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Abstract— Fractional Gaussian noise (FGN) is a commonly used 

model of computer network traffic time series with long-range 
dependence (LRD). It has been realized that FGN may not be enough 
to accurately model real traffic. However, quantitative evidence about 
this is seldom reported. To this end, this paper gives quantitative 
descriptions, based on processing real traffic, on the error order of 
magnitude for modeling autocorrelation functions of interarrival times 
of four types of traffic, namely, TCP, UDP, IP, OTHER, using FGN. 
The present results exhibit that modeling accuracy, which is expressed 
by mean square error, by using FGN is usually in the order of 
magnitude of 10−3. The main reason to cause error by using FGN 
model is that FGN might not satisfactorily fit the short-term lags of real 
traffic. 
 

Keywords— Time series; Fractional Gaussian noise; Long-range 
dependence; Interarrival time series of network traffic; Curve fitting. 

I. INTRODUCTION 
IME series with long-range dependence (LRD) has been 
widely studied in many fields of sciences and engineering, 

including network traffic (traffic for short), see e.g. [1, 2] and 
references therein. Fractional Gaussian noise (FGN) is a 
commonly used model of traffic, see e.g. [3-11]. 

Computer scientists have noticed that FGN may not be 
enough for accurately modeling autocorrelation function (ACF) 
of real traffic, see e.g. [10,11,12,13], but quantitative 
description with respect to the error order of magnitude of the 
curve fitting of ACF using FGN is rarely seen. In addition, the 
cause of error resulted from the curve fitting of ACF modeling 
using FGN is seldom reported. In this paper, we shall give 
quantitative descriptions of the error order of magnitude of the 
curve fitting of ACF modeling using FGN. Besides, we shall 
point out that the main cause of the error of the curve fitting is 
that FGN might not satisfactorily fit the short-term lags of real 
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traffic. The traffic series investigated in this research is 
interarrival time series in computer communications networks. 

Let x[t(i)] be a traffic time series, indicating the number of 
bytes in the ith packet at the time t(i), where i ∈ I (= 0, 1, 2, …). 
We call t(i) timestamp series, implying the timestamp of the ith 
packet. Let the increment series of t(i) be 

s(i) = t(i + 1) − t(i).                                                   (1) 
Then, s(i) is called interarrival time series of x[t(i)]. 

Note 1. x[t(i)] and s(i) are non-negative while t(i) is 
non-decreasing. □ 

Experimental processing of actual traffic exhibits that x is of 
LRD. The letter [14] briefs the LRD property of s(i). This paper 
experimentally studies four types of traffic of 28 series. They 
are TCP traffic, UDP traffic, IP traffic and OTHER one, where 
TCP means Transmission Control Protocol, UDP implies User 
Datagram Protocol, IP stands for Internet Protocol, and OTHER 
traffic represents non-TCP, non-UDP, non-encapsulated traffic. 

In the rest of paper, Section 2 describes the preliminaries. 
Experimental investigations are given in Section 3. Section 4 
concludes the paper. 

II. PRELIMINARIES 

A. FBM and FGN 
Let B(t), t ∈ (0, ∞), be Brownian motion. Let BH(t) be 

fractional Brownian motion (FBM) with H ∈ (0, 1). Let Γ(⋅) be 
Gamma function. Then, 
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Let the increment series of BH(t) be 
( ) ( ) ( ),H HG t B t a B t= + −                                      (3) 

where a is a real number. Then, G(t) is called FGN. Denote 
2 1( ) (1 2 )cos( )H H Hσ π π−= Γ −  

the intensity of FGN [15]. Then, the ACF of FGN for τ > 0 is 
given by 
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2
2 2 2( ) [( 1) 2 ( 1) ].

2
H H Hσρ τ τ τ τ= + − + −                    (4) 

The normalized ACF of FGN is given by 
2 2 21( ) [( 1) 2 ( 1) ].

2
H H HR τ τ τ τ= + − + −                         (5) 

Below, we use R(k) (k is integer) to indicate the ACF of FGN in 
the discrete case. 

Note 2. A series is of LRD if its ACF is non-summable and it 
is of short-range dependence (SRD) if its ACF is summable [2]. 
□ 

Note 3. FGN for H ∈ (0.5, 1) is of LRD while it is of SRD for 
H ∈ (0, 0.5). □ 

B. H Estimation 
The parameter H plays a vital role in time series with LRD. 

There are various methods for H estimation, see e.g., [1, 2]. This 
paper uses the method introduced in [8]. 

A series measured in practice is of finite length. In fact, it is of 
finite length when numeric computation is involved. Let R be 
the ACF of a traffic series s(i) with LRD. Then, for H ∈ (0.5, 1), 

R(k) = 2
{[ ( ) ][ ( ) ]}E s i k s iµ µ

σ
+ − − ~ 2 2Hck − (k → ∞), 

where c > 0 is a constant, µ = E(s), where E is the mean operator. 
Without losing generality, the maximum possible length of R is 
assumed to be N. Define the norm of R as the inner product 
given by 
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is a Hilbert space [8,16]. 
Define the set E as 

E = 2 2 2{ ;  ( ) 0.5[( 1) 2 ( 1) ], (0.5,  1)},H H HR R k k k k H= + − + − ∈  
(k = 0, 1, …, N − 1),               (8) 

Then, 
E 2 .Nl⊆                                                                          (9) 

According to the theorem of existence of a unique minimizing 
element in Hilbert space [8,16], for an ACF of a real series 

2 ,Nr l∈ there exists a unique R ∈ E such that 

inf
a

r R r a
∈

− = −
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Let 

J(H) = 21 [ ( ; ) ( ; )] .
k

r k H R k H
N

−∑                              (11) 

Then, minimizing J(H) yields an estimate 
0 arg min ( ).H J H=                                                     (12) 

The value of J(H0) is the minimum mean square error, which is 
denoted by M2(R) = E[(r − R)2]. 

The research thought is stated like this. By investigating the 
M2(R)s of 28 real traces, we may experimentally observe the 

error order of magnitude by the curve fitting of ACF modeling. 
Moreover, we may explore the possible cause that produces 
errors by using FGN model. 

III. EXPERIMENTAL INVESTIGATIONS 

A. Real Data Used  
Real data used in this paper consist of 28 series. They are 6 

series of TCP traffic (Table 1), 10 series of UDP traffic (Tables 
2 and 3), 6 of IP traffic (Table 4), and 6 of OTHER traffic 
(Table 5). The series with the prefix DEC were measured at 
Digital Equipment Corporation, those with Lbl were recoded at 
the Lawrence Berkeley Laboratory, and the series with NUS 
were collected at the National Univeristy of Singpaore. In 
Tables 1-5, the first column stands for series name, the second 
for record date, and the third for series length. We denote R(k) 
by R(k; H) for facilitating the illustrations in what follows. 

B. Demonstrations 
Demonstration with DEC-pkt-1.TCP: The series x[t(i)] of 

DEC-pkt-1.TCP is indicated in Fig. 1 (a) and timestamp series 
t(i) is in Fig. 1 (b). The interarrival series s(i) is in Fig. 2. The 
measured ACF of s(i) is shown in Fig. 3 (a). Minimizing J(H) 
yields H0 = 0.923 with M2(R) = 2.264×10−3. Therefore, the 
modeled ACF R(k) of s(i) of DEC-pkt-1.TCP using FGN is 
indicated in Fig. 3 (b). Fig. 3(c) shows the fitting the data. By 
eye, one sees that FGN does not satisfactorily fits the ACF of 
s(i) of DEC-pkt-1.TCP for short-term lags. 
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Fig. 1. Real traffic series DEC-pkt-1.TCP. (a). series in packet size 
x[t(i)]. (b) Timestamp series t(i). 
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Fig. 2. Interarrival series s(i) of DEC-pkt-1.TCP. 
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(c) ⎯⎯ r(k), ⋯⋯ R(k). 

Fig. 3. Modeling procedure. (a). r(k): Measured ACF of s(i) of 
DEC-pkt-1.TCP. (b). R(k): Modeled ACF based on FGN. (c). Fitting 

the data. 
 
Demonstration with DEC-pkt-1.UDP: Real series t(i) for 

DEC-pkt-1.UDP is shown in Fig. 4 and s(i) in Fig. 5, 
resepctively. The measured ACF of s(i) is shown in Fig. 6 (a). 
Minimizing J yields H0 = 0.945 with M2(R) = 6.09×10−3. Fig. 6 
(b) indicates the modeled ACF using FGN and Fig. 6 (c) shows 
the fitting the data of ACF of s(i) of DEC-pkt-1.UDP based on 
FGN. 

0 1000 2000 3000 4000
0

10

20

i

t(i
), 

S

   

 
Fig. 4. Real series t(i) for DEC-pkt-1.UDP. 
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Fig. 5. Real series s(i) for DEC-pkt-1.UDP. 
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(c) ⎯⎯ r(k), ⋯⋯ R(k). 

Fig. 6. Modeling procedure. (a). Measured ACF of s(i) of 
DEC-pkt-1.UDP. (b). R(k): Modeled ACF based on FGN. (c). Fitting 

the data. 
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Demonstration with DEC-pkt-1.IP: Timestamp series for 

DEC-pkt-1.IP is plotted in Fig. 7 and s(i) in Fig. 8. The 
measured ACF of s(i) is in Fig. 9 (a). Minimizing J yields H0 = 
0.958 with M2(R) = 4.133×10−3. Fig. 9 (b) indicates the modeled 
ACF R(k) of s(i) of DEC-pkt-1.IP using FGN and Fig. 9 (c) 
fitting the data. 
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Fig. 7. Real series t(i) for DEC-pkt-1.IP. 
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Fig. 8. Real series s(i) for DEC-pkt-1.IP. 
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(c) ⎯⎯ r(k), ⋯⋯ R(k). 

Fig. 9. Modeling procedure. (a). Measured ACF of s(i) of 
DEC-pkt-1.IP. (b). R(k): Modeled ACF based on FGN. (c). Fitting the 

data. 
 
Demonstration with DEC-pkt-1.OTHER: The series t(i) of 

DEC-pkt-1.OTHER is indicated in Fig. 10 and s(i) in Fig. 11. 
The measured ACF of s(i) is in Fig. 12 (a). Minimizing J yields 
H0 = 0.937 with M2(R) = 5.038×10−3. Fig. 12 (b) indicates the 
modeled ACF model of s(i) of DEC-pkt-1.OTHER using FGN. 
Fig. 12 (c) gives the fitting the data. 
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Fig. 10. Real series t(i) for DEC-pkt-1.OTHER. 
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Fig. 11. Real series s(i) for DEC-pkt-1.OTHER. 
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(c) ⎯⎯ r(k), ⋯⋯ R(k). 

Fig. 12. Modeling procedure. (a). Measured ACF of s(i) of 
DEC-pkt-1.OTHER. (b). R(k): Modeled ACF based on FGN. (c). 

Fitting the data. 

C. Summary 
We summarize the experimental results for all 28 series in the 

columns 5-6 in Tables 1-4, where the fourth column stands for H 
estimate and the fifth for M2(R). 

 
Table 1. Six real series of TCP traffic. 
Series name Record date Series length H0 M2(R) 

DEC-pkt-1.TCP 08Mar95 3.3×106 0.923 2.264×10−3 

DEC-pkt-2.TCP 09Mar95 3.9×106 0.920 2.282×10−3 

DEC-pkt-3.TCP 09Mar95 4.3×106 0.925 2.270×10−3 

DEC-pkt-4.TCP 09Mar95 5.7×106 0.922 2.320×10−3 

Lbl-pkt-4.TCP 21Jan94 862946 0.930 2.208×10−3 

Lbl-pkt-5.TCP 28Jan94 710614 0.925 2.220×10−3 

 
Table 2. Four real series of UDP traffic. 

Series name Record date Series length H0  M2(R) 

NUS-1.UDP 24Mar03 1×106 0.920 3.654×10−3 

NUS-2.UDP 24Mar03 1×106 0.915 3.469×10−3 

NUS-3.UDP 26Mar03 1×106 0.915 3.415×10−3 

NUS-4.UDP 26Mar03 1×106 0.920 3.534×10−3 

 
 
 
 
 
 

 
Table 3. Six real series of UDP traffic. 
Series name Record date Series length H0 M2(R) 

DEC-pkt-1.UDP 08Mar95 829759 0.935 7.729×10−3 

DEC-pkt-2.UDP 09Mar95 805802 0.935 2.881×10−3 

DEC-pkt-3.UDP 09Mar95 1035457 0.935 2.883×10−3 

DEC-pkt-4.UDP 09Mar95 1187454 0.935 2.886×10−3 

Lbl-pkt-4.UDP 21Jan94 33744 0.904 2.886×10−3 

Lbl-pkt-5.UDP 28Jan94 69358 0.875 2.182×10−3 

 
Table 4. Six real series of IP traffic. 

Series name Record date Series length H0 M2(R) 

DEC-pkt-1.IP 08Mar95 225237 0.955 2.416×10−3 

DEC-pkt-2.IP 09Mar95 335556 0.938 2.884×10−3 

DEC-pkt-3.IP 09Mar95 325833 0.900 2.517×10−3 

DEC-pkt-4.IP 09Mar95 511287 0.935 2.624×10−3 

Lbl-pkt-4.IP 21Jan94 303055 0.890 4.264×10−3 

Lbl-pkt-5.IP 28Jan94 195241 0.890 4.312×10−3 

 
Table 5. Six real series of OTHER traffic. 
Series name Record date Series length H0 M2(R) 

DEC-pkt-1.OTHER 08Mar95 74135 0.931 2.893×10−3

DEC-pkt-2.OTHER 09Mar95 78021 0.931 3.040×10−3

DEC-pkt-3.OTHER 09Mar95 105410 0.931 2.874×10−3

DEC-pkt-4.OTHER 09Mar95 92361 0.931 2.662×10−3

Lbl-pkt-4.OTHER 21Jan94 121140 0.878 1.105×10−3

Lbl-pkt-5.OTHER 28Jan94 401231 0.890 2.012×10−3

 

IV. CONCLUSION 
The results in Tables 1-5 suggest that s(i) of traffic (TCP, 

UDP, IP, OTHER) is of LRD and the modeling accuracy of 
ACF based on FGN is in the order of magnitude of 10−3. The 
plots in Fig. 3 (c), Fig. 6 (c), Fig. 9 (c), and Fig. 12 (c) imply that 
FGN may not satisfactorily fit the short-term lags of those traffic 
data. This might likely be the main error source with respect to 
the curve fitting of ACF modeling based on FGN. 
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