B (Intr(Host(A), Host(B)) ∧ Intr(Pk(A), Pk(B)) →
∃ k (Intr(pk(A), pk(B), PE (SG(k, Sk(A)), Pk(B))∧
Intr(E(s,k)))) (1)

Φr : ∀A, B ∀k (Intr(Pk(A), Pk(B), PE (SG(k, Sk(A)),
 Pk(B))) → Intr(E(s,k))) (2)

Φs : ∀A, B (Intr(Host(A), Host(B)) →
Intr(Pk(A),Pk(B))) (3)

The axiom Φi corresponds to the initiator role, Φr
corresponds to the responder role, and Φs corresponds to the
trusted server.

For brevity, we transform the axioms into Horn clauses and
remove the redundant facts, gain a set of clauses:

∀A, B (Intr(Host (A), Host (B))) (4)
∀A, B ∃ k (Intr(Pk (A), Pk (B)) →
 Intr(PE (SG(k, Sk (A)), Pk (B)))) (5)

∀A, B ∃ k (Intr(Pk (A), Pk (B)) →
 Intr(E(s,k))) (6)
∀A, B ∀k (Intr(Pk (A), Pk (B), PE (SG(k, Sk (A)), Pk (B)))

INTERNATIONAL JOURNAL of COMPUTERS,
Issue 1, Vol. 1, 2007

11

 → Intr(E(s,k))) (7)
∀A, B (Intr(Host (A), Host (B)) →
Intr(Pk (A), Pk (B))) (8)

Then, we use a new name to replace the existential
quantifier by skolemization, for instance, k[x] stands for
generating a new name k depending on x.

The initiator roles can not restrict their sent messages to be
accepted only by someone, and responder roles can not know
where their received messages really come from. Assuming A
and B are legal principals and they are willing to talk to any
principals, we can transform (4)—(8) by removing the
existential quantifiers and universal quantifiers, making
resolution and eliminating the rules which are implicated by
other rules[12], finally we gain formulae:

Intr (Host (x)) (9)
Intr (Pk (x)) →

Intr (PE (SG(k[Pk (x)], Sk (A)), Pk (x))) (10)
Intr (Pk (x)) → Intr (E(s, k[Pk (x)])) (11)
Intr (PE (SG(k, Sk (A)), Pk (B))) →

Intr (E(s,k)) (12)
Intr (Host (x)) → Intr (Pk (x)) (1)
In order to construct the attack trace later, each Horn clause

above is associated with a message number according to its
conclusion, and the message number can be passed to the new
rule inferred by resolution. We can notice that the rule(10) and
(12) are just the same rules representing the protocol in [12].
From the instantiation of (9) and (13), we can obtain the
intruder’s initial knowledge in [12].

C. The intruder’s abilities
Following Dolev-Yao Model, the protocol is executed in

the presence of an intruder that can intercept all messages,
generate new messages from the messages he has received,
and send messages whenever he wants to do so. An intruder
can gain information either by passive means, such as
eavesdropping and taking advantage of public information, or
by active means such as encrypting, decrypting,
reconstructing and replaying messages, impersonating other
principals. So the computation abilities of the intruder can be
represented as below:

Compose: Intr (n1) ∧ Intr (n2) ∧…∧ Intr (nk)→
 Intr (n1, n2, …nk) for every k ≥ 0 (14)

Decompose: Intr (n1, n2, …nk) → Intr (ni)
for every k ≥ i ≥ 0 (15)

Encrypt: Intr (k) ∧ Intr (x) →
Intr (E(x, k)), for k: key, x:msg (16)

Decrypt: Intr (E(x, k)) ∧ Intr (k) →
Intr (x) , for k: key, x:msg (17)

Public Encrypt: Intr (x) ∧ Intr (Pk (y)) →
Intr (PE(x, Pk (y))), for x:msg, y:princ (18)

Public Decrypt: Intr (PE(x, Pk(y))) ∧ Intr (Sk(y)) →
 Intr (x) , for x:msg, y:princ (19)

Sign: Intr (x) ∧ Intr (Sk(y)) →
 Intr (SG(x, Sk(y))) , for x:msg, y:princ (20)

Check Sign: Intr (SG(x, Sk(y))) ∧ Intr (Pk(y)) →
 Intr (x) , for x:msg, y:princ (21)

Hash: Intr (x) → Intr (H(x)) (22)
Key Hash: Intr (x) ∧ Intr (k) → Intr (H(x, k)) (23)

Generate key: Intr (Sk (x)) →
Intr (Pk (x)) , for x, y:princ (24)

Exclusive-or: Intr (x) ∧ Intr (y) → Intr (X(x, y)) (25)
The intruder’s abilities also contain his initial knowledge,

such as:
Secret Key: Intr(Sk(I)) (26)
Public Key: Intr(Pk(I)) (27)
Here, Sk(I) and Pk(I) are the secret key and public key of the

intruder. (26) and (27) denote that the intruder knows his own
secret key and public key. In addition, the intruder can gain
some initial information about the protocol and principals,
such as public keys of others.

IV. VERIFYING THE SECRECY OF CRYPTOGRAPHIC PROTOCOL
We adopt deductive reasoning method to verify the secrecy

property of cryptographic protocols. If the intruder can not
obtain any information about message M through interacting
with the protocol, we say that the protocol keeps the secrecy of
M.

A. Verifying algorithm
we consider the secrecy property as a goal, and check

whether it can be inferred from the known rules. The known
rules form a rule base B containing the Horn clauses of
protocol description and abilities of the intruder. If the goal can
be inferred from the base, the sequence of rules applied will
lead to the description of an attack scenario.

Definition 1 (Rule activation) Let F be a fact, A rule is
activated if its conclusion is unifiable with F.

Definition 2 (Provability) Let F be a closed fact, and B be
a set of Horn clauses. F is provable from B, if and only if there
exists a finite proof tree defined as follow:

1. Its root node is F.
2. Its parent nodes are all conclusions of activated Horn

clause. A parent node and his son nodes denote a rule, parent
node is the conclusion and son nodes are premises.

3. Its leaf nodes are all closed facts which are contained in
B or unifiable with facts in B.

Theorem If Intr(M) is not provable from the initial facts
and rules of our notation, then M is secret.

Prove The functions of cryptographic primitives in our
notation correspond to the constructor in [12], and rules of
intruder’s abilities implicate the function of destructor. Rules
representing the protocol are logical equivalence with the
model of Selinger[10], we make a transform on the assumption
that principal A is the legal initiator and B is the legal
responder, this make A cannot play the role of B and
vice-versa. This is one of the remarks of Branchet[12] too. By
giving explicit names to subformulas, Selinger’ model can be
translated to a linear logic model[2], from a linear logic model
which is simplified with respect to the model[2], Branchet’s
logic programming rules can be inferred, so our notation
embodies Branchet’s prolog rules. Thus we can use the idea of
secrecy of Branchet’s[12], if Intr(M) is not provable from the
logic programming rules of our notation, it is not derivable
from the Branchet’s notation, according to theorem 4 in [12],
M is secret.

INTERNATIONAL JOURNAL of COMPUTERS,
Issue 1, Vol. 1, 2007

12

We use the converse deductive reasoning method to prove
the secrecy, the prove tree is established by using Generalized
Modus Ponens rule backwards. The simplified deductive
algorithm can be described as below:

Derive (B,F) returns a series of applied rules and a set of
substitutions

Trace_rule = {}
Derive_list(B, [F],{})

End
Derive_list(B, qlist, curr_subst, Trace_rule)

If qlist is empty then return curr_subst, Trace_rule
Sub={}
Sort(qlist)
Q←head(qlist)
 for each atom sentence Pi’ in B such that σi ← Unify(Pi’,
Q) succeeds and σi is in consistent with curr_subst do

 Trace_rule = Trace_rule ∪ Pi’
Sub=sub∪ append(curr_subst, σi)

end
for each noncycle rule Ri =P1∧ P2∧…Pn→Qi in B such
that σi ← Unify(Qi, Q) succeeds and σi is in consistent
with curr_subst do

 Trace_rule = Trace_rule ∪ Ri’
 sub= sub ∪Derive_list(B, (σiP1, σiP2,…σiPn),

append(curr_subst, σi) , Trace_rule)
end
return the union of Derive_list(B, tail(qlist), curr_subst,
Trace_rule) for each substitution ∈sub

end
A cycle rule is the rule which is activated just after their

reverse computing rule has been activated. The Compose and
Decompose, Encrypt and Decrypt, Public Encrypt and Public
Decrypt, Sign and Check Sign rules are all mutual reverse. If
the two reverse rules are activated in succession, it will cause
non-termination. So these cases should be avoided. Otherwise,
the search space is finite.

B. Finding attacks
From the proof tree for the secrecy of Denning-Sacco

protocol, an intruder can know s which should be secret
between principals A and B, if he knows the names of the
principals and his own keys. We can find the attack trace by
checking the recorded clause and substitution in reverse
direction with that they are applied in the unification. Each
clause associates a set of attack steps, the intruder obtains
information by these steps, if he need some unknown
information, a new session should be established. Each session
has an identifier. The attack scenario is shown in table 1.

In our discussion, we have ignored the timestamp in the
message PE(SG((k,TA), skA), pkB) of step 3, so this attacker
only succeeds in the condition of timestamp is fresh.

V. EXPERIMENTAL RESULTS
Based on our first order logic theory for the cryptographic

protocols, we implement a prototype of protocol verifier in
Visual C++, and perform tests on a Pentium Ⅳ 1.86GHz,
512MB RAM, under Windows XP/2000/2003. By 22

protocols’ verification, our method is proved to be efficient.
These protocols are NSPK, NSSK, Otway-Rees, Wide
Mouthed Frog, Yahalom, Denning-Sacco, needham, Andrew
secure RPC, Carlsen’s Secret Key Initiator and ISO four-Path
Authentication protocol and their transmutations, The
minimum time is 110ms(for Denning-Sacco protocol),
maximum time is 1547ms(for NSSK protocol), most protocol
can be verified in 1s. The number of rules approximates the
Blanchet’s. However, the visualizing of the first order proof
search is the main superiority over other verifier.

VI. CONCLUSION
Using first order logic to verify cryptographic protocols is

an efficient and practical approach. We choose to study
protocol representation and reasoning using first order logic
because it is by far the most studied and best understood
scheme in artificial intelligence. Based on Delov-Yao model,
we have constructed a general framework for formalizing the
protocol and abilities of the intruder in Horn clauses. Using
deductive reasoning method, we have realized the secrecy
verification of cryptographic protocols, and presented a
method of constituting attack scenario. Our future work will
focus on study of the optimization of the solving algorithm, the
goal is to analyze complicated protocols and verify more
security properties of cryptographic protocols in a uniform
mechanism.

TABLE I
AN ATTACK SCENARIO FOR DENNING-SACCO PROTOCOL

Rule Substitution Attack scenario
Intr(Pk (x11))
→ Intr(PE
(SG(k[Pk
(x11)], Sk(A)),
Pk (x11)))

I / x11

1.A → I: A, I and I → S: A, I
2.S → I: Pk (A), Pk (I) and I → A: Pk
(A), Pk (I)
3.A → I: Pk (A), Pk (I), PE (SG(k[Pk
(I)], Sk (A)), Pk (I))

Intr(PE(x10, Pk
(I))) ∧
Intr(Sk(I)) →
Intr(x10)

SG(k[Pk (I)],
Sk (A)) /x10

Decrypt PE (SG(k[Pk(I)], Sk (A)),
PK), gain SG(k[Pk(I)] , Sk (A))

Intr(Host(x9)) B/x9 1’.A → I: A, B and I → S: A, B
Intr(Pk (B)) B/x8 2’.S → I: Pk (A), Pk (B) and I → A:

Pk (A), Pk (B)
Intr(x7) ∧
Intr(Pk(y2)) →
Intr(PE(x7, Pk
(y2)))

SG(k[Pk(I)],
Sk (A)) /x7
B/y2

Encrypt SG(k[Pk(I)] , Sk (A)) with
Pk (B)
Gain PE (SG(k[Pk(I)], Sk (A)), Pk
(B))

Intr (PE (SG(k,
sk(A)), Pk (B)))
→ Intr(E(s,k))

k=k[Pk(I)] 3’.A → I: Pk (A), Pk
(B),PE(SG(k[Pk (B)], Sk (A)), Pk
(B))
Replace PE(SG(k[Pk (B)], Sk (A)),
Pk (B)) with PE (SG(k[Pk(I)],
Sk(A)), Pk (B))
I → B: Pk (A), Pk (B), PE
(SG(k[Pk(I)],Sk(A)), Pk (B))
B → I: Intr(E(s, k[Pk(I)]))
I → A: Intr(E(s, k[Pk(I)]))

Intr(SG(x2,
Sk(y1))) ∧
Intr(Pk (y1)) →
Intr(x2)

A/y1, k=
k[Pk(I)]/x2

Check sign of SG(k[Pk(I)] , Sk(A)),
gain k[Pk(I)]

Intr(E(x1, k))
∧Intr(k) →
Intr(x1)

s/x1,
k=k[Pk(I)]

Decrypt E(s, k[Pk(I)]), gain s

INTERNATIONAL JOURNAL of COMPUTERS,
Issue 1, Vol. 1, 2007

13

REFERENCES
[1] M. Burrows, M. Abadi, and R. Needham. A logic of authentication.

Proceedings of the Royal Society, Series A, 1989, 426(1871),pp.233–271.
Also appeared as SRC Research Report 39 and, in a shortened form, in
ACM Transactions on Computer Systems 8, 1 (February 1990), pp.18-36.

[2] I. Cervesato, N. Durgin, P. Lincoln, J. Mitchell, and A. Scedrov. A
meta-notation for protocol analysis. In P. Syverson, editor, 12-th IEEE
Computer Security Foundations Workshop. IEEE Computer Society
Press, 1999.

[3] Weidenbach, C. 1999. Towards an automatic analysis of security protocols
in first-order logic. In 16th International Conference on Automated
Deduction (CADE-16), H. Ganzinger, Ed. Lecture Notes in Artificial
Intelligence, vol. 1632. Springer-Verlag, Berlin, Germany, pp.314-328.

[4] Durgin, N., Mitchell, J., and Pavlovic, D. 2001. A compositional logic for
protocol correctness. In 14th IEEE Computer Security Foundations
Workshop (CSFW-14). IEEE Computer Society, Los Alamitos, CA,
pp.241–255.

[5] Debbabi, M., Mejri, M., Tawbi, N., and Yahmadi, I. 1997. A new
algorithm for the automatic verification of authentication protocols: From
specifications to flaws and attack scenarios. In Proceedings of the
DIMACS Workshop on Design and Formal Verification of Security
Protocols. Rutgers University, New Jersey.

[6] M.Bozzano, G.Delzanno. Automated Protocol Verification in Linear
Logic. PPDP 2002.38-49.

[7] Steve Schneider. Security Properties and CSP. In Proceedings of the 1996
IEEE Symposium on Security and Privacy. IEEE Computer Society Press,
May 1996, pp. 174-187.

[8] Abadi, M. and Fournet, C. 2001. Mobile values, new names, and secure
communication. In Proceedings of the 28th Annual ACM Symposium on
Principles of Programming Languages (POPL’01). ACM Press,
New-York, NY, pp.104–115.

[9] Abadi, M. and Gordon, A. D. 1999. A calculus for cryptographic
protocols: The spi calculus. Information and Computation 148, 1 (Jan.),
1–70. An extended version appeared as DigitalEquipment Corporation
Systems Research Center report No. 149, January 1998.

[10] Selinger, P. 2001. Models for an adversary-centric protocol logic. In
Proceedings of the 1st Workshop on Logical Aspects of Cryptographic
Protocol Verification (Paris, France), J. Goubault-Larrecq, Ed. Electronic
Notes in Theoretical Computer Science, vol. 55(1). Elsevier, Amsterdam,
The Netherlands, pp.73–88.

[11] M.Bellare and P.Rogaway. Provably secure session key distribution—the
three party case. In Proceedings of the 27th ACM Symposium on the
Theory of computing,1995.

[12] Blanchet, B. 2001. An efficient cryptographic protocol verifier based on
Prolog rules. In 14th IEEE Computer Security Foundations Workshop
(CSFW-14). IEEE Computer Society, Los Alamitos, CA, pp.82–96.

[13] D.Monniaux. Abstracting Cryptographic Protocols with Tree Automata.
In Static Analysis Symposium(SAS’99), volume 1694 of Lecture Notes on
Computer Science. Springer Verlag, Sept.1999,pp.149-163.

[14] Mitchell, J.C. Finite-state analysis of security protocols, in A.J.Hu &
M.Y.Vardi,eds,’Computer Aided Verification(CAV-98):10th International
Conference’, Vol.1427 of LNCS, Springer,pp.71-76.

[15] Lincoln, P., Mitchell, J., Mitchell, M., and Scedrov, A. 1998. A
probabilistic poly-time framework for protocol analysis. In Proceedings of
the Fifth ACM Conference on Computer and Communications Security.
ACM Press, New-York, NY, pp.112–121.

[16]W.Marrero,E.Clarke, and S.Jha. Model checking for security
protocols.Technical Report CMU-CS-97-139, School of Computer
Science, Carnegie Mellon University, May 1997.

[17]J.C.Mitchell, M.Mitchell, and U.Stern. Automated Analysis of
Cryptographic Protocols Using Murϕ. In Proceedings of the 1997 IEEE
Symposium on Security and Privacy,1997,pp.141-151.

[18] Paulson, L. C. 1998. The inductive approach to verifying cryptographic
protocols. Journal of Computer Security 6, 1–2, pp.85–128.

[19] J.K.Millen,S.C.Clark, and S.B.Freedman.The Interrogator: Protocol
Security Analysis. IEEE Transactions on Software Engineering,
SE-13(2), Feb.1987, pp.274-288.

[20] E.Cohen.TAPS: A First-Order Verifier for Cryptographic Protocols.
CSFW 2000,pp.144-158.

INTERNATIONAL JOURNAL of COMPUTERS,
Issue 1, Vol. 1, 2007

14

