

196

Abstract—The task of sequential pattern mining is to

discover the complete set of sequential patterns in a given
sequence database with minimum support threshold. But in
practice, minimum support some time is defined afterward, or
need to be adjusted to discover information that interest to
knowledge workers. In the same time, the problem of discover
sequential patterns in a incremental database is an essential
issue in real world practice of datamining. This paper discusses
the issue of maintaining discovered sequential patterns when
some information is appended to a sequence database. Many
previous works based on Apriori-like approaches are not
capable to do so without re-running previously presented
algorithms on the whole updated database. We propose a novel
algorithm, called DSPID, which takes full advantage of the
information obtained from previous mining results to cut down
the cost of finding new sequential patterns in an incremental
database.

Keywords—Data mining, Sequential patterns, condensed
representations, Maximal sequential patterns

I. INTRODUCTION
he major issue of data mining in the recent years has been
focused on mining sequential patterns in a set of data
sequence. Most real world database contains records with

time stamp, such as sensor, scientific, monitoring and
e-Learning data. The issue of sequential pattern mining was first
introduced by Agrawal and Srikant [2] in 1995: Given a set of
sequences, where each sequence consists of a list of itemsets,
and given a user-specified minimum support threshold (min
support), sequential pattern mining is to find all frequent
subsequences whose frequency is no less than min support.

Manuscript received June 21, 2007. Wei-Hua Hao is with the Department

of Computer Science and Information Engineering Tamkang University, 151
Ying-Chuan Road, Tamsui, Taipei, (phone: 886-2-25417002;
e-mail:weihua.hao@gmail.com). Revised version September 27, 2007

Wei-Hua Hao is with the Department of Computer Science and Information
System of Tamkang University, Taipei, Taiwan. (phone: +886-2-25417002;
e-mail:117168@mail.tku.edu.tw).

Nancy Lin is with the Department of Computer Science and Information
System of Tamkang University, Taipei, Taiwan. (phone: 886-2-25417002;
e-mail:nancylin@mail.tku.edu.tw).

Hung-Jen Chen is with the Department of Computer Science and
Information System of Tamkang University, Taipei, Taiwan. (phone:
886-2-25417002; e-mail: chenhj@mail.sju.edu.tw).

Hao-En Chueh is with the Department of Computer Science and
Information System of Tamkang University, Taipei, Taiwan. (phone:
886-2-25417002; e-mail: chenhj@mail.sju.edu.tw).

Chung-I Chang is with the Department of Computer Science and
Information System of Tamkang University, Taipei, Taiwan. (phone:
886-2-25417002; e-mail: chenhj@mail.sju.edu.tw).

Mining sequential patterns is a task of finding the full set of
frequent sequences that satisfy a given minimum support in a
sequence database. Sequential pattern mining has gradually
become an important data mining task, with broad applications,
including market and customer analysis, web log analysis,
intrusion detection system (IDS) and mining XML query
access patterns. The revealed information and knowledge are
widely used in various applications, including learning status
analysis, decision support, and fraud detection. It is one of the
most important domains of Data Mining. In these few years
many approaches have been proposed to mining sequential
patterns. The Sequential pattern mining is now widely used in
many areas, such as the analysis of internet intrusion detection,
e-Learning sequential patterns, web user behaviors analysis,
customer buying behavior analysis and etc.

The major problem in previous works [1], base on
apriori-like approach, of this field is that generate too many
candidate sequences during the mining process, which increase
the requirement of hardware and system runtime. And then
closed itemset and maximal itemset, sequence, concept has
been introduced [2][3][4][5][6] to mitigate these drawbacks.
Apriori employs a bottom-up searching method that
enumerates every single frequent sequence. This means in
order to generate a frequent sequence of length l, it must
generate all 2l of its subsequences since they too must be
frequent. This exponentially growing complexity
fundamentally restricts Apriori-like algorithms to discover only
short patterns. This mining algorithm has a consequence of the
following problems: sequential pattern mining often generates
huge number of candidate patterns in an exponential curve,
which is inevitable when the database consists of long frequent
sequential patterns. For example, assume the database contains
a frequent sequence 〈i1,…,ik〉, k=20, it will generate 220 -1
frequent subsequences which are essentially redundant
patterns. Even though many previous proposed researches
have alleviate this drawback via join method generating less
candidates, but these redundant is still a major problem that
require more memory space to store them and more machine
cycle to handle, generate and prune, these unnecessary process.
Mining sequential patterns with maximal sequential patterns
may largely reduce the number of patterns generated during the
process and without losing any information, which is because
of it can be used to derive the complete set of sequential
patterns. In previous studies [4][5], which have proposed two
novel mining algorithms, Fast Accumulated Lattice(FAL)
algorithm and Fast Mining Maximal Sequential
Patterns(FMMSP), scan sequence database only once, to our
knowledge the scan times of data base these algorithms are less
than the FP-tree which needs to scan database twice, and further
more mining sequential patterns without generating unneeded
candidates which are to be pruned in the following mining
process. However, in some real world cases the requirement of
memory space is critical that demanding a novel algorithm to

Discover Sequential Patterns in Incremental Database

Nancy P. Lin, Wei-Hua Hao, Hung-Jen Chen, Hao-En, and Chueh, Chung-I Chang

T

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 1, 2007

197

minimize, or prevent, generating non-maximal frequent
sequences.

Many previous researches gave contributions to mining
sequential patterns efficiently of temporal data. Agrawal and
Srikant proposed a generalized sequential pattern mining
algorithm [6], called GSP, which applied the candidate
generation and test, gen and prune, principle. First, it scan
database to discover all frequent 1-sequences, sequence length
equals to 1. Second, generates candidate of 2-sequences from
the sets of frequent 1-sequences. That is, in general, generating
candidate (i+1)-sequences from the sets of frequent
i-sequences.

To alleviate the drawback of generating huge amount of
candidates in the mining process, Garofalakis has proposed
SPIRIT[7], a Apriori-like algorithm, to generate less candidates
via constrains. Jia-Wei Han proposed Prefixspan[8] and
Freespan[9] algorithms, which are based on projected databases.
These 2 algorithms applied a divide-and-conquer approach,
generating many smaller projected databases of the original
sequence database, and mining the frequent sequences in each
projected databases by discovering participated frequent
patterns. In real world data mining application, database is
updated from time to time, it is incremental. In this case, many
new sequences are newly appended to database, altered the
frequent sequential patterns set. The consequence is the
previous mining result of frequent sequence has to change with
the updated sequences. A common used strategy is rebuilding
the frequent sequences from the most up to date database. This
is very inefficient especially when dealing with huge amount of
data. Obviously, rebuilding from scratch didn’t take the
advantage of pervious work. Many researches of incremental
mining of sequential patterns were developed in recent years.
An incremental method SPADE[18] of mining sequential
patterns was proposed by Zaki. In this paper, equivalent class
was introduced to construct sequence lattice in incremental
manner. Newly read sequence data from sequence database are
updated into the lattice. Other research has presented diverse
methods solving the incremental sequence database problem in
[23][24]. Many proposed methods on incremental sequence
mining have to tackle the problems of dealing with the newly
append sequences to the original sequential database to form
into previous constructed frequent sequential patterns, and to
adjust the sequential patterns with change of minimum support,
which is usually change during after, or during, the mining
process. In the practice fields, e-commerce and eLearning
applications, facing a incremental sequence database is
inevitable. How to save mining time with less memory is
essential to evaluate sequential patterns algorithm. In this
aspect, not to rebuild previous construct sequential patterns is
almost an essential part to solve this problem.

 In this paper we propose a new algorithm, DSPID, to
alleviate this problem via mining frequent sequences in a form
of maximal sequential pattern, rather than mining the full set of
frequent sequences. The reason why we mine maximal
sequential patterns is that they are compact representations of
frequent sequential patterns.

In our point of view, the main contributions of this paper are:
constructing maximal sequence model without generating
redundancies of candidates and non-maximal sequences in the
process require less memory space, append new sequence to

data model without rebuilding it, smaller searching space and
categorized frequent sequential patterns.

The rest of this paper is organized as follows. In section 2, we
define the basic definitions and properties of sequential patterns.
The algorithm of DSPID and its example are given in section 3
and 4, respectively. Section 5 gives conclusion and future work.

II. PRELIMINARY
The problem can be described as follows: Assume I={i1, i2 ,

… , in} be a set of all items (or events). An itemset is a
non-empty set of finite items. A sequence is an ordered list of
itemsets. A sequence s is denoted as s=〈i1,…,i|s|〉, where ii is an
itemset, that is , ii I for 1≤i≤k. si is also defined as an element

of sequence, and denoted as (x1x2…xl), where xj I for 1≤j≤l. In

fact, the brackets are usually omitted if |ii|=1. An item can
appear at most once in an element of a sequence, but can appear
more than one time in different elements of a sequence. The
length of a sequence is defined as the number of instances of
items in a sequence. A sequence with length l is called an
l-sequence. A sequence x =〈x1,x2,…,xn〉is called a subsequence

of y=<y1,y2,…,ym> and y a super sequence of x, denoted as x y,

y contain x, if there exist integers 1≤j1＜j2＜…＜jn≤m such
that . A sequence database D is a

set of tuples denoted as 〈SID, s〉, where SID is a sequence
identification number and s is a sequence. Given a k-items
sequence s, its support is supp(s) which is defined as the
number of transactions in D that including s. Apriori-like
algorithm mine all the frequent sequences from D requires
finding all the sequences that support no less than the minimum
support and this has to search through the huge search space
which is given by the power set of I.

Cardinality of s denotes the number of distinct SID values in
the id-list of sequence database for a sequence s.
The set of maximal sequence is defined as

{ }''| ssthatsuchSsandSssMS ≺∈¬∃∈= .
A sequence X is maximal sequence if there exists no

super-sequence Y X, with the same support as X [6].
Let SDB be a sequence database, minimum support is

minsup, and NDB be a appended sequence database. PDB is
updated sequence database that PDB=SDB+NDB. When
original sequence database has changed the algorithm must
make use of the previously discovered information to adapt
with the change. The idea is constructing a data model
representing the original sequence database. The data model
has to change with original sequence database without
rebuilding the data model. This data model is transform from
original sequence database without distortion, DM=f(SDB).
When new sequence has been appended to original sequence

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 1, 2007

198

database the data model also change dependently.
DM’=f(SDB)+ f(NDB).

III. DSPID Algorithm
DSPID provides a categorized, in frequency, data model

represent original sequence database without distortion. With a
approach of incremental strategy, sequences of D are read one
by one, transformed and load into the data model, Frequent
Sequences Set (FSS). Sequence S read from database is
compared to the existed sequences in the FSS. Comparison is in
descending order in each array, but in ascending order from F1
to higher frequent sequence array. The relationship between S
and SFSS are , , or S
and SFSS are partially mutual to each other. That is mutual
sequence and . The new sequence
S is processed according to the type of relationship. The first
case is simple; we just append the new sequence S to the array
of F1. In case 2 and 3, the mutual part is upgraded to higher
frequent array. In case 4, S is upgraded to higher frequent array.
Each frequent array contains maximal sequences only. For
example, sequence 〈ABC〉 and 〈C〉 will not coexist in the

same array because 〈ABC〉 is the maximal sequence of 〈C

〉.

=====================================
//Input: D
//Output: FSS
Initial 2-dimension array FSS={ F1, F2, …, F1}

Function Upgrade(S){

move S from allocated array to higher frequent array }
For each sequence in D{

Read sequence S from sequence database D
For n= 1 to Top{

Case S :{
append S to Fn ;
break;
}

Case S Fn.sequence :{
Upgrade(S);
mark S;
}

Case S Fn.sequence:{
Upgrade(Fn.sequence);
Mark Fn.sequence
}

Case S Fn.sequence=Smutual :{
Upgrade(Smutual);
S= Smutual;
}

}
}
=====================================

Fig. 1 DSPID algorithm

IV. EXAMPLE
We will demonstrate how the DSPID is capable to build a data
model representing original sequence database, minimize the
searching space and accelerate runtime with example. In Figure.
2 is a simple sequence database, D. SID represents Student
Identifier. The itemset include A, B, C, D and E.

SID Sequence
1 ACD
2 ABCE
3 BCE
4 BE
5 ABCDE

(D)

F1 F2 F3 F4

Empty (FSS)
Fig.2 An original sequence database D and data model FSS

First, we consider the construction of data model with

DSPID algorithm. When read in the first sequence 〈ACD〉
from database D. Figure.3 shows the new sequence is allocated
to frequent-1 array, F1. And new sequence is compare with all
sequences in F1. Since there is no other sequence in F1 the
algorithm stops the comparison process.

F1 F2 F3 F4

ACD

Fig. 3 FSS containing 〈ACD〉

In Figure.4, continue to read in 〈ABCE〉. First, the new
sequence is allocated to F1, next to previous sequence.
Compare sequence 〈ABCE〉 with 〈ACD〉, the mutual

sequence of 〈ACD〉 and 〈ABCE〉 is 〈AC〉 which will be
upgraded to higher frequency array F2. As shown in Fig 4.

F1 F2 F3 F4
ACD AC
ABCE

Fig. 4 FSS with 〈ACD〉 and 〈ABCE〉 and their mutual

sequence 〈AC〉

The next sequence reading from D is 〈BCE〉. Compare 〈BCE

〉with F1, found out that sequence 〈BCE〉 is contained by 〈

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 1, 2007

199

ABCE〉, so 〈BCE〉 is upgraded to F2. Sequence 〈BCE〉

is a new sequence to F2. The mutual sequence of 〈BCE〉 and

〈AC〉 is 〈C〉 which will be upgraded to F3. As shown in

Figure. 5. The sequence 〈BCE 〉has been upgraded from F1
to F2. The upgrade algorithm will leaves a marked, under line,
sequence of 〈BCE〉 in F1.

F1 F2 F3
ACD AC C
ABCE
BCE

Allocate 〈BCE〉to F1
F1 F2 F3
ACD AC
ABCE BCE
BCE

Upgrade 〈BCE〉to F2

F1 F2 F3 F4
ACD AC C
ABCE BCE
BCE

Fig. 5 example of upgrading mutual sequence

Next sequence read from database D 〈BE〉 is contained by 〈
ABCE〉 of F1, so 〈BE〉 is upgraded to F2. Compare 〈BE

〉 with sequences in F2. Obviously, 〈BE〉 is contained by 〈
BCE〉 so 〈BE〉 is upgraded to F3. See Figure 6.

F1 F2 F3 F4
ACD AC C
ABCE BCE
BCE
BE

Allocate 〈BE〉 to F1

F1 F2 F3 F4
ACD AC C
ABCE BCE
BCE BE
BE

Upgrade 〈BE〉 to F2

F1 F2 F3 F4
ACD AC C
ABCE BCE BE
BCE BE
BE

Fig. 6 upgrading 〈BE〉

Last sequence 〈ABCDE〉 contains all sequences in F1, so 〈
ACD〉〈ABCE〉 are upgraded to higher frequency array F2. As
shown in Fig. 7.

F1 F2 F3 F4
ACD AC C
ABCE BCE BE
BCE BE
BE
ABCDE

Allocate 〈ABCDE〉 to F1

F1 F2 F3 F4
ACD AC C
ABCE BCE BE
BCE BE
BE ACD
ABCDE

Upgrade 〈ACD〉 to F2

F1 F2 F3 F4
ACD AC C
ABCE BCE BE
BCE BE AC
BE ACD
ABCDE

Upgrade 〈AC〉to F3

F1 F2 F3 F4
ACD AC C C
ABCE BCE BE
BCE BE AC
BE ACD
ABCDE

Upgrade 〈C〉to F4

F1 F2 F3 F4
ACD AC C C
ABCE BCE BE
BCE BE AC
BE ACD
ABCDE ABCE

Upgrade 〈ABCE〉 from F1 to F2

F1 F2 F3 F4
ACD AC C C
ABCE BCE BE
BCE BE AC
BE ACD BCE

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 1, 2007

200

ABCDE ABCE
Upgrade 〈BCE〉 from F2 to F3

F1 F2 F3 F4

ACD AC C C
ABCE BCE BE BE
BCE BE AC
BE ACD BCE
ABCDE ABCE

Upgrade 〈BE〉 from F3 to F4

F1 F2 F3 F4
 C
 BE
 AC
 ACD BCE
ABCDE ABCE

Hide marked sequences in FSS

F1 F2 F3 F4
ABCDE ACD AC C
 ABCE BCE BE

Display FSS in compact format

Fig.6 Complete FSS of D

If we set the threshold to 3 then the frequent sequences are
given by DSPID algorithm immediately via the FSS table. The
frequent sequences are 〈AC:3〉〈BCE:3〉〈C:4〉and 〈BE:4

〉.

V. CONCLUSION
Compare to previous works the advantages are: No

candidates were generated during DSPID mining process that
saves a lot of memory unit both in hard disk and RAM. Search
space is no longer an issue to DSPID algorithm because the
output is a categorized maximal frequency sequence arrays that
can be set to any threshold or minsup. This gives knowledge
worker privilege to adjust the threshold according their domain
knowledge.

Unfortunately, Apriori-like algorithms may fail to extract all
the frequent sequences from dense data sets, which contain
strongly correlated sequences and long frequent sequential
patterns.

Apriori involves a phase for finding patterns called frequent
itemsets. A frequent itemset is a set of items appearing together in a
number of database records meeting a user-specified threshold.
Apriori employs a bottom-up search that enumerates every single
frequent itemset. This implies in order to produce a frequent itemset of
length; it must produce all of its subsets since they too must be
frequent. This exponential complexity fundamentally restricts
Apriori-like algorithms to discovering only short patterns.

Such data sets are, in fact, very hard to mine since the Apriori
closed-downward principle does not guarantee an effective
pruning of candidates, while the number of frequent sequences

grows up very quickly as the minimum support threshold is
decreased.

Many studies have incept the concept to elaborate all
frequent pattern mining to more compact results and
significantly better efficiency of memory usage. Our study
shows that this is usually true when the number of frequent
patterns is extremely large, in this case the number of frequent
maximal sequential patterns is also tend to be very large. In this
paper, we proposed DSPID, a novel algorithm for mining
frequent maximal sequential sequences. It has improved the
drawback of the candidate maintenance-and-test paradigm,
constructing more compact searching space compare to the
previously developed maximal pattern mining algorithms.
DSPID adopts a breadth-first method can output the frequent
maximal patterns online.

REFERENCES:
[1] R. Agrawal and R. Srikant. Mining sequential patterns. In Proc. 1995 Int.

Conf. Data Engineering (ICDE’95), pages 3–14, Taipei, Taiwan, Mar.
1995.

[2] C. Lucchese, S. Orlando and R. Perego, Fast and Memory Efficient
Mining of Frequent Closed Itemsets, IEEE Transactions on Knowledge
and Data Engineering, Vol. 18, No. 1, January 2006.

[3] P. Songram, V. Boonijin and S. Intakosum, Closed Multidimensional
Sequential Pattern Mining, Proceeding of the Third Conference on
Information Technology: New Generations (ITNG’06).

[4] Nancy P. Lin, Wei-Hua Hao and Hung-Jen Chen, Fast Accumulation
Lattice Algorithm for Mining Sequential Patterns, Proceedings of the 6th
WSEAS International Conference on Applied Computer Science
(ACOS’07), pp. 230-234, Hangzhou, China, April 15-17, 2007.

[5] Nancy P. Lin, Wei-Hua Hao, Hung-Jen Chen, Hao-En Chueh and
Chung-I Chang, Fast Mining Sequential Patterns, Proceedings of the 7th
WSEAS International Conference on Simulation, Modeling and
Optimization Applied Computer Science (SMO ’07), pp. 405-408,Beijing
,China ,September 15-17, 2007.

[6] R. Srikant and R. Agrawal, “Mining Sequential Patterns: Generalizations
and Performance Improvements,” Proc. Fifth Int’l Conf. Extending
Database Technology (EDBT ’96), pp. 3-17, Mar. 1996.

[7] M. Garofalakis, R. Rastogi, K. Shim, “SPIRIT: Sequential pattern mining
with regular expression constraints,” Proceedings of the 25th
International Conference on Very Large Databases (VLDB’99), pp.
223-234, 1999.

[8] Jian Pei, Jiawei Han, Behzad Mortazavi-Asl, Janyong Wang, Helen Pinto,
Qiming Chen, Umeshwar Dayal, Mei-Chun Hsu, Mining Sequential
Patterns by Pattern-Growth: The PrefixSpan Approach, IEEE
Transactions on Knowledge and Data Engineering, vol. 16, No. 11,
November 2004.

[9] J. Han, J. Pri, B. Mortazavi-Asl, Q. Chen, U. Dayal, and M.-C. Hsu,
FreeSpan: Frequent Pattern-Projected Sequential Pattern Mining, Proc.
2000 ACM SIGKDD Int’l Conf. Knowledge Discovery in Database
(KDD ’00), pp. 355-359, Aug. 2000.

[10] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal, Discovering frequent
closed itemsets for association rules,” In Proc. Seventh Int. Conf.
Database Theory (ICDT ’99), pp. 398-416, Jan. 1999.

[11] R.J. Bayardo Jr., Efficiently mining long patterns from databases.,
Proceedings of the international conference on Management of data
(SIGMOD’98), 1998.

[12] J. Han, J. Pei and Y. Yin, “Mining Frequent Patterns without Candidate
Generation”, Proc. 2000 ACM-SIGMOD Int’l Conf. Management of
Data (SIGMOD ’00), pp.1-12, May 2000.

[13] Wang, J.; Han, J.a, “BIDE: efficient mining of frequent closed
sequences”, Data Engineering, 2004. Proceedings. 20th International
Conference on 30 March-2 April 2004 Page(s):79 – 90.

[14] N. Pasquier, Y. Bastide, R. Taouil and L. Lakhal, Discoving frequent
closed itemsets for association rules. In ICDT’99, Jerusalem, Israel, Jan.
1999.

[15] J. Wang, J. Han, and J. Pei, CLOSET+: Searching for the Best Strategies
for Mining Frequent Closed Itemsets. In KDD’03,Washington, DC, Aug.
2003.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 1, 2007

 201

[16] X. Yan, J. Han, and R. Afshar,” CloSpan: Mining Closed Sequential
Patterns in Large Databases”. In SDM’03, San Francisco, CA, May 2003.

[17] M. Zaki, and C. Hsiao, CHARM: An efficient algorithm for closed
itemset mining. In SDM’02, Arlington, VA, April 2002.

[18] M. Zaki. SPADE: An efficient algorithm for mining frequent sequences.
Machine Learning, 40:31–60, 2001.

[19] Maged El-Sayed, Carolina Ruiz, Elke A. Rundensteiner, Web mining and
clustering: FS-Miner: efficient and incremental mining of frequent
sequence patterns in web logs Proceedings of the 6th annual ACM
international workshop on Web information and data management,
November 2004.

[20] R. Agrawal and R. Srikant,Fast Algorithms for Mining Association Rules,
Proc. 1994 Int’l Conf. Very Large Data Bases(VLDB ’94), pp.487-499.
1994.

[21] R. Agrawal and R. Srikant, Mining Sequential Patterns, Proc. 1995 Int’l
Conf. Data Eng. (ICDE ’95), pp.3-14, Mar. 1995.

[22] Jiawei Han and Micheline Kamber, “Data Mining, Concepts and
Techniques”, 2nd edition, Morgan Kaufmann Published, 2006.

[23] F. Masseglia, P. Poncelet, M. Teisseire, “Incremental
mining of sequential patterns in large databases,” Actes
des Jouenes Bases de Donnes Avances (BDA’00), Blois,
France, 1999.

[24] Weimin Ouyang, Qingsheng Cai, “An incremental
updating techniques for discovering generalized sequential
patterns,” Journal of Software, Vol. 9, No. 10, pp. 778-780,
1998.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 1, 2007

