
 

 

  
Abstract— This paper studies the inverse of min-plus convolution, 

i.e., min-plus deconvolution, in the set of non-negative, wide-sense 
increasing and causal functions. A sufficient condition for min-plus 
deconvolution to be closed in this set of functions is presented. 
Possible application of min-plus deconvolution to the service curve 
design is discussed. 
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I. INTRODUCTION 
ETWORK calculus gains applications to real-time 
communications, intrusion detection, and so forth, see e.g. 

[1-6], where min-plus convolution plays a role. Define the 
operation ⊗ by 

f(t)⊗g(t) =
0
inf

u t≤ ≤
{f(u) + g(t− u)}.                                 (1) 

Then, the symbol ⊗ represents the operation of min-plus 
convolution, which corresponds to ordinary convolution in 
ordinary linear systems. Purely in mathematics, functions 
involved in f(t) ⊗ g(t) can be any real functions. Nevertheless, 
taking into account the practical computer networks, we only 
consider functions that are non-negative, wide sense increasing 
and causal. By wide sense increasing, we mean f(s) ≤ f(t) for s ≤ 
t. By causal, we mean f(t) = 0 for t < 0 [7, p. 13]. Examples of 
such functions are arrival curves of traffic, service curves, and 
departure curves of servers [4]. For simplicity and without 
confusion causing, we call the set of such functions 
“service-curve set” and denote it by G. 

Example 1: Let f(t) = t2 for t > 0 and 0 elsewhere. Then, f(t) ⊗ 
f(t) = t2/2. □ 

The practical significance of min-plus convolution in 
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computer networks is to linearize servers in series so that 
servers in series with each other are linearly connected in the 
sense of min-plus convolution. Let Si(t) be the service curve of 
the ith server in series (i = 1, 2, …, I). Then, two servers in 
series, say the ith server and the (i + 1)th one, see Fig. 1, 
construct a server that has the service curve Si, i + 1(t) given by 

Si, i + 1(t) = Si(t) ⊗ Si + 1(t).                                             (2) 
 

Si(t) Si + 1(t)
 

 
Fig. 1. Two servers in series. 

 
We now consider the issue of the inverse of ⊗. Given Si, i + 1(t) 

and Si(t), find Si + 1(t) in the sense of min-plus convolution. The 
solution to this issue is desired for the network control. 
Mathematically, it relates to the inverse operation of ⊗. It is 
termed min-plus deconvolution. 

Denote the inverse of ⊗ by ∅. Then [1,3,8], the operation of 
∅ is traditionally expressed by 

f(t) ∅ g(t) =
0

sup{ ( ) ( )}.
u

f t u g u
≥

+ −                                (3) 

Note that ⊗ is closed in G for f, g ∈ G but in general, 
unfortunately, ∅ in Eq. (3) may not be closed as can be seen 
from the following example. 

Example 2: Denote the affine function by 
f(t) = kt + b for t > 0 and 0 elsewhere,                         (4) 

where k, b > 0 are constants. Denote the rate-latency function by 
g(t) = K(t – T)u(t – T),                                                 (5) 

where K, T > 0 are constants and u(t) the Heaviside unit step 
function. Two functions are obviously elements in G. However, 

f(t) ∅ g(t) = b + f(t + T) ∉ G,                                      (6) 
since it is no longer causal. □ 

The example 2 implies a difficulty to consider min-plus 
deconvolution in computer networks. For that reason, we 
greatly desire to find the conditions for ∅ to be closed in G. To 
our best knowledge, reports in this regard are rarely seen. This 
paper may be the first attempt in introducing a sufficient 
condition of ∅ to be closed in G in the next section. In Section 3, 
we shall explain the algorithms for the min-plus convolution and 
its inverse. Discussions are given in Section 4. Finally, Section 5 
concludes the paper. 
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II. SUFFICIENT CONDITION 
We first discuss the existence of min-plus deconvolution in G. 

Then, a sufficient condition for ∅ to be closed in G is derived. 
Define ∧ such that 

f ∧ g = inf[f, g] for f, g ∈ G.                                         (6) 
To facilitate discussions, we list some properties of ⊗ in the 
algebra system (G, ∧, ⊗) ([8, p. 135]). 

Lemma 1 (Closure of ⊗): Let f, g ∈ G.  Then, f ⊗ g ∈ G. □ 
Lemma 2: ⊗ with respect to ∧ is distributive. That is, for f, g, 

h ∈ G, 
(f ∧ g) ⊗ h = (f ⊗ h) ∧ (g ⊗ h).                                    (7) 

□ 
Lemma 3: The operation ⊗ is commutative. That is, 

f ⊗ g = g ⊗ f for f, g ∈ G.                                            (8) 
□ 

Lemma 4: For K ∈ ,R  
(f + K) ⊗ g = f ⊗ g + K.                                               (9) 

□ 
Definition [9]: A function of rapid decay is a smooth function 
:φ →R C  such that ( ) ( ) 0n rt tφ →  as t → ± ∞ for all n, r ≥ 0, 

where C  is the space of complex numbers. The set of all 
functions of rapid decay is denoted by S. □ 

Lemma 5 [9]: Every function belonging to S is absolutely 
integrable. □ 

Now, define the norm and inner product of f ∈ G by 
2 2

0
|| || , ( ) ( ) ,f f f f u w u du

+∞
=< >= ∫                           (10) 

where w ∈ S. Combining any f ∈ G with its limit, G is a Hilbert 
space. 

Let g ∈ G be a system function such that it transforms its input 
f ∈ G to the output by 

y = (f ⊗ g) ∈ G.                                                          (11) 
Denote the system by the operator L. Then, we purposely 

force the functionality of L such that it maps an element f ∈ G to 
another element (f ⊗ g) ∈ G. 

Note that L is a linear operator. In fact, according Lemma 2, 
we have 

L(f ∧ g) = L(f)∧L(g).                                                  (12) 
In addition, from Lemma 4, one has 

L(f + K) = L(f) + K.                                                    (13) 
Therefore, L is a linear mapping from G to G. 

Denote the space consisting of all such operators by  
L(G, G) = L(G).  

From Lemmas 2 and 4, one can easily see that L(G) is a linear 
space. 

Lemma 6 (Archimedes criterion): For any real number a > 0 
and b ∈ ,R  there exists positive integer n ∈N  such that na > b 
[10, Chap. 15]. □ 

Lemma 7 (Archimedes): If b ∈ ,R  there exists n ∈N  such 
that b < n [11]. □ 

Lemma 8: An operator :T X Y  is invertible if and only if 
there exists constant m > 0 such that for all x ∈ X, 

|| || || ||,Tx m x≥  where X and Y are linear normed spaces [12]. □ 
From the above discussions, we obtain the following 

theorem. 
Theorem 1 (Existence of min-plus deconvolution): For f, g ∈ 

G  and f(0) ≠ 0 and g(0) ≠ 0, if L(f ) = f ⊗ g or L1(g) = g ⊗ f, then 
both L and L1 are invertible. 
Proof: Consider  

[ ]2

0
|| || || || inf{ ( ) ( )} ( ) .Lf f g f u g t u w u du

∞
= ⊗ = + −∫  

Since 
inf{ ( ) ( )} inf{ ( )} (0)f u g t u f u f+ − ≥ =  

and f(u) ∈ G, one has 
0 < f(0) ≤ f(u). 

According to Lemmas 6 and 7, there exists m > 0 such that 
f(0) ≥ m2f(u). 

Therefore, 

[ ]2 2

0 0

2

0

|| || inf{ ( )} ( ) (0) ( )

       ( ) ( ) || || .

Lf f u w u du f w u du

m f u w u du m f

∞ ∞

∞

≥ =

≥ =

∫ ∫

∫
 

Similarly, if L1 ∈ L(G) is such that L1(g) = g ⊗ f, we have 
||L1g|| ≥ m1||g|| since g(0) ≠ 0, where m1 > 0 is a constant. Thus, 
according to Lemma 8, Theorem 1 holds. □ 

Theorem 1 exhibits the existence of L−1 that corresponds to ∅. 
The following theorem gives the sufficient condition that ∅ is 
closed in G. 

Theorem 2: A sufficient condition for ∅ to be closed in G is 
f(0) ≠ 0 and g(0) ≠ 0. 
Proof: Note that || ||Lf  and || ||f  are finite. From Theorem 1, 
we have 

|| || || ||Lf m f≥  
Thus,  

|| || 0.
|| ||
Lf M
f

= >  

This means L is bounded. 
Define 

0

|| |||| || sup .
|| ||f

LfL
f≠

=  

As G is a Hilbert space and also Banach space, L(G) is a Banach 
space. According to the inverse theorem by Banach, therefore, 
L−1 is bounded. Recall that 

L(f ) = (f ⊗ g) ∈ G. 
Thus, 

L−1L(f ) = y ∅ g = f ∈ G. 
Similarly, suppose L1 ∈ L(G) is such that 

L1(g) = g ⊗ f. 
Then, ||L1g|| ≥ m1||g|| according to Theorem 1. Thus, we have 

||L1g|| = M1||g||, where 1M > 0. 
Consequently, L1 is bounded. Hence, 

1
1 1( )L L g−  = g ∈ G. 

□ 
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III. ALGORITHMS 
Note that it may not be easy, in general, to carry out analytic 

solutions from either min-plus convolution or its inverse for f, g 
∈ G. Therefore, we give their numeric solutions by Algorithm 1 
and Algorithm 2, respectively. 

Algorithm 1 (Min-plus convolution): 
Input Arguments: 
f(t), g(t) 
end:  index of the end of f(t) and g(t) 
Output Arguments: 
X(t):  Result of f(t) ⊗ g(t) 
 
Variables:  
t, u:  integers 
temp[]:  one-dimensional matrix 
 
BEGIN 
 X(t):=0, t < 0 
 For t:=0 to end do 
  For u:=0 to t do 
   temp[u]:=f(u)+g(t-u) 
  END FOR   
  X(t):=min(temp[:]) 
 END FOR 
END 
 
Algorithm 2 (Demin-plus convolution): 
Input Arguments: 
f(t), g(t) 
left end: index of the left end of f(t) and g(t) 
right end: index of the right end of f(t) and g(t) 
 
Output Arguments: 
Y(t):  Result of f(t) ∅ g(t) 
Variables:  
t, u:  integers 
temp[]:   one-dimensional matrix 
 
BEGIN 
 For t:=leftend to rightend do 
  IF (t<=0) 
   For u:=0 to rightend 
 do 
   
 temp[u]:=f(t+u)+g(u) 
   END FOR  
  ELSE 
   For u:=0 to rightend-t do 
   
 temp[u]:=f(t+u)+g(u) 
   END FOR  
  END IF    
  Y(t):=max(temp[:]) 
 END FOR 
END 

IV. DISCUSSIOSN 
Having proved a sufficient condition of the min-plus 

deconvolution to be closed in G, we attempt to explain the 
practical significance of the present result. In doing so, we first 
brief some preliminaries of the relationship between the input 
and output of a server. 

Considering an application sends a series of packets from the 
source to the destination through a network, the network is 
decomposed into a sequence of servers. The servers, in this 
sense, are classified into two categories, namely, constant 
servers and variable servers. By constant server, we mean that it 
imposes a constant delay to each packet and does not modify the 
traffic flow characteristics of a connection. Examples of 
constant servers are physical links, input ports, and most 
common switching fabrics. Variable servers, on the other side, 
add a non-constant delay to each packet, and so modify the 
traffic characteristics of connections. An example of the 
variable servers is output port, which acts a multiplexor. It may 
simultaneously receive packets belonging to different 
connections competing for transmission on the link associated 
with the port. Therefore, packet blocking may occur and packets 
may be forwarded in an order that is determined by the 
scheduling policy adopted by the switch. 

From a view of communication, constant servers do not affect 
the traffic flows and they need not be further considered to be 
involved in the analysis of servers. In this paper, therefore, a 
network is considered to consist of a sequence of variable 
servers, and servers for short unless otherwise stated. 

Note that a server serves arrival traffic on an 
interval-by-interval basis. Let ( )i

ja t be instantaneous arrival 
traffic, implying the bytes of a packet at time t from connection 
j at the input port of the server i with the service curve Si(t). 
Then, the accumulated function regarding ( )i

ja t  in the time 
interval [0, t] is given by 

0

( ) ( ) .
t

i i
j jA t a t dt= ∫                                                         (10) 

Thus, ( )i
jA t is always wide-sense increasing and it is assumed to 

be causal with the starting time t = 0. 
Denote ( )i

jD t the accumulated function characterizing the 
departing the server i (Fig. 2). Then, min-plus convolution 
provides a tool to establish the relationship between ( ),i

jA t  Si(t), 

and ( )i
jD t  by 

( )i
jD t ≥ ( )i

jA t ⊗Si(t) =
0
inf

u t≤ ≤
{Si(u) + ( )i

jA t u− }.          (11) 

 

Si(t)( )i
jA t ( )i

jD t
 

 
Fig. 2. Single server with arrival and departure traffic. 

 
Suppose a traffic series passes through I servers from the first 

server with the service curve S1(t) to the Ith server with the 
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service curve SI(t) to reach the destination (Fig. 3). Denote the 
departure traffic of the Ith server by ( ).I

jD t  Then, 

( )I
jD t ≥ 1 ( )jA t ⊗ 1( )IS t =

0
inf

u t≤ ≤
{ 1 ( )IS u + 1 ( )jA t u− },     (12) 

where 
1( )IS t = S1(t)⊗S2(t)⊗…⊗Si(t)…⊗SI(t).                      (13) 

 

S1(t) SI(t)1 ( )jA t ( )I
jD t  

 
Fig. 3. A series of servers with arrival and departure traffic. 

 
Taking into account the inverse of ⊗, the practical 

significance of the present result can be in the aspect of service 
curve design. Given 1( )IS t  and SI(t), there exists a function in G 
such that 

1
1( )IS t− = 1( )IS t  ∅ SI(t),                                                (14) 

where 
1

1( )IS t− = S1(t) ⊗ S2(t) ⊗ … ⊗ Si(t)… ⊗ SI − 1(t).          (15) 
Repeating the above procedure, one can determine each service 
curve Si(t). 

Our future work will focus on the computational formula of 
the min-plus deconvolution instead of Eq. (3). 

V. CONCLUSION 
We have given a sufficient condition for min-plus 

deconvolution to be closed in G. The potential application of the 
min-plus deconvolution in service curve design has been 
discussed. 
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